| /* |
| * Copyright (c) 2008-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <asm/unaligned.h> |
| #include "hw.h" |
| #include "ar9002_phy.h" |
| |
| static void ath9k_get_txgain_index(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| struct calDataPerFreqOpLoop *rawDatasetOpLoop, |
| u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx) |
| { |
| u8 pcdac, i = 0; |
| u16 idxL = 0, idxR = 0, numPiers; |
| bool match; |
| struct chan_centers centers; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| for (numPiers = 0; numPiers < availPiers; numPiers++) |
| if (calChans[numPiers] == AR5416_BCHAN_UNUSED) |
| break; |
| |
| match = ath9k_hw_get_lower_upper_index( |
| (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), |
| calChans, numPiers, &idxL, &idxR); |
| if (match) { |
| pcdac = rawDatasetOpLoop[idxL].pcdac[0][0]; |
| *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0]; |
| } else { |
| pcdac = rawDatasetOpLoop[idxR].pcdac[0][0]; |
| *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] + |
| rawDatasetOpLoop[idxR].pwrPdg[0][0])/2; |
| } |
| |
| while (pcdac > ah->originalGain[i] && |
| i < (AR9280_TX_GAIN_TABLE_SIZE - 1)) |
| i++; |
| |
| *pcdacIdx = i; |
| } |
| |
| static void ath9k_olc_get_pdadcs(struct ath_hw *ah, |
| u32 initTxGain, |
| int txPower, |
| u8 *pPDADCValues) |
| { |
| u32 i; |
| u32 offset; |
| |
| REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0, |
| AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); |
| REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1, |
| AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); |
| |
| REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7, |
| AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain); |
| |
| offset = txPower; |
| for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++) |
| if (i < offset) |
| pPDADCValues[i] = 0x0; |
| else |
| pPDADCValues[i] = 0xFF; |
| } |
| |
| static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah) |
| { |
| return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF); |
| } |
| |
| static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah) |
| { |
| return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF); |
| } |
| |
| #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16)) |
| |
| static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u16 *eep_data = (u16 *)&ah->eeprom.def; |
| int addr, ar5416_eep_start_loc = 0x100; |
| |
| for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { |
| if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc, |
| eep_data)) { |
| ath_err(ath9k_hw_common(ah), |
| "Unable to read eeprom region\n"); |
| return false; |
| } |
| eep_data++; |
| } |
| return true; |
| } |
| |
| static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah) |
| { |
| u16 *eep_data = (u16 *)&ah->eeprom.def; |
| |
| ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, |
| 0x100, SIZE_EEPROM_DEF); |
| return true; |
| } |
| |
| static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| ath_dbg(common, ATH_DBG_EEPROM, |
| "Reading from EEPROM, not flash\n"); |
| } |
| |
| if (common->bus_ops->ath_bus_type == ATH_USB) |
| return __ath9k_hw_usb_def_fill_eeprom(ah); |
| else |
| return __ath9k_hw_def_fill_eeprom(ah); |
| } |
| |
| #undef SIZE_EEPROM_DEF |
| |
| static int ath9k_hw_def_check_eeprom(struct ath_hw *ah) |
| { |
| struct ar5416_eeprom_def *eep = |
| (struct ar5416_eeprom_def *) &ah->eeprom.def; |
| struct ath_common *common = ath9k_hw_common(ah); |
| u16 *eepdata, temp, magic, magic2; |
| u32 sum = 0, el; |
| bool need_swap = false; |
| int i, addr, size; |
| |
| if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { |
| ath_err(common, "Reading Magic # failed\n"); |
| return false; |
| } |
| |
| if (!ath9k_hw_use_flash(ah)) { |
| ath_dbg(common, ATH_DBG_EEPROM, |
| "Read Magic = 0x%04X\n", magic); |
| |
| if (magic != AR5416_EEPROM_MAGIC) { |
| magic2 = swab16(magic); |
| |
| if (magic2 == AR5416_EEPROM_MAGIC) { |
| size = sizeof(struct ar5416_eeprom_def); |
| need_swap = true; |
| eepdata = (u16 *) (&ah->eeprom); |
| |
| for (addr = 0; addr < size / sizeof(u16); addr++) { |
| temp = swab16(*eepdata); |
| *eepdata = temp; |
| eepdata++; |
| } |
| } else { |
| ath_err(common, |
| "Invalid EEPROM Magic. Endianness mismatch.\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n", |
| need_swap ? "True" : "False"); |
| |
| if (need_swap) |
| el = swab16(ah->eeprom.def.baseEepHeader.length); |
| else |
| el = ah->eeprom.def.baseEepHeader.length; |
| |
| if (el > sizeof(struct ar5416_eeprom_def)) |
| el = sizeof(struct ar5416_eeprom_def) / sizeof(u16); |
| else |
| el = el / sizeof(u16); |
| |
| eepdata = (u16 *)(&ah->eeprom); |
| |
| for (i = 0; i < el; i++) |
| sum ^= *eepdata++; |
| |
| if (need_swap) { |
| u32 integer, j; |
| u16 word; |
| |
| ath_dbg(common, ATH_DBG_EEPROM, |
