| /* |
| * sata_mv.c - Marvell SATA support |
| * |
| * Copyright 2005: EMC Corporation, all rights reserved. |
| * Copyright 2005 Red Hat, Inc. All rights reserved. |
| * |
| * Please ALWAYS copy linux-ide@vger.kernel.org on emails. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/device.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <linux/libata.h> |
| |
| #define DRV_NAME "sata_mv" |
| #define DRV_VERSION "0.7" |
| |
| enum { |
| /* BAR's are enumerated in terms of pci_resource_start() terms */ |
| MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ |
| MV_IO_BAR = 2, /* offset 0x18: IO space */ |
| MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ |
| |
| MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ |
| MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ |
| |
| MV_PCI_REG_BASE = 0, |
| MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */ |
| MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08), |
| MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88), |
| MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c), |
| MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc), |
| MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0), |
| |
| MV_SATAHC0_REG_BASE = 0x20000, |
| MV_FLASH_CTL = 0x1046c, |
| MV_GPIO_PORT_CTL = 0x104f0, |
| MV_RESET_CFG = 0x180d8, |
| |
| MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, |
| MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ |
| MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, |
| |
| MV_USE_Q_DEPTH = ATA_DEF_QUEUE, |
| |
| MV_MAX_Q_DEPTH = 32, |
| MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, |
| |
| /* CRQB needs alignment on a 1KB boundary. Size == 1KB |
| * CRPB needs alignment on a 256B boundary. Size == 256B |
| * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB |
| * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B |
| */ |
| MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), |
| MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), |
| MV_MAX_SG_CT = 176, |
| MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), |
| MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ), |
| |
| MV_PORTS_PER_HC = 4, |
| /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ |
| MV_PORT_HC_SHIFT = 2, |
| /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */ |
| MV_PORT_MASK = 3, |
| |
| /* Host Flags */ |
| MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ |
| MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ |
| MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | |
| ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | |
| ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING), |
| MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE, |
| |
| CRQB_FLAG_READ = (1 << 0), |
| CRQB_TAG_SHIFT = 1, |
| CRQB_CMD_ADDR_SHIFT = 8, |
| CRQB_CMD_CS = (0x2 << 11), |
| CRQB_CMD_LAST = (1 << 15), |
| |
| CRPB_FLAG_STATUS_SHIFT = 8, |
| |
| EPRD_FLAG_END_OF_TBL = (1 << 31), |
| |
| /* PCI interface registers */ |
| |
| PCI_COMMAND_OFS = 0xc00, |
| |
| PCI_MAIN_CMD_STS_OFS = 0xd30, |
| STOP_PCI_MASTER = (1 << 2), |
| PCI_MASTER_EMPTY = (1 << 3), |
| GLOB_SFT_RST = (1 << 4), |
| |
| MV_PCI_MODE = 0xd00, |
| MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, |
| MV_PCI_DISC_TIMER = 0xd04, |
| MV_PCI_MSI_TRIGGER = 0xc38, |
| MV_PCI_SERR_MASK = 0xc28, |
| MV_PCI_XBAR_TMOUT = 0x1d04, |
| MV_PCI_ERR_LOW_ADDRESS = 0x1d40, |
| MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, |
| MV_PCI_ERR_ATTRIBUTE = 0x1d48, |
| MV_PCI_ERR_COMMAND = 0x1d50, |
| |
| PCI_IRQ_CAUSE_OFS = 0x1d58, |
| PCI_IRQ_MASK_OFS = 0x1d5c, |
| PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ |
| |
| HC_MAIN_IRQ_CAUSE_OFS = 0x1d60, |
| HC_MAIN_IRQ_MASK_OFS = 0x1d64, |
| PORT0_ERR = (1 << 0), /* shift by port # */ |
| PORT0_DONE = (1 << 1), /* shift by port # */ |
| HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ |
| HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ |
| PCI_ERR = (1 << 18), |
| TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */ |
| TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */ |
| PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */ |
| GPIO_INT = (1 << 22), |
| SELF_INT = (1 << 23), |
| TWSI_INT = (1 << 24), |
| HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ |
| HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE | |
| PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT | |
| HC_MAIN_RSVD), |
| |
| /* SATAHC registers */ |
| HC_CFG_OFS = 0, |
| |
| HC_IRQ_CAUSE_OFS = 0x14, |
| CRPB_DMA_DONE = (1 << 0), /* shift by port # */ |
| HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ |
| DEV_IRQ = (1 << 8), /* shift by port # */ |
| |
| /* Shadow block registers */ |
| SHD_BLK_OFS = 0x100, |
| SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */ |
| |
| /* SATA registers */ |
| SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ |
| SATA_ACTIVE_OFS = 0x350, |
| PHY_MODE3 = 0x310, |
| PHY_MODE4 = 0x314, |
| PHY_MODE2 = 0x330, |
| MV5_PHY_MODE = 0x74, |
| MV5_LT_MODE = 0x30, |
| MV5_PHY_CTL = 0x0C, |
| SATA_INTERFACE_CTL = 0x050, |
| |
| MV_M2_PREAMP_MASK = 0x7e0, |
| |
| /* Port registers */ |
| EDMA_CFG_OFS = 0, |
| EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */ |
| EDMA_CFG_NCQ = (1 << 5), |
| EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ |
| EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ |
| EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ |
| |
| EDMA_ERR_IRQ_CAUSE_OFS = 0x8, |
| EDMA_ERR_IRQ_MASK_OFS = 0xc, |
| EDMA_ERR_D_PAR = (1 << 0), |
| EDMA_ERR_PRD_PAR = (1 << 1), |
| EDMA_ERR_DEV = (1 << 2), |
| EDMA_ERR_DEV_DCON = (1 << 3), |
| EDMA_ERR_DEV_CON = (1 << 4), |
| EDMA_ERR_SERR = (1 << 5), |
| EDMA_ERR_SELF_DIS = (1 << 7), |
| EDMA_ERR_BIST_ASYNC = (1 << 8), |
| EDMA_ERR_CRBQ_PAR = (1 << 9), |
| EDMA_ERR_CRPB_PAR = (1 << 10), |
| EDMA_ERR_INTRL_PAR = (1 << 11), |
| EDMA_ERR_IORDY = (1 << 12), |
| EDMA_ERR_LNK_CTRL_RX = (0xf << 13), |
| EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), |
| EDMA_ERR_LNK_DATA_RX = (0xf << 17), |
| EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), |
| EDMA_ERR_LNK_DATA_TX = (0x1f << 26), |
| EDMA_ERR_TRANS_PROTO = (1 << 31), |
| EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | |
| EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR | |
| EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | |
| EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | |
| EDMA_ERR_LNK_DATA_RX | |
| EDMA_ERR_LNK_DATA_TX | |
| EDMA_ERR_TRANS_PROTO), |
| |
| EDMA_REQ_Q_BASE_HI_OFS = 0x10, |
| EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */ |
| |
| EDMA_REQ_Q_OUT_PTR_OFS = 0x18, |
| EDMA_REQ_Q_PTR_SHIFT = 5, |
| |
| EDMA_RSP_Q_BASE_HI_OFS = 0x1c, |
| EDMA_RSP_Q_IN_PTR_OFS = 0x20, |
| EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */ |
| EDMA_RSP_Q_PTR_SHIFT = 3, |
| |
| EDMA_CMD_OFS = 0x28, |
| EDMA_EN = (1 << 0), |
| EDMA_DS = (1 << 1), |
| ATA_RST = (1 << 2), |
| |
| EDMA_IORDY_TMOUT = 0x34, |
| EDMA_ARB_CFG = 0x38, |
| |
| /* Host private flags (hp_flags) */ |
| MV_HP_FLAG_MSI = (1 << 0), |
| MV_HP_ERRATA_50XXB0 = (1 << 1), |
| MV_HP_ERRATA_50XXB2 = (1 << 2), |
| MV_HP_ERRATA_60X1B2 = (1 << 3), |
| MV_HP_ERRATA_60X1C0 = (1 << 4), |
| MV_HP_ERRATA_XX42A0 = (1 << 5), |
| MV_HP_50XX = (1 << 6), |
| MV_HP_GEN_IIE = (1 << 7), |
| |
| /* Port private flags (pp_flags) */ |
| MV_PP_FLAG_EDMA_EN = (1 << 0), |
| MV_PP_FLAG_EDMA_DS_ACT = (1 << 1), |
| }; |
| |
| #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX) |
| #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0) |
| #define IS_GEN_I(hpriv) IS_50XX(hpriv) |
| #define IS_GEN_II(hpriv) IS_60XX(hpriv) |
| #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) |
| |
| enum { |
| /* Our DMA boundary is determined by an ePRD being unable to handle |
| * anything larger than 64KB |
| */ |
