blob: d660dc36831afd5420c6da1dc1a35e9ee9eb6234 [file] [log] [blame]
#ifndef _ASM_POWERPC_PROCESSOR_H
#define _ASM_POWERPC_PROCESSOR_H
/*
* Copyright (C) 2001 PPC 64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/reg.h>
#ifdef CONFIG_VSX
#define TS_FPRWIDTH 2
#ifdef __BIG_ENDIAN__
#define TS_FPROFFSET 0
#define TS_VSRLOWOFFSET 1
#else
#define TS_FPROFFSET 1
#define TS_VSRLOWOFFSET 0
#endif
#else
#define TS_FPRWIDTH 1
#define TS_FPROFFSET 0
#endif
#ifdef CONFIG_PPC64
/* Default SMT priority is set to 3. Use 11- 13bits to save priority. */
#define PPR_PRIORITY 3
#ifdef __ASSEMBLY__
#define INIT_PPR (PPR_PRIORITY << 50)
#else
#define INIT_PPR ((u64)PPR_PRIORITY << 50)
#endif /* __ASSEMBLY__ */
#endif /* CONFIG_PPC64 */
#ifndef __ASSEMBLY__
#include <linux/compiler.h>
#include <linux/cache.h>
#include <asm/ptrace.h>
#include <asm/types.h>
#include <asm/hw_breakpoint.h>
/* We do _not_ want to define new machine types at all, those must die
* in favor of using the device-tree
* -- BenH.
*/
/* PREP sub-platform types. Unused */
#define _PREP_Motorola 0x01 /* motorola prep */
#define _PREP_Firm 0x02 /* firmworks prep */
#define _PREP_IBM 0x00 /* ibm prep */
#define _PREP_Bull 0x03 /* bull prep */
/* CHRP sub-platform types. These are arbitrary */
#define _CHRP_Motorola 0x04 /* motorola chrp, the cobra */
#define _CHRP_IBM 0x05 /* IBM chrp, the longtrail and longtrail 2 */
#define _CHRP_Pegasos 0x06 /* Genesi/bplan's Pegasos and Pegasos2 */
#define _CHRP_briq 0x07 /* TotalImpact's briQ */
#if defined(__KERNEL__) && defined(CONFIG_PPC32)
extern int _chrp_type;
#endif /* defined(__KERNEL__) && defined(CONFIG_PPC32) */
/*
* Default implementation of macro that returns current
* instruction pointer ("program counter").
*/
#define current_text_addr() ({ __label__ _l; _l: &&_l;})
/* Macros for adjusting thread priority (hardware multi-threading) */
#define HMT_very_low() asm volatile("or 31,31,31 # very low priority")
#define HMT_low() asm volatile("or 1,1,1 # low priority")
#define HMT_medium_low() asm volatile("or 6,6,6 # medium low priority")
#define HMT_medium() asm volatile("or 2,2,2 # medium priority")
#define HMT_medium_high() asm volatile("or 5,5,5 # medium high priority")
#define HMT_high() asm volatile("or 3,3,3 # high priority")
#ifdef __KERNEL__
struct task_struct;
void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp);
void release_thread(struct task_struct *);
/* Lazy FPU handling on uni-processor */
extern struct task_struct *last_task_used_math;
extern struct task_struct *last_task_used_altivec;
extern struct task_struct *last_task_used_vsx;
extern struct task_struct *last_task_used_spe;
#ifdef CONFIG_PPC32
#if CONFIG_TASK_SIZE > CONFIG_KERNEL_START
#error User TASK_SIZE overlaps with KERNEL_START address
#endif
#define TASK_SIZE (CONFIG_TASK_SIZE)
/* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE (TASK_SIZE / 8 * 3)
#endif
#ifdef CONFIG_PPC64
/* 64-bit user address space is 46-bits (64TB user VM) */
#define TASK_SIZE_USER64 (0x0000400000000000UL)
/*
* 32-bit user address space is 4GB - 1 page
* (this 1 page is needed so referencing of 0xFFFFFFFF generates EFAULT
*/
#define TASK_SIZE_USER32 (0x0000000100000000UL - (1*PAGE_SIZE))
#define TASK_SIZE_OF(tsk) (test_tsk_thread_flag(tsk, TIF_32BIT) ? \
TASK_SIZE_USER32 : TASK_SIZE_USER64)
#define TASK_SIZE TASK_SIZE_OF(current)
/* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE_USER32 (PAGE_ALIGN(TASK_SIZE_USER32 / 4))
#define TASK_UNMAPPED_BASE_USER64 (PAGE_ALIGN(TASK_SIZE_USER64 / 4))
#define TASK_UNMAPPED_BASE ((is_32bit_task()) ? \
TASK_UNMAPPED_BASE_USER32 : TASK_UNMAPPED_BASE_USER64 )
#endif
#ifdef __powerpc64__
#define STACK_TOP_USER64 TASK_SIZE_USER64
#define STACK_TOP_USER32 TASK_SIZE_USER32
#define STACK_TOP (is_32bit_task() ? \
STACK_TOP_USER32 : STACK_TOP_USER64)
#define STACK_TOP_MAX STACK_TOP_USER64
#else /* __powerpc64__ */
#define STACK_TOP TASK_SIZE
#define STACK_TOP_MAX STACK_TOP
#endif /* __powerpc64__ */
typedef struct {
unsigned long seg;
} mm_segment_t;
#define TS_FPR(i) fp_state.fpr[i][TS_FPROFFSET]
#define TS_TRANS_FPR(i) transact_fp.fpr[i][TS_FPROFFSET]
/* FP and VSX 0-31 register set */
struct thread_fp_state {
u64 fpr[32][TS_FPRWIDTH] __attribute__((aligned(16)));
u64 fpscr; /* Floating point status */
};
/* Complete AltiVec register set including VSCR */
struct thread_vr_state {
vector128 vr[32] __attribute__((aligned(16)));
vector128 vscr __attribute__((aligned(16)));
};
struct debug_reg {
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* The following help to manage the use of Debug Control Registers
* om the BookE platforms.
*/
uint32_t dbcr0;
uint32_t dbcr1;
#ifdef CONFIG_BOOKE
uint32_t dbcr2;
#endif
/*
* The stored value of the DBSR register will be the value at the
* last debug interrupt. This register can only be read from the
* user (will never be written to) and has value while helping to
* describe the reason for the last debug trap. Torez
*/
uint32_t dbsr;
/*
* The following will contain addresses used by debug applications
* to help trace and trap on particular address locations.
* The bits in the Debug Control Registers above help define which
* of the following registers will contain valid data and/or addresses.
*/
unsigned long iac1;
unsigned long iac2;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
unsigned long iac3;
unsigned long iac4;
#endif
unsigned long dac1;
unsigned long dac2;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
unsigned long dvc1;
unsigned long dvc2;
#endif
#endif
};
struct thread_struct {
unsigned long ksp; /* Kernel stack pointer */
#ifdef CONFIG_PPC64
unsigned long ksp_vsid;
#endif
struct pt_regs *regs; /* Pointer to saved register state */
mm_segment_t fs; /* for get_fs() validation */
#ifdef CONFIG_BOOKE
/* BookE base exception scratch space; align on cacheline */
unsigned long normsave[8] ____cacheline_aligned;
#endif
#ifdef CONFIG_PPC32
void *pgdir; /* root of page-table tree */
unsigned long ksp_limit; /* if ksp <= ksp_limit stack overflow */
#endif
/* Debug Registers */
struct debug_reg debug;
struct thread_fp_state fp_state;
struct thread_fp_state *fp_save_area;
int fpexc_mode; /* floating-point exception mode */
unsigned int align_ctl; /* alignment handling control */
#ifdef CONFIG_PPC64
unsigned long start_tb; /* Start purr when proc switched in */
unsigned long accum_tb; /* Total accumilated purr for process */
#ifdef CONFIG_HAVE_HW_BREAKPOINT
struct perf_event *ptrace_bps[HBP_NUM];
/*
* Helps identify source of single-step exception and subsequent
* hw-breakpoint enablement
*/
struct perf_event *last_hit_ubp;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif
struct arch_hw_breakpoint hw_brk; /* info on the hardware breakpoint */
