| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005, Devicescape Software, Inc. |
| * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de> |
| * Copyright 2007, Stefano Brivio <stefano.brivio@polimi.it> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| |
| #include <net/mac80211.h> |
| #include "ieee80211_rate.h" |
| |
| |
| /* This is an implementation of a TX rate control algorithm that uses a PID |
| * controller. Given a target failed frames rate, the controller decides about |
| * TX rate changes to meet the target failed frames rate. |
| * |
| * The controller basically computes the following: |
| * |
| * adj = CP * err + CI * err_avg + CD * (err - last_err) |
| * |
| * where |
| * adj adjustment value that is used to switch TX rate (see below) |
| * err current error: target vs. current failed frames percentage |
| * last_err last error |
| * err_avg average (i.e. poor man's integral) of recent errors |
| * CP Proportional coefficient |
| * CI Integral coefficient |
| * CD Derivative coefficient |
| * |
| * CP, CI, CD are subject to careful tuning. |
| * |
| * The integral component uses a exponential moving average approach instead of |
| * an actual sliding window. The advantage is that we don't need to keep an |
| * array of the last N error values and computation is easier. |
| * |
| * Once we have the adj value, we map it to a rate by means of a learning |
| * algorithm. This algorithm keeps the state of the percentual failed frames |
| * difference between rates. The behaviour of the lowest available rate is kept |
| * as a reference value, and every time we switch between two rates, we compute |
| * the difference between the failed frames each rate exhibited. By doing so, |
| * we compare behaviours which different rates exhibited in adjacent timeslices, |
| * thus the comparison is minimally affected by external conditions. This |
| * difference gets propagated to the whole set of measurements, so that the |
| * reference is always the same. Periodically, we normalize this set so that |
| * recent events weigh the most. By comparing the adj value with this set, we |
| * avoid pejorative switches to lower rates and allow for switches to higher |
| * rates if they behaved well. |
| * |
| * Note that for the computations we use a fixed-point representation to avoid |
| * floating point arithmetic. Hence, all values are shifted left by |
| * RC_PID_ARITH_SHIFT. |
| */ |
| |
| /* Sampling period for measuring percentage of failed frames. */ |
| #define RC_PID_INTERVAL (HZ / 8) |
| |
| /* Exponential averaging smoothness (used for I part of PID controller) */ |
| #define RC_PID_SMOOTHING_SHIFT 3 |
| #define RC_PID_SMOOTHING (1 << RC_PID_SMOOTHING_SHIFT) |
| |
| /* Fixed point arithmetic shifting amount. */ |
| #define RC_PID_ARITH_SHIFT 8 |
| |
| /* Fixed point arithmetic factor. */ |
| #define RC_PID_ARITH_FACTOR (1 << RC_PID_ARITH_SHIFT) |
| |
| /* Proportional PID component coefficient. */ |
| #define RC_PID_COEFF_P 15 |
| /* Integral PID component coefficient. */ |
| #define RC_PID_COEFF_I 9 |
| /* Derivative PID component coefficient. */ |
| #define RC_PID_COEFF_D 15 |
| |
| /* Target failed frames rate for the PID controller. NB: This effectively gives |
| * maximum failed frames percentage we're willing to accept. If the wireless |
| * link quality is good, the controller will fail to adjust failed frames |
| * percentage to the target. This is intentional. |
| */ |
| #define RC_PID_TARGET_PF (11 << RC_PID_ARITH_SHIFT) |
| |
| /* Rate behaviour normalization quantity over time. */ |
| #define RC_PID_NORM_OFFSET 3 |
| |
| /* Push high rates right after loading. */ |
| #define RC_PID_FAST_START 0 |
| |
| /* Arithmetic right shift for positive and negative values for ISO C. */ |
| #define RC_PID_DO_ARITH_RIGHT_SHIFT(x, y) \ |
| (x) < 0 ? -((-(x)) >> (y)) : (x) >> (y) |
| |
| struct rc_pid_sta_info { |