| "EEPROM Endianness is not native.. Changing.\n"); |
| |
| word = swab16(eep->baseEepHeader.length); |
| eep->baseEepHeader.length = word; |
| |
| word = swab16(eep->baseEepHeader.checksum); |
| eep->baseEepHeader.checksum = word; |
| |
| word = swab16(eep->baseEepHeader.version); |
| eep->baseEepHeader.version = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[0]); |
| eep->baseEepHeader.regDmn[0] = word; |
| |
| word = swab16(eep->baseEepHeader.regDmn[1]); |
| eep->baseEepHeader.regDmn[1] = word; |
| |
| word = swab16(eep->baseEepHeader.rfSilent); |
| eep->baseEepHeader.rfSilent = word; |
| |
| word = swab16(eep->baseEepHeader.blueToothOptions); |
| eep->baseEepHeader.blueToothOptions = word; |
| |
| word = swab16(eep->baseEepHeader.deviceCap); |
| eep->baseEepHeader.deviceCap = word; |
| |
| for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { |
| struct modal_eep_header *pModal = |
| &eep->modalHeader[j]; |
| integer = swab32(pModal->antCtrlCommon); |
| pModal->antCtrlCommon = integer; |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| integer = swab32(pModal->antCtrlChain[i]); |
| pModal->antCtrlChain[i] = integer; |
| } |
| for (i = 0; i < 3; i++) { |
| word = swab16(pModal->xpaBiasLvlFreq[i]); |
| pModal->xpaBiasLvlFreq[i] = word; |
| } |
| |
| for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { |
| word = swab16(pModal->spurChans[i].spurChan); |
| pModal->spurChans[i].spurChan = word; |
| } |
| } |
| } |
| |
| if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER || |
| ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { |
| ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", |
| sum, ah->eep_ops->get_eeprom_ver(ah)); |
| return -EINVAL; |
| } |
| |
| /* Enable fixup for AR_AN_TOP2 if necessary */ |
| if ((ah->hw_version.devid == AR9280_DEVID_PCI) && |
| ((eep->baseEepHeader.version & 0xff) > 0x0a) && |
| (eep->baseEepHeader.pwdclkind == 0)) |
| ah->need_an_top2_fixup = 1; |
| |
| if ((common->bus_ops->ath_bus_type == ATH_USB) && |
| (AR_SREV_9280(ah))) |
| eep->modalHeader[0].xpaBiasLvl = 0; |
| |
| return 0; |
| } |
| |
| static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah, |
| enum eeprom_param param) |
| { |
| struct ar5416_eeprom_def *eep = &ah->eeprom.def; |
| struct modal_eep_header *pModal = eep->modalHeader; |
| struct base_eep_header *pBase = &eep->baseEepHeader; |
| |
| switch (param) { |
| case EEP_NFTHRESH_5: |
| return pModal[0].noiseFloorThreshCh[0]; |
| case EEP_NFTHRESH_2: |
| return pModal[1].noiseFloorThreshCh[0]; |
| case EEP_MAC_LSW: |
| return get_unaligned_be16(pBase->macAddr); |
| case EEP_MAC_MID: |
| return get_unaligned_be16(pBase->macAddr + 2); |
| case EEP_MAC_MSW: |
| return get_unaligned_be16(pBase->macAddr + 4); |
| case EEP_REG_0: |
| return pBase->regDmn[0]; |
| case EEP_REG_1: |
| return pBase->regDmn[1]; |
| case EEP_OP_CAP: |
| return pBase->deviceCap; |
| case EEP_OP_MODE: |
| return pBase->opCapFlags; |
| case EEP_RF_SILENT: |
| return pBase->rfSilent; |
| case EEP_OB_5: |
| return pModal[0].ob; |
| case EEP_DB_5: |
| return pModal[0].db; |
| case EEP_OB_2: |
| return pModal[1].ob; |
| case EEP_DB_2: |
| return pModal[1].db; |
| case EEP_MINOR_REV: |
| return AR5416_VER_MASK; |
| case EEP_TX_MASK: |
| return pBase->txMask; |
| case EEP_RX_MASK: |
| return pBase->rxMask; |
| case EEP_FSTCLK_5G: |
| return pBase->fastClk5g; |
| case EEP_RXGAIN_TYPE: |
| return pBase->rxGainType; |
| case EEP_TXGAIN_TYPE: |
| return pBase->txGainType; |
| case EEP_OL_PWRCTRL: |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) |
| return pBase->openLoopPwrCntl ? true : false; |
| else |
| return false; |
| case EEP_RC_CHAIN_MASK: |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) |
| return pBase->rcChainMask; |
| else |
| return 0; |
| case EEP_DAC_HPWR_5G: |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) |
| return pBase->dacHiPwrMode_5G; |
| else |
| return 0; |
| case EEP_FRAC_N_5G: |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22) |
| return pBase->frac_n_5g; |
| else |
| return 0; |
| case EEP_PWR_TABLE_OFFSET: |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21) |
| return pBase->pwr_table_offset; |
| else |
| return AR5416_PWR_TABLE_OFFSET_DB; |
| default: |
| return 0; |
| } |
| } |
| |
| static void ath9k_hw_def_set_gain(struct ath_hw *ah, |
| struct modal_eep_header *pModal, |
| struct ar5416_eeprom_def *eep, |
| u8 txRxAttenLocal, int regChainOffset, int i) |
| { |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { |
| txRxAttenLocal = pModal->txRxAttenCh[i]; |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, |
| pModal->bswMargin[i]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN1_DB, |
| pModal->bswAtten[i]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, |
| pModal->xatten2Margin[i]); |
| REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| AR_PHY_GAIN_2GHZ_XATTEN2_DB, |
| pModal->xatten2Db[i]); |