| MV_DMA_BOUNDARY = 0xffffU, |
| |
| EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, |
| |
| EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, |
| }; |
| |
| enum chip_type { |
| chip_504x, |
| chip_508x, |
| chip_5080, |
| chip_604x, |
| chip_608x, |
| chip_6042, |
| chip_7042, |
| }; |
| |
| /* Command ReQuest Block: 32B */ |
| struct mv_crqb { |
| __le32 sg_addr; |
| __le32 sg_addr_hi; |
| __le16 ctrl_flags; |
| __le16 ata_cmd[11]; |
| }; |
| |
| struct mv_crqb_iie { |
| __le32 addr; |
| __le32 addr_hi; |
| __le32 flags; |
| __le32 len; |
| __le32 ata_cmd[4]; |
| }; |
| |
| /* Command ResPonse Block: 8B */ |
| struct mv_crpb { |
| __le16 id; |
| __le16 flags; |
| __le32 tmstmp; |
| }; |
| |
| /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ |
| struct mv_sg { |
| __le32 addr; |
| __le32 flags_size; |
| __le32 addr_hi; |
| __le32 reserved; |
| }; |
| |
| struct mv_port_priv { |
| struct mv_crqb *crqb; |
| dma_addr_t crqb_dma; |
| struct mv_crpb *crpb; |
| dma_addr_t crpb_dma; |
| struct mv_sg *sg_tbl; |
| dma_addr_t sg_tbl_dma; |
| u32 pp_flags; |
| }; |
| |
| struct mv_port_signal { |
| u32 amps; |
| u32 pre; |
| }; |
| |
| struct mv_host_priv; |
| struct mv_hw_ops { |
| void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*read_preamp)(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); |
| void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio); |
| }; |
| |
| struct mv_host_priv { |
| u32 hp_flags; |
| struct mv_port_signal signal[8]; |
| const struct mv_hw_ops *ops; |
| }; |
| |
| static void mv_irq_clear(struct ata_port *ap); |
| static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); |
| static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); |
| static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in); |
| static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); |
| static void mv_phy_reset(struct ata_port *ap); |
| static void __mv_phy_reset(struct ata_port *ap, int can_sleep); |
| static int mv_port_start(struct ata_port *ap); |
| static void mv_port_stop(struct ata_port *ap); |
| static void mv_qc_prep(struct ata_queued_cmd *qc); |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc); |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); |
| static irqreturn_t mv_interrupt(int irq, void *dev_instance); |
| static void mv_eng_timeout(struct ata_port *ap); |
| static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio); |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port); |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio); |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc); |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); |
| static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio); |
| static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no); |
| static void mv_stop_and_reset(struct ata_port *ap); |
| |
| static struct scsi_host_template mv_sht = { |
| .module = THIS_MODULE, |
| .name = DRV_NAME, |
| .ioctl = ata_scsi_ioctl, |
| .queuecommand = ata_scsi_queuecmd, |
| .can_queue = MV_USE_Q_DEPTH, |
| .this_id = ATA_SHT_THIS_ID, |
| .sg_tablesize = MV_MAX_SG_CT / 2, |
| .cmd_per_lun = ATA_SHT_CMD_PER_LUN, |
| .emulated = ATA_SHT_EMULATED, |
| .use_clustering = ATA_SHT_USE_CLUSTERING, |
| .proc_name = DRV_NAME, |
| .dma_boundary = MV_DMA_BOUNDARY, |
| .slave_configure = ata_scsi_slave_config, |
| .slave_destroy = ata_scsi_slave_destroy, |
| .bios_param = ata_std_bios_param, |
| }; |
| |
| static const struct ata_port_operations mv5_ops = { |
| .port_disable = ata_port_disable, |
| |
| .tf_load = ata_tf_load, |
| .tf_read = ata_tf_read, |
| .check_status = ata_check_status, |
| .exec_command = ata_exec_command, |
| .dev_select = ata_std_dev_select, |
| |
| .phy_reset = mv_phy_reset, |
| |
| .qc_prep = mv_qc_prep, |
| .qc_issue = mv_qc_issue, |
| .data_xfer = ata_data_xfer, |
| |
| .eng_timeout = mv_eng_timeout, |
| |
| .irq_handler = mv_interrupt, |
| .irq_clear = mv_irq_clear, |