| unsigned long last_change; |
| unsigned long last_sample; |
| |
| u32 tx_num_failed; |
| u32 tx_num_xmit; |
| |
| /* Average failed frames percentage error (i.e. actual vs. target |
| * percentage), scaled by RC_PID_SMOOTHING. This value is computed |
| * using using an exponential weighted average technique: |
| * |
| * (RC_PID_SMOOTHING - 1) * err_avg_old + err |
| * err_avg = ------------------------------------------ |
| * RC_PID_SMOOTHING |
| * |
| * where err_avg is the new approximation, err_avg_old the previous one |
| * and err is the error w.r.t. to the current failed frames percentage |
| * sample. Note that the bigger RC_PID_SMOOTHING the more weight is |
| * given to the previous estimate, resulting in smoother behavior (i.e. |
| * corresponding to a longer integration window). |
| * |
| * For computation, we actually don't use the above formula, but this |
| * one: |
| * |
| * err_avg_scaled = err_avg_old_scaled - err_avg_old + err |
| * |
| * where: |
| * err_avg_scaled = err * RC_PID_SMOOTHING |
| * err_avg_old_scaled = err_avg_old * RC_PID_SMOOTHING |
| * |
| * This avoids floating point numbers and the per_failed_old value can |
| * easily be obtained by shifting per_failed_old_scaled right by |
| * RC_PID_SMOOTHING_SHIFT. |
| */ |
| s32 err_avg_sc; |
| |
| /* Last framed failes percentage sample */ |
| u32 last_pf; |
| }; |
| |
| /* Algorithm parameters. We keep them on a per-algorithm approach, so they can |
| * be tuned individually for each interface. |
| */ |
| struct rc_pid_rateinfo { |
| |
| /* Map sorted rates to rates in ieee80211_hw_mode. */ |
| int index; |
| |
| /* Map rates in ieee80211_hw_mode to sorted rates. */ |
| int rev_index; |
| |
| /* Comparison with the lowest rate. */ |
| int diff; |
| }; |
| |
| struct rc_pid_info { |
| |
| /* The failed frames percentage target. */ |
| u32 target; |
| |
| /* P, I and D coefficients. */ |
| s32 coeff_p; |
| s32 coeff_i; |
| s32 coeff_d; |
| |
| /* Rates information. */ |
| struct rc_pid_rateinfo *rinfo; |
| |
| /* Index of the last used rate. */ |
| int oldrate; |
| }; |
| |
| /* Shift the adjustment so that we won't switch to a lower rate if it exhibited |
| * a worse failed frames behaviour and we'll choose the highest rate whose |
| * failed frames behaviour is not worse than the one of the original rate |
| * target. While at it, check that the adjustment is within the ranges. Then, |
| * provide the new rate index. */ |
| static int rate_control_pid_shift_adjust(struct rc_pid_rateinfo *r, |
| int adj, int cur, int l) |
| { |
| int i, j, k, tmp; |
| |
| if (cur + adj < 0) |
| return 0; |
| if (cur + adj >= l) |
| return l - 1; |
| |
| i = r[cur + adj].rev_index; |
| |
| j = r[cur].rev_index; |
| |
| if (adj < 0) { |
| tmp = i; |
| for (k = j; k >= i; k--) |
| if (r[k].diff <= r[j].diff) |
| tmp = k; |
| return r[tmp].index; |
| } else if (adj > 0) { |
| tmp = i; |
| for (k = i + 1; k + i < l; k++) |
| if (r[k].diff <= r[i].diff) |
| tmp = k; |
| return r[tmp].index; |
| } |
| return cur + adj; |
| } |
| |
| static void rate_control_pid_adjust_rate(struct ieee80211_local *local, |
| struct sta_info *sta, int adj, |
| struct rc_pid_rateinfo *rinfo) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_hw_mode *mode; |
| int newidx; |
| int maxrate; |
| int back = (adj > 0) ? 1 : -1; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); |
| if (sdata->bss && sdata->bss->force_unicast_rateidx > -1) { |
| /* forced unicast rate - do not change STA rate */ |
| return; |
| } |
| |
| mode = local->oper_hw_mode; |
| maxrate = sdata->bss ? sdata->bss->max_ratectrl_rateidx : -1; |
| |
| newidx = rate_control_pid_shift_adjust(rinfo, adj, sta->txrate, |
| mode->num_rates); |
| |
| while (newidx != sta->txrate) { |
| if (rate_supported(sta, mode, newidx) && |
| (maxrate < 0 || newidx <= maxrate)) { |
| sta->txrate = newidx; |
| break; |
| } |
| |
| newidx += back; |
| } |