| } else { |
| REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
| | SM(pModal-> bswMargin[i], |
| AR_PHY_GAIN_2GHZ_BSW_MARGIN)); |
| REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, |
| (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
| | SM(pModal->bswAtten[i], |
| AR_PHY_GAIN_2GHZ_BSW_ATTEN)); |
| } |
| } |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, |
| AR_PHY_RXGAIN + regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); |
| REG_RMW_FIELD(ah, |
| AR_PHY_RXGAIN + regChainOffset, |
| AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); |
| } else { |
| REG_WRITE(ah, |
| AR_PHY_RXGAIN + regChainOffset, |
| (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & |
| ~AR_PHY_RXGAIN_TXRX_ATTEN) |
| | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN)); |
| REG_WRITE(ah, |
| AR_PHY_GAIN_2GHZ + regChainOffset, |
| (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & |
| ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | |
| SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); |
| } |
| } |
| |
| static void ath9k_hw_def_set_board_values(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct modal_eep_header *pModal; |
| struct ar5416_eeprom_def *eep = &ah->eeprom.def; |
| int i, regChainOffset; |
| u8 txRxAttenLocal; |
| |
| pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); |
| txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; |
| |
| REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff); |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| if (AR_SREV_9280(ah)) { |
| if (i >= 2) |
| break; |
| } |
| |
| if (AR_SREV_5416_20_OR_LATER(ah) && |
| (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0)) |
| regChainOffset = (i == 1) ? 0x2000 : 0x1000; |
| else |
| regChainOffset = i * 0x1000; |
| |
| REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, |
| pModal->antCtrlChain[i]); |
| |
| REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, |
| (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & |
| ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | |
| SM(pModal->iqCalICh[i], |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | |
| SM(pModal->iqCalQCh[i], |
| AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); |
| |
| if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) |
| ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal, |
| regChainOffset, i); |
| } |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| if (IS_CHAN_2GHZ(chan)) { |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, |
| AR_AN_RF2G1_CH0_OB, |
| AR_AN_RF2G1_CH0_OB_S, |
| pModal->ob); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, |
| AR_AN_RF2G1_CH0_DB, |
| AR_AN_RF2G1_CH0_DB_S, |
| pModal->db); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, |
| AR_AN_RF2G1_CH1_OB, |
| AR_AN_RF2G1_CH1_OB_S, |
| pModal->ob_ch1); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, |
| AR_AN_RF2G1_CH1_DB, |
| AR_AN_RF2G1_CH1_DB_S, |
| pModal->db_ch1); |
| } else { |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, |
| AR_AN_RF5G1_CH0_OB5, |
| AR_AN_RF5G1_CH0_OB5_S, |
| pModal->ob); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, |
| AR_AN_RF5G1_CH0_DB5, |
| AR_AN_RF5G1_CH0_DB5_S, |
| pModal->db); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, |
| AR_AN_RF5G1_CH1_OB5, |
| AR_AN_RF5G1_CH1_OB5_S, |
| pModal->ob_ch1); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, |
| AR_AN_RF5G1_CH1_DB5, |
| AR_AN_RF5G1_CH1_DB5_S, |
| pModal->db_ch1); |
| } |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, |
| AR_AN_TOP2_XPABIAS_LVL, |
| AR_AN_TOP2_XPABIAS_LVL_S, |
| pModal->xpaBiasLvl); |
| ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, |
| AR_AN_TOP2_LOCALBIAS, |
| AR_AN_TOP2_LOCALBIAS_S, |
| !!(pModal->lna_ctl & |
| LNA_CTL_LOCAL_BIAS)); |
| REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, |
| !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA)); |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, |
| pModal->switchSettling); |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, |
| pModal->adcDesiredSize); |
| |
| if (!AR_SREV_9280_20_OR_LATER(ah)) |
| REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, |
| AR_PHY_DESIRED_SZ_PGA, |
| pModal->pgaDesiredSize); |
| |
| REG_WRITE(ah, AR_PHY_RF_CTL4, |
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
| | SM(pModal->txEndToXpaOff, |
| AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
| | SM(pModal->txFrameToXpaOn, |
| AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
| | SM(pModal->txFrameToXpaOn, |
| AR_PHY_RF_CTL4_FRAME_XPAB_ON)); |
| |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, |
| pModal->txEndToRxOn); |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, |
| pModal->thresh62); |
| REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, |
| AR_PHY_EXT_CCA0_THRESH62, |
| pModal->thresh62); |
| } else { |
| REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, |
| pModal->thresh62); |
| REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, |
| AR_PHY_EXT_CCA_THRESH62, |
| pModal->thresh62); |
| } |
| |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) { |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, |
| AR_PHY_TX_END_DATA_START, |
| pModal->txFrameToDataStart); |
| REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, |
| pModal->txFrameToPaOn); |
| } |
| |
| if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { |
| if (IS_CHAN_HT40(chan)) |
| REG_RMW_FIELD(ah, AR_PHY_SETTLING, |
| AR_PHY_SETTLING_SWITCH, |
| pModal->swSettleHt40); |
| } |
| |
| if (AR_SREV_9280_20_OR_LATER(ah) && |
| AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19) |
| REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, |
| AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, |
| pModal->miscBits); |
| |
| |
| if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) { |
| if (IS_CHAN_2GHZ(chan)) |
| REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, |
| eep->baseEepHeader.dacLpMode); |
| else if (eep->baseEepHeader.dacHiPwrMode_5G) |
| REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); |
| else |
| REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, |
| eep->baseEepHeader.dacLpMode); |
| |
| udelay(100); |
| |
| REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, |
| pModal->miscBits >> 2); |
| |
| REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, |
| AR_PHY_TX_DESIRED_SCALE_CCK, |
| eep->baseEepHeader.desiredScaleCCK); |
| } |
| } |
| |
| static void ath9k_hw_def_set_addac(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) |
| struct modal_eep_header *pModal; |
| struct ar5416_eeprom_def *eep = &ah->eeprom.def; |
| u8 biaslevel; |
| |
| if (ah->hw_version.macVersion != AR_SREV_VERSION_9160) |
| return; |
| |
| if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7) |
| return; |
| |
| pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); |
| |
| if (pModal->xpaBiasLvl != 0xff) { |
| biaslevel = pModal->xpaBiasLvl; |
| } else { |
| u16 resetFreqBin, freqBin, freqCount = 0; |
| struct chan_centers centers; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| resetFreqBin = FREQ2FBIN(centers.synth_center, |
| IS_CHAN_2GHZ(chan)); |
| freqBin = XPA_LVL_FREQ(0) & 0xff; |
| biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14); |
| |
| freqCount++; |
| |
| while (freqCount < 3) { |
| if (XPA_LVL_FREQ(freqCount) == 0x0) |
| break; |
| |
| freqBin = XPA_LVL_FREQ(freqCount) & 0xff; |
| if (resetFreqBin >= freqBin) |
| biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14); |
| else |
| break; |
| freqCount++; |
| } |
| } |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac, |
| 7, 1) & (~0x18)) | biaslevel << 3; |
| } else { |
| INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac, |
| 6, 1) & (~0xc0)) | biaslevel << 6; |
| } |
| #undef XPA_LVL_FREQ |
| } |
| |
| static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah, |
| u16 *gb, |
| u16 numXpdGain, |
| u16 pdGainOverlap_t2, |
| int8_t pwr_table_offset, |
| int16_t *diff) |
| |
| { |
| u16 k; |
| |
| /* Prior to writing the boundaries or the pdadc vs. power table |
| * into the chip registers the default starting point on the pdadc |
| * vs. power table needs to be checked and the curve boundaries |
| * adjusted accordingly |
| */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| u16 gb_limit; |
| |
| if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { |
| /* get the difference in dB */ |
| *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB); |
| /* get the number of half dB steps */ |
| *diff *= 2; |
| /* change the original gain boundary settings |
| * by the number of half dB steps |
| */ |
| for (k = 0; k < numXpdGain; k++) |
| gb[k] = (u16)(gb[k] - *diff); |
| } |
| /* Because of a hardware limitation, ensure the gain boundary |
| * is not larger than (63 - overlap) |
| */ |
| gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2); |
| |
| for (k = 0; k < numXpdGain; k++) |
| gb[k] = (u16)min(gb_limit, gb[k]); |
| } |
| |
| return *diff; |
| } |
| |
| static void ath9k_adjust_pdadc_values(struct ath_hw *ah, |
| int8_t pwr_table_offset, |
| int16_t diff, |
| u8 *pdadcValues) |
| { |
| #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff) |
| u16 k; |
| |
| /* If this is a board that has a pwrTableOffset that differs from |
| * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the |
| * pdadc vs pwr table needs to be adjusted prior to writing to the |
| * chip. |
| */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) { |
| /* shift the table to start at the new offset */ |
| for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) { |
| pdadcValues[k] = pdadcValues[k + diff]; |
| } |
| |
| /* fill the back of the table */ |
| for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) { |