| .irq_on = ata_irq_on, |
| .irq_ack = ata_irq_ack, |
| |
| .scr_read = mv5_scr_read, |
| .scr_write = mv5_scr_write, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static const struct ata_port_operations mv6_ops = { |
| .port_disable = ata_port_disable, |
| |
| .tf_load = ata_tf_load, |
| .tf_read = ata_tf_read, |
| .check_status = ata_check_status, |
| .exec_command = ata_exec_command, |
| .dev_select = ata_std_dev_select, |
| |
| .phy_reset = mv_phy_reset, |
| |
| .qc_prep = mv_qc_prep, |
| .qc_issue = mv_qc_issue, |
| .data_xfer = ata_data_xfer, |
| |
| .eng_timeout = mv_eng_timeout, |
| |
| .irq_handler = mv_interrupt, |
| .irq_clear = mv_irq_clear, |
| .irq_on = ata_irq_on, |
| .irq_ack = ata_irq_ack, |
| |
| .scr_read = mv_scr_read, |
| .scr_write = mv_scr_write, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static const struct ata_port_operations mv_iie_ops = { |
| .port_disable = ata_port_disable, |
| |
| .tf_load = ata_tf_load, |
| .tf_read = ata_tf_read, |
| .check_status = ata_check_status, |
| .exec_command = ata_exec_command, |
| .dev_select = ata_std_dev_select, |
| |
| .phy_reset = mv_phy_reset, |
| |
| .qc_prep = mv_qc_prep_iie, |
| .qc_issue = mv_qc_issue, |
| .data_xfer = ata_data_xfer, |
| |
| .eng_timeout = mv_eng_timeout, |
| |
| .irq_handler = mv_interrupt, |
| .irq_clear = mv_irq_clear, |
| .irq_on = ata_irq_on, |
| .irq_ack = ata_irq_ack, |
| |
| .scr_read = mv_scr_read, |
| .scr_write = mv_scr_write, |
| |
| .port_start = mv_port_start, |
| .port_stop = mv_port_stop, |
| }; |
| |
| static const struct ata_port_info mv_port_info[] = { |
| { /* chip_504x */ |
| .sht = &mv_sht, |
| .flags = MV_COMMON_FLAGS, |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_508x */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_5080 */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv5_ops, |
| }, |
| { /* chip_604x */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_608x */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS | |
| MV_FLAG_DUAL_HC), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv6_ops, |
| }, |
| { /* chip_6042 */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv_iie_ops, |
| }, |
| { /* chip_7042 */ |
| .sht = &mv_sht, |
| .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), |
| .pio_mask = 0x1f, /* pio0-4 */ |
| .udma_mask = 0x7f, /* udma0-6 */ |
| .port_ops = &mv_iie_ops, |
| }, |
| }; |
| |
| static const struct pci_device_id mv_pci_tbl[] = { |
| { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, |
| { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, |
| { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, |
| |
| { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, |
| { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, |
| { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, |
| { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, |
| |
| { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, |
| |
| { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, |
| |
| { } /* terminate list */ |
| }; |
| |
| static struct pci_driver mv_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = mv_pci_tbl, |
| .probe = mv_init_one, |
| .remove = ata_pci_remove_one, |
| }; |
| |
| static const struct mv_hw_ops mv5xxx_ops = { |
| .phy_errata = mv5_phy_errata, |
| .enable_leds = mv5_enable_leds, |
| .read_preamp = mv5_read_preamp, |
| .reset_hc = mv5_reset_hc, |
| .reset_flash = mv5_reset_flash, |
| .reset_bus = mv5_reset_bus, |
| }; |
| |
| static const struct mv_hw_ops mv6xxx_ops = { |
| .phy_errata = mv6_phy_errata, |
| .enable_leds = mv6_enable_leds, |
| .read_preamp = mv6_read_preamp, |
| .reset_hc = mv6_reset_hc, |
| .reset_flash = mv6_reset_flash, |
| .reset_bus = mv_reset_pci_bus, |
| }; |
| |
| /* |
| * module options |
| */ |
| static int msi; /* Use PCI msi; either zero (off, default) or non-zero */ |
| |
| |
| /* |
| * Functions |
| */ |
| |