unsigned long trap_nr; /* last trap # on this thread */
#ifdef CONFIG_ALTIVEC
struct thread_vr_state vr_state;
struct thread_vr_state *vr_save_area;
unsigned long vrsave;
int used_vr; /* set if process has used altivec */
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
/* VSR status */
int used_vsr; /* set if process has used altivec */
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
unsigned long evr[32]; /* upper 32-bits of SPE regs */
u64 acc; /* Accumulator */
unsigned long spefscr; /* SPE & eFP status */
unsigned long spefscr_last; /* SPEFSCR value on last prctl
call or trap return */
int used_spe; /* set if process has used spe */
#endif /* CONFIG_SPE */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
u64 tm_tfhar; /* Transaction fail handler addr */
u64 tm_texasr; /* Transaction exception & summary */
u64 tm_tfiar; /* Transaction fail instr address reg */
unsigned long tm_orig_msr; /* Thread's MSR on ctx switch */
struct pt_regs ckpt_regs; /* Checkpointed registers */
unsigned long tm_tar;
unsigned long tm_ppr;
unsigned long tm_dscr;
/*
* Transactional FP and VSX 0-31 register set.
* NOTE: the sense of these is the opposite of the integer ckpt_regs!
*
* When a transaction is active/signalled/scheduled etc., *regs is the
* most recent set of/speculated GPRs with ckpt_regs being the older
* checkpointed regs to which we roll back if transaction aborts.
*
* However, fpr[] is the checkpointed 'base state' of FP regs, and
* transact_fpr[] is the new set of transactional values.
* VRs work the same way.
*/
struct thread_fp_state transact_fp;
struct thread_vr_state transact_vr;
unsigned long transact_vrsave;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
void* kvm_shadow_vcpu; /* KVM internal data */
#endif /* CONFIG_KVM_BOOK3S_32_HANDLER */
#if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
struct kvm_vcpu *kvm_vcpu;
#endif
#ifdef CONFIG_PPC64
unsigned long dscr;
int dscr_inherit;
unsigned long ppr; /* used to save/restore SMT priority */
#endif
#ifdef CONFIG_PPC_BOOK3S_64
unsigned long tar;
unsigned long ebbrr;
unsigned long ebbhr;
unsigned long bescr;
unsigned long siar;
unsigned long sdar;
unsigned long sier;
unsigned long mmcr2;
unsigned mmcr0;
unsigned used_ebb;
#endif
};
#define ARCH_MIN_TASKALIGN 16
#define INIT_SP (sizeof(init_stack) + (unsigned long) &init_stack)
#define INIT_SP_LIMIT \
(_ALIGN_UP(sizeof(init_thread_info), 16) + (unsigned long) &init_stack)
#ifdef CONFIG_SPE
#define SPEFSCR_INIT \
.spefscr = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE, \
.spefscr_last = SPEFSCR_FINVE | SPEFSCR_FDBZE | SPEFSCR_FUNFE | SPEFSCR_FOVFE,
#else
#define SPEFSCR_INIT
#endif
#ifdef CONFIG_PPC32
#define INIT_THREAD { \
.ksp = INIT_SP, \
.ksp_limit = INIT_SP_LIMIT, \
.fs = KERNEL_DS, \
.pgdir = swapper_pg_dir, \
.fpexc_mode = MSR_FE0 | MSR_FE1, \
SPEFSCR_INIT \
}
#else
#define INIT_THREAD { \
.ksp = INIT_SP, \
.regs = (struct pt_regs *)INIT_SP - 1, /* XXX bogus, I think */ \
.fs = KERNEL_DS, \
.fpexc_mode = 0, \
.ppr = INIT_PPR, \
}
#endif
/*
* Return saved PC of a blocked thread. For now, this is the "user" PC
*/
#define thread_saved_pc(tsk) \
((tsk)->thread.regs? (tsk)->thread.regs->nip: 0)
#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.regs)
unsigned long get_wchan(struct task_struct *p);
#define KSTK_EIP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->nip: 0)