| pdadcValues[k] = pdadcValues[NUM_PDADC(diff)]; |
| } |
| } |
| } |
| #undef NUM_PDADC |
| } |
| |
| static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| int16_t *pTxPowerIndexOffset) |
| { |
| #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x) |
| #define SM_PDGAIN_B(x, y) \ |
| SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y) |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; |
| struct cal_data_per_freq *pRawDataset; |
| u8 *pCalBChans = NULL; |
| u16 pdGainOverlap_t2; |
| static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; |
| u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; |
| u16 numPiers, i, j; |
| int16_t diff = 0; |
| u16 numXpdGain, xpdMask; |
| u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; |
| u32 reg32, regOffset, regChainOffset; |
| int16_t modalIdx; |
| int8_t pwr_table_offset; |
| |
| modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; |
| xpdMask = pEepData->modalHeader[modalIdx].xpdGain; |
| |
| pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET); |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| pdGainOverlap_t2 = |
| pEepData->modalHeader[modalIdx].pdGainOverlap; |
| } else { |
| pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); |
| } |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| pCalBChans = pEepData->calFreqPier2G; |
| numPiers = AR5416_NUM_2G_CAL_PIERS; |
| } else { |
| pCalBChans = pEepData->calFreqPier5G; |
| numPiers = AR5416_NUM_5G_CAL_PIERS; |
| } |
| |
| if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) { |
| pRawDataset = pEepData->calPierData2G[0]; |
| ah->initPDADC = ((struct calDataPerFreqOpLoop *) |
| pRawDataset)->vpdPdg[0][0]; |
| } |
| |
| numXpdGain = 0; |
| |
| for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { |
| if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { |
| if (numXpdGain >= AR5416_NUM_PD_GAINS) |
| break; |
| xpdGainValues[numXpdGain] = |
| (u16)(AR5416_PD_GAINS_IN_MASK - i); |
| numXpdGain++; |
| } |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, |
| (numXpdGain - 1) & 0x3); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, |
| xpdGainValues[0]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, |
| xpdGainValues[1]); |
| REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, |
| xpdGainValues[2]); |
| |
| for (i = 0; i < AR5416_MAX_CHAINS; i++) { |
| if (AR_SREV_5416_20_OR_LATER(ah) && |
| (ah->rxchainmask == 5 || ah->txchainmask == 5) && |
| (i != 0)) { |
| regChainOffset = (i == 1) ? 0x2000 : 0x1000; |
| } else |
| regChainOffset = i * 0x1000; |
| |
| if (pEepData->baseEepHeader.txMask & (1 << i)) { |
| if (IS_CHAN_2GHZ(chan)) |
| pRawDataset = pEepData->calPierData2G[i]; |
| else |
| pRawDataset = pEepData->calPierData5G[i]; |
| |
| |
| if (OLC_FOR_AR9280_20_LATER) { |
| u8 pcdacIdx; |
| u8 txPower; |
| |
| ath9k_get_txgain_index(ah, chan, |
| (struct calDataPerFreqOpLoop *)pRawDataset, |
| pCalBChans, numPiers, &txPower, &pcdacIdx); |
| ath9k_olc_get_pdadcs(ah, pcdacIdx, |
| txPower/2, pdadcValues); |
| } else { |
| ath9k_hw_get_gain_boundaries_pdadcs(ah, |
| chan, pRawDataset, |
| pCalBChans, numPiers, |
| pdGainOverlap_t2, |
| gainBoundaries, |
| pdadcValues, |
| numXpdGain); |
| } |
| |
| diff = ath9k_change_gain_boundary_setting(ah, |
| gainBoundaries, |
| numXpdGain, |
| pdGainOverlap_t2, |
| pwr_table_offset, |
| &diff); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) { |
| if (OLC_FOR_AR9280_20_LATER) { |
| REG_WRITE(ah, |
| AR_PHY_TPCRG5 + regChainOffset, |
| SM(0x6, |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | |
| SM_PD_GAIN(1) | SM_PD_GAIN(2) | |
| SM_PD_GAIN(3) | SM_PD_GAIN(4)); |
| } else { |
| REG_WRITE(ah, |
| AR_PHY_TPCRG5 + regChainOffset, |
| SM(pdGainOverlap_t2, |
| AR_PHY_TPCRG5_PD_GAIN_OVERLAP)| |
| SM_PDGAIN_B(0, 1) | |
| SM_PDGAIN_B(1, 2) | |
| SM_PDGAIN_B(2, 3) | |
| SM_PDGAIN_B(3, 4)); |
| } |
| } |
| |
| |
| ath9k_adjust_pdadc_values(ah, pwr_table_offset, |
| diff, pdadcValues); |
| |
| regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; |
| for (j = 0; j < 32; j++) { |
| reg32 = get_unaligned_le32(&pdadcValues[4 * j]); |
| REG_WRITE(ah, regOffset, reg32); |
| |
| ath_dbg(common, ATH_DBG_EEPROM, |
| "PDADC (%d,%4x): %4.4x %8.8x\n", |
| i, regChainOffset, regOffset, |
| reg32); |
| ath_dbg(common, ATH_DBG_EEPROM, |
| "PDADC: Chain %d | PDADC %3d " |
| "Value %3d | PDADC %3d Value %3d | " |
| "PDADC %3d Value %3d | PDADC %3d " |
| "Value %3d |\n", |
| i, 4 * j, pdadcValues[4 * j], |
| 4 * j + 1, pdadcValues[4 * j + 1], |
| 4 * j + 2, pdadcValues[4 * j + 2], |
| 4 * j + 3, pdadcValues[4 * j + 3]); |
| |
| regOffset += 4; |
| } |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| } |
| |
| *pTxPowerIndexOffset = 0; |
| #undef SM_PD_GAIN |
| #undef SM_PDGAIN_B |
| } |
| |
| static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| int16_t *ratesArray, |