| static inline void writelfl(unsigned long data, void __iomem *addr) |
| { |
| writel(data, addr); |
| (void) readl(addr); /* flush to avoid PCI posted write */ |
| } |
| |
| static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) |
| { |
| return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); |
| } |
| |
| static inline unsigned int mv_hc_from_port(unsigned int port) |
| { |
| return port >> MV_PORT_HC_SHIFT; |
| } |
| |
| static inline unsigned int mv_hardport_from_port(unsigned int port) |
| { |
| return port & MV_PORT_MASK; |
| } |
| |
| static inline void __iomem *mv_hc_base_from_port(void __iomem *base, |
| unsigned int port) |
| { |
| return mv_hc_base(base, mv_hc_from_port(port)); |
| } |
| |
| static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) |
| { |
| return mv_hc_base_from_port(base, port) + |
| MV_SATAHC_ARBTR_REG_SZ + |
| (mv_hardport_from_port(port) * MV_PORT_REG_SZ); |
| } |
| |
| static inline void __iomem *mv_ap_base(struct ata_port *ap) |
| { |
| return mv_port_base(ap->host->iomap[MV_PRIMARY_BAR], ap->port_no); |
| } |
| |
| static inline int mv_get_hc_count(unsigned long port_flags) |
| { |
| return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); |
| } |
| |
| static void mv_irq_clear(struct ata_port *ap) |
| { |
| } |
| |
| /** |
| * mv_start_dma - Enable eDMA engine |
| * @base: port base address |
| * @pp: port private data |
| * |
| * Verify the local cache of the eDMA state is accurate with a |
| * WARN_ON. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp) |
| { |
| if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) { |
| writelfl(EDMA_EN, base + EDMA_CMD_OFS); |
| pp->pp_flags |= MV_PP_FLAG_EDMA_EN; |
| } |
| WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS))); |
| } |
| |
| /** |
| * mv_stop_dma - Disable eDMA engine |
| * @ap: ATA channel to manipulate |
| * |
| * Verify the local cache of the eDMA state is accurate with a |
| * WARN_ON. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_stop_dma(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| u32 reg; |
| int i; |
| |
| if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) { |
| /* Disable EDMA if active. The disable bit auto clears. |
| */ |
| writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| } else { |
| WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); |
| } |
| |
| /* now properly wait for the eDMA to stop */ |
| for (i = 1000; i > 0; i--) { |
| reg = readl(port_mmio + EDMA_CMD_OFS); |
| if (!(EDMA_EN & reg)) { |
| break; |
| } |
| udelay(100); |
| } |
| |
| if (EDMA_EN & reg) { |
| ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n"); |
| /* FIXME: Consider doing a reset here to recover */ |
| } |
| } |
| |
| #ifdef ATA_DEBUG |
| static void mv_dump_mem(void __iomem *start, unsigned bytes) |
| { |
| int b, w; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%p: ", start + b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| printk("%08x ",readl(start + b)); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| } |
| #endif |
| |
| static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) |
| { |
| #ifdef ATA_DEBUG |
| int b, w; |
| u32 dw; |
| for (b = 0; b < bytes; ) { |
| DPRINTK("%02x: ", b); |
| for (w = 0; b < bytes && w < 4; w++) { |
| (void) pci_read_config_dword(pdev,b,&dw); |
| printk("%08x ",dw); |
| b += sizeof(u32); |
| } |
| printk("\n"); |
| } |
| #endif |
| } |
| static void mv_dump_all_regs(void __iomem *mmio_base, int port, |
| struct pci_dev *pdev) |
| { |
| #ifdef ATA_DEBUG |
| void __iomem *hc_base = mv_hc_base(mmio_base, |
| port >> MV_PORT_HC_SHIFT); |
| void __iomem *port_base; |
| int start_port, num_ports, p, start_hc, num_hcs, hc; |
| |
| if (0 > port) { |
| start_hc = start_port = 0; |
| num_ports = 8; /* shld be benign for 4 port devs */ |
| num_hcs = 2; |
| } else { |
| start_hc = port >> MV_PORT_HC_SHIFT; |
| start_port = port; |
| num_ports = num_hcs = 1; |
| } |