#define KSTK_ESP(tsk) ((tsk)->thread.regs? (tsk)->thread.regs->gpr[1]: 0)
/* Get/set floating-point exception mode */
#define GET_FPEXC_CTL(tsk, adr) get_fpexc_mode((tsk), (adr))
#define SET_FPEXC_CTL(tsk, val) set_fpexc_mode((tsk), (val))
extern int get_fpexc_mode(struct task_struct *tsk, unsigned long adr);
extern int set_fpexc_mode(struct task_struct *tsk, unsigned int val);
#define GET_ENDIAN(tsk, adr) get_endian((tsk), (adr))
#define SET_ENDIAN(tsk, val) set_endian((tsk), (val))
extern int get_endian(struct task_struct *tsk, unsigned long adr);
extern int set_endian(struct task_struct *tsk, unsigned int val);
#define GET_UNALIGN_CTL(tsk, adr) get_unalign_ctl((tsk), (adr))
#define SET_UNALIGN_CTL(tsk, val) set_unalign_ctl((tsk), (val))
extern int get_unalign_ctl(struct task_struct *tsk, unsigned long adr);
extern int set_unalign_ctl(struct task_struct *tsk, unsigned int val);
extern void fp_enable(void);
extern void vec_enable(void);
extern void load_fp_state(struct thread_fp_state *fp);
extern void store_fp_state(struct thread_fp_state *fp);
extern void load_vr_state(struct thread_vr_state *vr);
extern void store_vr_state(struct thread_vr_state *vr);
static inline unsigned int __unpack_fe01(unsigned long msr_bits)
{
return ((msr_bits & MSR_FE0) >> 10) | ((msr_bits & MSR_FE1) >> 8);
}
static inline unsigned long __pack_fe01(unsigned int fpmode)
{
return ((fpmode << 10) & MSR_FE0) | ((fpmode << 8) & MSR_FE1);
}
#ifdef CONFIG_PPC64
#define cpu_relax() do { HMT_low(); HMT_medium(); barrier(); } while (0)
#else
#define cpu_relax() barrier()
#endif
/* Check that a certain kernel stack pointer is valid in task_struct p */
int validate_sp(unsigned long sp, struct task_struct *p,
unsigned long nbytes);
/*
* Prefetch macros.
*/
#define ARCH_HAS_PREFETCH
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH
static inline void prefetch(const void *x)
{
if (unlikely(!x))
return;
__asm__ __volatile__ ("dcbt 0,%0" : : "r" (x));
}
static inline void prefetchw(const void *x)
{
if (unlikely(!x))
return;
__asm__ __volatile__ ("dcbtst 0,%0" : : "r" (x));
}
#define spin_lock_prefetch(x) prefetchw(x)
#define HAVE_ARCH_PICK_MMAP_LAYOUT
#ifdef CONFIG_PPC64
static inline unsigned long get_clean_sp(unsigned long sp, int is_32)
{
if (is_32)
return sp & 0x0ffffffffUL;
return sp;
}
#else
static inline unsigned long get_clean_sp(unsigned long sp, int is_32)
{
return sp;
}
#endif
extern unsigned long cpuidle_disable;
enum idle_boot_override {IDLE_NO_OVERRIDE = 0, IDLE_POWERSAVE_OFF};
extern int powersave_nap; /* set if nap mode can be used in idle loop */
extern void power7_nap(void);
extern void power7_sleep(void);
extern void flush_instruction_cache(void);
extern void hard_reset_now(void);
extern void poweroff_now(void);
extern int fix_alignment(struct pt_regs *);
extern void cvt_fd(float *from, double *to);
extern void cvt_df(double *from, float *to);
extern void _nmask_and_or_msr(unsigned long nmask, unsigned long or_val);
#ifdef CONFIG_PPC64
/*
* We handle most unaligned accesses in hardware. On the other hand
* unaligned DMA can be very expensive on some ppc64 IO chips (it does
* powers of 2 writes until it reaches sufficient alignment).
*
* Based on this we disable the IP header alignment in network drivers.
*/
#define NET_IP_ALIGN 0
#endif
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_PROCESSOR_H */