| u16 cfgCtl, |
| u16 AntennaReduction, |
| u16 twiceMaxRegulatoryPower, |
| u16 powerLimit) |
| { |
| #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ |
| #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */ |
| |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; |
| u16 twiceMaxEdgePower = MAX_RATE_POWER; |
| static const u16 tpScaleReductionTable[5] = |
| { 0, 3, 6, 9, MAX_RATE_POWER }; |
| |
| int i; |
| int16_t twiceLargestAntenna; |
| struct cal_ctl_data *rep; |
| struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { |
| 0, { 0, 0, 0, 0} |
| }; |
| struct cal_target_power_leg targetPowerOfdmExt = { |
| 0, { 0, 0, 0, 0} }, targetPowerCckExt = { |
| 0, { 0, 0, 0, 0 } |
| }; |
| struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { |
| 0, {0, 0, 0, 0} |
| }; |
| u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; |
| static const u16 ctlModesFor11a[] = { |
| CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 |
| }; |
| static const u16 ctlModesFor11g[] = { |
| CTL_11B, CTL_11G, CTL_2GHT20, |
| CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 |
| }; |
| u16 numCtlModes; |
| const u16 *pCtlMode; |
| u16 ctlMode, freq; |
| struct chan_centers centers; |
| int tx_chainmask; |
| u16 twiceMinEdgePower; |
| |
| tx_chainmask = ah->txchainmask; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| |
| twiceLargestAntenna = max( |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[0], |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[1]); |
| |
| twiceLargestAntenna = max((u8)twiceLargestAntenna, |
| pEepData->modalHeader |
| [IS_CHAN_2GHZ(chan)].antennaGainCh[2]); |
| |
| twiceLargestAntenna = (int16_t)min(AntennaReduction - |
| twiceLargestAntenna, 0); |
| |
| maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; |
| |
| if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) { |
| maxRegAllowedPower -= |
| (tpScaleReductionTable[(regulatory->tp_scale)] * 2); |
| } |
| |
| scaledPower = min(powerLimit, maxRegAllowedPower); |
| |
| switch (ar5416_get_ntxchains(tx_chainmask)) { |
| case 1: |
| break; |
| case 2: |
| if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN) |
| scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; |
| else |
| scaledPower = 0; |
| break; |
| case 3: |
| if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN) |
| scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; |
| else |
| scaledPower = 0; |
| break; |
| } |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g) - |
| SUB_NUM_CTL_MODES_AT_2G_40; |
| pCtlMode = ctlModesFor11g; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCck, 4, false); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, false); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT20, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, false); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11g); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower2GHT40, |
| AR5416_NUM_2G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, true); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPowerCck, |
| AR5416_NUM_2G_CCK_TARGET_POWERS, |
| &targetPowerCckExt, 4, true); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower2G, |
| AR5416_NUM_2G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, true); |
| } |
| } else { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11a) - |
| SUB_NUM_CTL_MODES_AT_5G_40; |
| pCtlMode = ctlModesFor11a; |
| |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower5G, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerOfdm, 4, false); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower5GHT20, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerHt20, 8, false); |
| |
| if (IS_CHAN_HT40(chan)) { |
| numCtlModes = ARRAY_SIZE(ctlModesFor11a); |
| ath9k_hw_get_target_powers(ah, chan, |
| pEepData->calTargetPower5GHT40, |
| AR5416_NUM_5G_40_TARGET_POWERS, |
| &targetPowerHt40, 8, true); |
| ath9k_hw_get_legacy_target_powers(ah, chan, |
| pEepData->calTargetPower5G, |
| AR5416_NUM_5G_20_TARGET_POWERS, |
| &targetPowerOfdmExt, 4, true); |
| } |
| } |
| |
| for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { |
| bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || |
| (pCtlMode[ctlMode] == CTL_2GHT40); |
| if (isHt40CtlMode) |
| freq = centers.synth_center; |
| else if (pCtlMode[ctlMode] & EXT_ADDITIVE) |
| freq = centers.ext_center; |
| else |
| freq = centers.ctl_center; |
| |
| if (ah->eep_ops->get_eeprom_ver(ah) == 14 && |
| ah->eep_ops->get_eeprom_rev(ah) <= 2) |
| twiceMaxEdgePower = MAX_RATE_POWER; |
| |
| for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { |
| if ((((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| pEepData->ctlIndex[i]) || |
| (((cfgCtl & ~CTL_MODE_M) | |
| (pCtlMode[ctlMode] & CTL_MODE_M)) == |
| ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { |
| rep = &(pEepData->ctlData[i]); |
| |
| twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, |
| rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1], |
| IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); |
| |
| if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { |
| twiceMaxEdgePower = min(twiceMaxEdgePower, |
| twiceMinEdgePower); |
| } else { |
| twiceMaxEdgePower = twiceMinEdgePower; |
| break; |
| } |
| } |
| } |
| |
| minCtlPower = min(twiceMaxEdgePower, scaledPower); |
| |
| switch (pCtlMode[ctlMode]) { |
| case CTL_11B: |
| for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { |
| targetPowerCck.tPow2x[i] = |
| min((u16)targetPowerCck.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11A: |
| case CTL_11G: |
| for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { |
| targetPowerOfdm.tPow2x[i] = |
| min((u16)targetPowerOfdm.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_5GHT20: |
| case CTL_2GHT20: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { |
| targetPowerHt20.tPow2x[i] = |
| min((u16)targetPowerHt20.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| case CTL_11B_EXT: |
| targetPowerCckExt.tPow2x[0] = min((u16) |
| targetPowerCckExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_11A_EXT: |
| case CTL_11G_EXT: |
| targetPowerOfdmExt.tPow2x[0] = min((u16) |
| targetPowerOfdmExt.tPow2x[0], |
| minCtlPower); |
| break; |
| case CTL_5GHT40: |
| case CTL_2GHT40: |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| targetPowerHt40.tPow2x[i] = |
| min((u16)targetPowerHt40.tPow2x[i], |
| minCtlPower); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = |
| ratesArray[rate18mb] = ratesArray[rate24mb] = |
| targetPowerOfdm.tPow2x[0]; |
| ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; |
| ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; |
| ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; |
| ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; |
| |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) |
| ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| ratesArray[rate1l] = targetPowerCck.tPow2x[0]; |
| ratesArray[rate2s] = ratesArray[rate2l] = |
| targetPowerCck.tPow2x[1]; |
| ratesArray[rate5_5s] = ratesArray[rate5_5l] = |
| targetPowerCck.tPow2x[2]; |
| ratesArray[rate11s] = ratesArray[rate11l] = |
| targetPowerCck.tPow2x[3]; |
| } |
| if (IS_CHAN_HT40(chan)) { |
| for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { |
| ratesArray[rateHt40_0 + i] = |
| targetPowerHt40.tPow2x[i]; |
| } |
| ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; |
| ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; |
| if (IS_CHAN_2GHZ(chan)) { |
| ratesArray[rateExtCck] = |
| targetPowerCckExt.tPow2x[0]; |
| } |
| } |
| } |
| |
| static void ath9k_hw_def_set_txpower(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| u16 cfgCtl, |
| u8 twiceAntennaReduction, |
| u8 twiceMaxRegulatoryPower, |
| u8 powerLimit, bool test) |
| { |
| #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta) |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ar5416_eeprom_def *pEepData = &ah->eeprom.def; |
| struct modal_eep_header *pModal = |
| &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); |
| int16_t ratesArray[Ar5416RateSize]; |
| int16_t txPowerIndexOffset = 0; |
| u8 ht40PowerIncForPdadc = 2; |
| int i, cck_ofdm_delta = 0; |
| |
| memset(ratesArray, 0, sizeof(ratesArray)); |
| |
| if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= |
| AR5416_EEP_MINOR_VER_2) { |
| ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; |
| } |
| |
| ath9k_hw_set_def_power_per_rate_table(ah, chan, |
| &ratesArray[0], cfgCtl, |
| twiceAntennaReduction, |
| twiceMaxRegulatoryPower, |
| powerLimit); |
| |
| ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset); |
| |
| regulatory->max_power_level = 0; |
| for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { |
| ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); |
| if (ratesArray[i] > MAX_RATE_POWER) |
| ratesArray[i] = MAX_RATE_POWER; |
| if (ratesArray[i] > regulatory->max_power_level) |
| regulatory->max_power_level = ratesArray[i]; |
| } |
| |
| if (!test) { |
| i = rate6mb; |
| |
| if (IS_CHAN_HT40(chan)) |
| i = rateHt40_0; |
| else if (IS_CHAN_HT20(chan)) |
| i = rateHt20_0; |
| |
| regulatory->max_power_level = ratesArray[i]; |
| } |
| |
| switch(ar5416_get_ntxchains(ah->txchainmask)) { |
| case 1: |
| break; |
| case 2: |
| regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN; |
| break; |
| case 3: |
| regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN; |
| break; |
| default: |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM, |
| "Invalid chainmask configuration\n"); |
| break; |
| } |
| |
| if (test) |
| return; |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| for (i = 0; i < Ar5416RateSize; i++) { |
| int8_t pwr_table_offset; |
| |
| pwr_table_offset = ah->eep_ops->get_eeprom(ah, |