| DPRINTK("All registers for port(s) %u-%u:\n", start_port, |
| num_ports > 1 ? num_ports - 1 : start_port); |
| |
| if (NULL != pdev) { |
| DPRINTK("PCI config space regs:\n"); |
| mv_dump_pci_cfg(pdev, 0x68); |
| } |
| DPRINTK("PCI regs:\n"); |
| mv_dump_mem(mmio_base+0xc00, 0x3c); |
| mv_dump_mem(mmio_base+0xd00, 0x34); |
| mv_dump_mem(mmio_base+0xf00, 0x4); |
| mv_dump_mem(mmio_base+0x1d00, 0x6c); |
| for (hc = start_hc; hc < start_hc + num_hcs; hc++) { |
| hc_base = mv_hc_base(mmio_base, hc); |
| DPRINTK("HC regs (HC %i):\n", hc); |
| mv_dump_mem(hc_base, 0x1c); |
| } |
| for (p = start_port; p < start_port + num_ports; p++) { |
| port_base = mv_port_base(mmio_base, p); |
| DPRINTK("EDMA regs (port %i):\n",p); |
| mv_dump_mem(port_base, 0x54); |
| DPRINTK("SATA regs (port %i):\n",p); |
| mv_dump_mem(port_base+0x300, 0x60); |
| } |
| #endif |
| } |
| |
| static unsigned int mv_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_CONTROL: |
| case SCR_ERROR: |
| ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32)); |
| break; |
| case SCR_ACTIVE: |
| ofs = SATA_ACTIVE_OFS; /* active is not with the others */ |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (0xffffffffU != ofs) { |
| return readl(mv_ap_base(ap) + ofs); |
| } else { |
| return (u32) ofs; |
| } |
| } |
| |
| static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) |
| { |
| unsigned int ofs = mv_scr_offset(sc_reg_in); |
| |
| if (0xffffffffU != ofs) { |
| writelfl(val, mv_ap_base(ap) + ofs); |
| } |
| } |
| |
| static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio) |
| { |
| u32 cfg = readl(port_mmio + EDMA_CFG_OFS); |
| |
| /* set up non-NCQ EDMA configuration */ |
| cfg &= ~0x1f; /* clear queue depth */ |
| cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */ |
| cfg &= ~(1 << 9); /* disable equeue */ |
| |
| if (IS_GEN_I(hpriv)) |
| cfg |= (1 << 8); /* enab config burst size mask */ |
| |
| else if (IS_GEN_II(hpriv)) |
| cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; |
| |
| else if (IS_GEN_IIE(hpriv)) { |
| cfg |= (1 << 23); /* dis RX PM port mask */ |
| cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */ |
| cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */ |
| cfg |= (1 << 18); /* enab early completion */ |
| cfg |= (1 << 17); /* enab host q cache */ |
| cfg |= (1 << 22); /* enab cutthrough */ |
| } |
| |
| writelfl(cfg, port_mmio + EDMA_CFG_OFS); |
| } |
| |
| /** |
| * mv_port_start - Port specific init/start routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Allocate and point to DMA memory, init port private memory, |
| * zero indices. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_port_start(struct ata_port *ap) |
| { |
| struct device *dev = ap->host->dev; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| struct mv_port_priv *pp; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| void *mem; |
| dma_addr_t mem_dma; |
| int rc; |
| |
| pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); |
| if (!pp) |
| return -ENOMEM; |
| |
| mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma, |
| GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| memset(mem, 0, MV_PORT_PRIV_DMA_SZ); |
| |
| rc = ata_pad_alloc(ap, dev); |
| if (rc) |
| return rc; |
| |
| /* First item in chunk of DMA memory: |
| * 32-slot command request table (CRQB), 32 bytes each in size |
| */ |
| pp->crqb = mem; |
| pp->crqb_dma = mem_dma; |
| mem += MV_CRQB_Q_SZ; |
| mem_dma += MV_CRQB_Q_SZ; |
| |
| /* Second item: |
| * 32-slot command response table (CRPB), 8 bytes each in size |
| */ |
| pp->crpb = mem; |
| pp->crpb_dma = mem_dma; |
| mem += MV_CRPB_Q_SZ; |
| mem_dma += MV_CRPB_Q_SZ; |
| |
| /* Third item: |
| * Table of scatter-gather descriptors (ePRD), 16 bytes each |
| */ |
| pp->sg_tbl = mem; |
| pp->sg_tbl_dma = mem_dma; |
| |
| mv_edma_cfg(hpriv, port_mmio); |
| |
| writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS); |
| writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK, |
| port_mmio + EDMA_REQ_Q_IN_PTR_OFS); |
| |
| if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) |
| writelfl(pp->crqb_dma & 0xffffffff, |
| port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); |
| else |
| writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); |
| |
| writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS); |
| |
| if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) |
| writelfl(pp->crpb_dma & 0xffffffff, |
| port_mmio + EDMA_RSP_Q_IN_PTR_OFS); |
| else |
| writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); |
| |
| writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK, |
| port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); |
| |
| /* Don't turn on EDMA here...do it before DMA commands only. Else |
| * we'll be unable to send non-data, PIO, etc due to restricted access |
| * to shadow regs. |
| */ |
| ap->private_data = pp; |
| return 0; |
| } |
| |
| /** |
| * mv_port_stop - Port specific cleanup/stop routine. |
| * @ap: ATA channel to manipulate |
| * |
| * Stop DMA, cleanup port memory. |
| * |
| * LOCKING: |
| * This routine uses the host lock to protect the DMA stop. |
| */ |
| static void mv_port_stop(struct ata_port *ap) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ap->host->lock, flags); |
| mv_stop_dma(ap); |
| spin_unlock_irqrestore(&ap->host->lock, flags); |
| } |
| |
| /** |
| * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries |
| * @qc: queued command whose SG list to source from |
| * |
| * Populate the SG list and mark the last entry. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct mv_port_priv *pp = qc->ap->private_data; |
| unsigned int i = 0; |
| struct scatterlist *sg; |
| |
| ata_for_each_sg(sg, qc) { |
| dma_addr_t addr; |
| u32 sg_len, len, offset; |
| |
| addr = sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| offset = addr & MV_DMA_BOUNDARY; |
| len = sg_len; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff); |
| pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16); |
| pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff); |
| |
| sg_len -= len; |
| addr += len; |
| |
| if (!sg_len && ata_sg_is_last(sg, qc)) |
| pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); |
| |
| i++; |
| } |
| } |
| } |
| |
| static inline unsigned mv_inc_q_index(unsigned index) |
| { |
| return (index + 1) & MV_MAX_Q_DEPTH_MASK; |
| } |
| |
| static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) |
| { |
| u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | |
| (last ? CRQB_CMD_LAST : 0); |
| *cmdw = cpu_to_le16(tmp); |
| } |
| |
| /** |
| * mv_qc_prep - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| __le16 *cw; |
| struct ata_taskfile *tf; |
| u16 flags = 0; |
| unsigned in_index; |
| |
| if (ATA_PROT_DMA != qc->tf.protocol) |
| return; |
| |
| /* Fill in command request block |
| */ |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| |
| /* get current queue index from hardware */ |
| in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS) |
| >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| pp->crqb[in_index].sg_addr = |
| cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); |
| pp->crqb[in_index].sg_addr_hi = |
| cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16); |
| pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); |
| |
| cw = &pp->crqb[in_index].ata_cmd[0]; |
| tf = &qc->tf; |
| |
| /* Sadly, the CRQB cannot accomodate all registers--there are |
| * only 11 bytes...so we must pick and choose required |
| * registers based on the command. So, we drop feature and |
| * hob_feature for [RW] DMA commands, but they are needed for |
| * NCQ. NCQ will drop hob_nsect. |
| */ |
| switch (tf->command) { |
| case ATA_CMD_READ: |
| case ATA_CMD_READ_EXT: |
| case ATA_CMD_WRITE: |
| case ATA_CMD_WRITE_EXT: |
| case ATA_CMD_WRITE_FUA_EXT: |
| mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); |