| } |
| |
| /* Normalize the failed frames per-rate differences. */ |
| static void rate_control_pid_normalize(struct rc_pid_rateinfo *r, int l) |
| { |
| int i; |
| |
| if (r[0].diff > RC_PID_NORM_OFFSET) |
| r[0].diff -= RC_PID_NORM_OFFSET; |
| else if (r[0].diff < -RC_PID_NORM_OFFSET) |
| r[0].diff += RC_PID_NORM_OFFSET; |
| for (i = 0; i < l - 1; i++) |
| if (r[i + 1].diff > r[i].diff + RC_PID_NORM_OFFSET) |
| r[i + 1].diff -= RC_PID_NORM_OFFSET; |
| else if (r[i + 1].diff <= r[i].diff) |
| r[i + 1].diff += RC_PID_NORM_OFFSET; |
| } |
| |
| static void rate_control_pid_sample(struct rc_pid_info *pinfo, |
| struct ieee80211_local *local, |
| struct sta_info *sta) |
| { |
| struct rc_pid_sta_info *spinfo = sta->rate_ctrl_priv; |
| struct rc_pid_rateinfo *rinfo = pinfo->rinfo; |
| struct ieee80211_hw_mode *mode; |
| u32 pf; |
| s32 err_avg; |
| s32 err_prop; |
| s32 err_int; |
| s32 err_der; |
| int adj, i, j, tmp; |
| |
| mode = local->oper_hw_mode; |
| spinfo = sta->rate_ctrl_priv; |
| spinfo->last_sample = jiffies; |
| |
| /* If no frames were transmitted, we assume the old sample is |
| * still a good measurement and copy it. */ |
| if (spinfo->tx_num_xmit == 0) |
| pf = spinfo->last_pf; |
| else { |
| pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit; |
| pf <<= RC_PID_ARITH_SHIFT; |
| |
| spinfo->tx_num_xmit = 0; |
| spinfo->tx_num_failed = 0; |
| } |
| |
| /* If we just switched rate, update the rate behaviour info. */ |
| if (pinfo->oldrate != sta->txrate) { |
| |
| i = rinfo[pinfo->oldrate].rev_index; |
| j = rinfo[sta->txrate].rev_index; |
| |
| tmp = (pf - spinfo->last_pf); |
| tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT); |
| |
| rinfo[j].diff = rinfo[i].diff + tmp; |
| pinfo->oldrate = sta->txrate; |
| } |
| rate_control_pid_normalize(rinfo, mode->num_rates); |
| |
| /* Compute the proportional, integral and derivative errors. */ |
| err_prop = RC_PID_TARGET_PF - pf; |
| |
| err_avg = spinfo->err_avg_sc >> RC_PID_SMOOTHING_SHIFT; |
| spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop; |
| err_int = spinfo->err_avg_sc >> RC_PID_SMOOTHING_SHIFT; |
| |
| err_der = pf - spinfo->last_pf; |
| spinfo->last_pf = pf; |
| |
| /* Compute the controller output. */ |
| adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i |
| + err_der * pinfo->coeff_d); |
| adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT); |
| |
| /* Change rate. */ |
| if (adj) |
| rate_control_pid_adjust_rate(local, sta, adj, rinfo); |
| } |
| |
| static void rate_control_pid_tx_status(void *priv, struct net_device *dev, |
| struct sk_buff *skb, |
| struct ieee80211_tx_status *status) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct rc_pid_info *pinfo = priv; |
| struct sta_info *sta; |
| struct rc_pid_sta_info *spinfo; |
| |
| sta = sta_info_get(local, hdr->addr1); |
| |
| if (!sta) |
| return; |
| |
| /* Ignore all frames that were sent with a different rate than the rate |
| * we currently advise mac80211 to use. */ |
| if (status->control.rate != &local->oper_hw_mode->rates[sta->txrate]) |
| return; |
| |
| spinfo = sta->rate_ctrl_priv; |
| spinfo->tx_num_xmit++; |
| |
| /* We count frames that totally failed to be transmitted as two bad |
| * frames, those that made it out but had some retries as one good and |
| * one bad frame. */ |
| if (status->excessive_retries) { |
| spinfo->tx_num_failed += 2; |
| spinfo->tx_num_xmit++; |
| } else if (status->retry_count) { |
| spinfo->tx_num_failed++; |
| spinfo->tx_num_xmit++; |
| } |
| |
| if (status->excessive_retries) { |
| sta->tx_retry_failed++; |
| sta->tx_num_consecutive_failures++; |
| sta->tx_num_mpdu_fail++; |
| } else { |
| sta->last_ack_rssi[0] = sta->last_ack_rssi[1]; |
| sta->last_ack_rssi[1] = sta->last_ack_rssi[2]; |
| sta->last_ack_rssi[2] = status->ack_signal; |
| sta->tx_num_consecutive_failures = 0; |
| sta->tx_num_mpdu_ok++; |
| } |