| EEP_PWR_TABLE_OFFSET); |
| ratesArray[i] -= pwr_table_offset * 2; |
| } |
| } |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, |
| ATH9K_POW_SM(ratesArray[rate18mb], 24) |
| | ATH9K_POW_SM(ratesArray[rate12mb], 16) |
| | ATH9K_POW_SM(ratesArray[rate9mb], 8) |
| | ATH9K_POW_SM(ratesArray[rate6mb], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, |
| ATH9K_POW_SM(ratesArray[rate54mb], 24) |
| | ATH9K_POW_SM(ratesArray[rate48mb], 16) |
| | ATH9K_POW_SM(ratesArray[rate36mb], 8) |
| | ATH9K_POW_SM(ratesArray[rate24mb], 0)); |
| |
| if (IS_CHAN_2GHZ(chan)) { |
| if (OLC_FOR_AR9280_20_LATER) { |
| cck_ofdm_delta = 2; |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, |
| ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24) |
| | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16) |
| | ATH9K_POW_SM(ratesArray[rateXr], 8) |
| | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, |
| ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24) |
| | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16) |
| | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8) |
| | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0)); |
| } else { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, |
| ATH9K_POW_SM(ratesArray[rate2s], 24) |
| | ATH9K_POW_SM(ratesArray[rate2l], 16) |
| | ATH9K_POW_SM(ratesArray[rateXr], 8) |
| | ATH9K_POW_SM(ratesArray[rate1l], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, |
| ATH9K_POW_SM(ratesArray[rate11s], 24) |
| | ATH9K_POW_SM(ratesArray[rate11l], 16) |
| | ATH9K_POW_SM(ratesArray[rate5_5s], 8) |
| | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); |
| } |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, |
| ATH9K_POW_SM(ratesArray[rateHt20_3], 24) |
| | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) |
| | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) |
| | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, |
| ATH9K_POW_SM(ratesArray[rateHt20_7], 24) |
| | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) |
| | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) |
| | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); |
| |
| if (IS_CHAN_HT40(chan)) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, |
| ATH9K_POW_SM(ratesArray[rateHt40_3] + |
| ht40PowerIncForPdadc, 24) |
| | ATH9K_POW_SM(ratesArray[rateHt40_2] + |
| ht40PowerIncForPdadc, 16) |
| | ATH9K_POW_SM(ratesArray[rateHt40_1] + |
| ht40PowerIncForPdadc, 8) |
| | ATH9K_POW_SM(ratesArray[rateHt40_0] + |
| ht40PowerIncForPdadc, 0)); |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, |
| ATH9K_POW_SM(ratesArray[rateHt40_7] + |
| ht40PowerIncForPdadc, 24) |
| | ATH9K_POW_SM(ratesArray[rateHt40_6] + |
| ht40PowerIncForPdadc, 16) |
| | ATH9K_POW_SM(ratesArray[rateHt40_5] + |
| ht40PowerIncForPdadc, 8) |
| | ATH9K_POW_SM(ratesArray[rateHt40_4] + |
| ht40PowerIncForPdadc, 0)); |
| if (OLC_FOR_AR9280_20_LATER) { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, |
| ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) |
| | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16) |
| | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) |
| | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0)); |
| } else { |
| REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, |
| ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) |
| | ATH9K_POW_SM(ratesArray[rateExtCck], 16) |
| | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) |
| | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); |
| } |
| } |
| |
| REG_WRITE(ah, AR_PHY_POWER_TX_SUB, |
| ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) |
| | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) |
| { |
| #define EEP_DEF_SPURCHAN \ |
| (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan) |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| u16 spur_val = AR_NO_SPUR; |
| |
| ath_dbg(common, ATH_DBG_ANI, |
| "Getting spur idx:%d is2Ghz:%d val:%x\n", |
| i, is2GHz, ah->config.spurchans[i][is2GHz]); |
| |
| switch (ah->config.spurmode) { |
| case SPUR_DISABLE: |
| break; |
| case SPUR_ENABLE_IOCTL: |
| spur_val = ah->config.spurchans[i][is2GHz]; |
| ath_dbg(common, ATH_DBG_ANI, |
| "Getting spur val from new loc. %d\n", spur_val); |
| break; |
| case SPUR_ENABLE_EEPROM: |
| spur_val = EEP_DEF_SPURCHAN; |
| break; |
| } |
| |
| return spur_val; |
| |
| #undef EEP_DEF_SPURCHAN |
| } |
| |
| const struct eeprom_ops eep_def_ops = { |
| .check_eeprom = ath9k_hw_def_check_eeprom, |
| .get_eeprom = ath9k_hw_def_get_eeprom, |
| .fill_eeprom = ath9k_hw_def_fill_eeprom, |
| .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver, |
| .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev, |
| .set_board_values = ath9k_hw_def_set_board_values, |
| .set_addac = ath9k_hw_def_set_addac, |
| .set_txpower = ath9k_hw_def_set_txpower, |
| .get_spur_channel = ath9k_hw_def_get_spur_channel |
| }; |