| sta->tx_retry_count += status->retry_count; |
| sta->tx_num_mpdu_fail += status->retry_count; |
| |
| /* Update PID controller state. */ |
| if (time_after(jiffies, spinfo->last_sample + RC_PID_INTERVAL)) |
| rate_control_pid_sample(pinfo, local, sta); |
| |
| sta_info_put(sta); |
| } |
| |
| static void rate_control_pid_get_rate(void *priv, struct net_device *dev, |
| struct ieee80211_hw_mode *mode, |
| struct sk_buff *skb, |
| struct rate_selection *sel) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct sta_info *sta; |
| int rateidx; |
| |
| sta = sta_info_get(local, hdr->addr1); |
| |
| if (!sta) { |
| sel->rate = rate_lowest(local, mode, NULL); |
| sta_info_put(sta); |
| return; |
| } |
| |
| rateidx = sta->txrate; |
| |
| if (rateidx >= mode->num_rates) |
| rateidx = mode->num_rates - 1; |
| |
| sta_info_put(sta); |
| |
| sel->rate = &mode->rates[rateidx]; |
| } |
| |
| static void rate_control_pid_rate_init(void *priv, void *priv_sta, |
| struct ieee80211_local *local, |
| struct sta_info *sta) |
| { |
| /* TODO: This routine should consider using RSSI from previous packets |
| * as we need to have IEEE 802.1X auth succeed immediately after assoc.. |
| * Until that method is implemented, we will use the lowest supported |
| * rate as a workaround. */ |
| sta->txrate = rate_lowest_index(local, local->oper_hw_mode, sta); |
| } |
| |
| static void *rate_control_pid_alloc(struct ieee80211_local *local) |
| { |
| struct rc_pid_info *pinfo; |
| struct rc_pid_rateinfo *rinfo; |
| struct ieee80211_hw_mode *mode; |
| int i, j, tmp; |
| bool s; |
| |
| pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC); |
| if (!pinfo) |
| return NULL; |
| |
| /* We can safely assume that oper_hw_mode won't change unless we get |
| * reinitialized. */ |
| mode = local->oper_hw_mode; |
| rinfo = kmalloc(sizeof(*rinfo) * mode->num_rates, GFP_ATOMIC); |
| if (!rinfo) { |
| kfree(pinfo); |
| return NULL; |
| } |
| |
| /* Sort the rates. This is optimized for the most common case (i.e. |
| * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed |
| * mapping too. */ |
| for (i = 0; i < mode->num_rates; i++) { |
| rinfo[i].index = i; |
| rinfo[i].rev_index = i; |
| if (RC_PID_FAST_START) |
| rinfo[i].diff = 0; |
| else |
| rinfo[i].diff = i * RC_PID_NORM_OFFSET; |
| } |
| for (i = 1; i < mode->num_rates; i++) { |
| s = 0; |
| for (j = 0; j < mode->num_rates - i; j++) |
| if (unlikely(mode->rates[rinfo[j].index].rate > |
| mode->rates[rinfo[j + 1].index].rate)) { |
| tmp = rinfo[j].index; |
| rinfo[j].index = rinfo[j + 1].index; |
| rinfo[j + 1].index = tmp; |
| rinfo[rinfo[j].index].rev_index = j; |
| rinfo[rinfo[j + 1].index].rev_index = j + 1; |
| s = 1; |
| } |
| if (!s) |
| break; |
| } |
| |
| pinfo->target = RC_PID_TARGET_PF; |
| pinfo->coeff_p = RC_PID_COEFF_P; |
| pinfo->coeff_i = RC_PID_COEFF_I; |
| pinfo->coeff_d = RC_PID_COEFF_D; |
| pinfo->rinfo = rinfo; |
| pinfo->oldrate = 0; |
| |
| return pinfo; |
| } |
| |
| static void rate_control_pid_free(void *priv) |
| { |
| struct rc_pid_info *pinfo = priv; |
| kfree(pinfo->rinfo); |
| kfree(pinfo); |
| } |
| |
| static void rate_control_pid_clear(void *priv) |
| { |
| } |
| |
| static void *rate_control_pid_alloc_sta(void *priv, gfp_t gfp) |
| { |
| struct rc_pid_sta_info *spinfo; |
| |
| spinfo = kzalloc(sizeof(*spinfo), gfp); |
| |
| return spinfo; |
| } |
| |
| static void rate_control_pid_free_sta(void *priv, void *priv_sta) |
| { |
| struct rc_pid_sta_info *spinfo = priv_sta; |
| kfree(spinfo); |
| } |
| |
| struct rate_control_ops mac80211_rcpid = { |
| .name = "pid", |
| .tx_status = rate_control_pid_tx_status, |
| .get_rate = rate_control_pid_get_rate, |
| .rate_init = rate_control_pid_rate_init, |
| .clear = rate_control_pid_clear, |
| .alloc = rate_control_pid_alloc, |
| .free = rate_control_pid_free, |
| .alloc_sta = rate_control_pid_alloc_sta, |
| .free_sta = rate_control_pid_free_sta, |
| }; |