| break; |
| #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */ |
| case ATA_CMD_FPDMA_READ: |
| case ATA_CMD_FPDMA_WRITE: |
| mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); |
| mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); |
| break; |
| #endif /* FIXME: remove this line when NCQ added */ |
| default: |
| /* The only other commands EDMA supports in non-queued and |
| * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none |
| * of which are defined/used by Linux. If we get here, this |
| * driver needs work. |
| * |
| * FIXME: modify libata to give qc_prep a return value and |
| * return error here. |
| */ |
| BUG_ON(tf->command); |
| break; |
| } |
| mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); |
| mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); |
| mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); |
| mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_qc_prep_iie - Host specific command preparation. |
| * @qc: queued command to prepare |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it handles prep of the CRQB |
| * (command request block), does some sanity checking, and calls |
| * the SG load routine. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_qc_prep_iie(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_crqb_iie *crqb; |
| struct ata_taskfile *tf; |
| unsigned in_index; |
| u32 flags = 0; |
| |
| if (ATA_PROT_DMA != qc->tf.protocol) |
| return; |
| |
| /* Fill in Gen IIE command request block |
| */ |
| if (!(qc->tf.flags & ATA_TFLAG_WRITE)) |
| flags |= CRQB_FLAG_READ; |
| |
| WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); |
| flags |= qc->tag << CRQB_TAG_SHIFT; |
| |
| /* get current queue index from hardware */ |
| in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS) |
| >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; |
| crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); |
| crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16); |
| crqb->flags = cpu_to_le32(flags); |
| |
| tf = &qc->tf; |
| crqb->ata_cmd[0] = cpu_to_le32( |
| (tf->command << 16) | |
| (tf->feature << 24) |
| ); |
| crqb->ata_cmd[1] = cpu_to_le32( |
| (tf->lbal << 0) | |
| (tf->lbam << 8) | |
| (tf->lbah << 16) | |
| (tf->device << 24) |
| ); |
| crqb->ata_cmd[2] = cpu_to_le32( |
| (tf->hob_lbal << 0) | |
| (tf->hob_lbam << 8) | |
| (tf->hob_lbah << 16) | |
| (tf->hob_feature << 24) |
| ); |
| crqb->ata_cmd[3] = cpu_to_le32( |
| (tf->nsect << 0) | |
| (tf->hob_nsect << 8) |
| ); |
| |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| mv_fill_sg(qc); |
| } |
| |
| /** |
| * mv_qc_issue - Initiate a command to the host |
| * @qc: queued command to start |
| * |
| * This routine simply redirects to the general purpose routine |
| * if command is not DMA. Else, it sanity checks our local |
| * caches of the request producer/consumer indices then enables |
| * DMA and bumps the request producer index. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) |
| { |
| void __iomem *port_mmio = mv_ap_base(qc->ap); |
| struct mv_port_priv *pp = qc->ap->private_data; |
| unsigned in_index; |
| u32 in_ptr; |
| |
| if (ATA_PROT_DMA != qc->tf.protocol) { |
| /* We're about to send a non-EDMA capable command to the |
| * port. Turn off EDMA so there won't be problems accessing |
| * shadow block, etc registers. |
| */ |
| mv_stop_dma(qc->ap); |
| return ata_qc_issue_prot(qc); |
| } |
| |
| in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS); |
| in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| /* until we do queuing, the queue should be empty at this point */ |
| WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) |
| >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK)); |
| |
| in_index = mv_inc_q_index(in_index); /* now incr producer index */ |
| |
| mv_start_dma(port_mmio, pp); |
| |
| /* and write the request in pointer to kick the EDMA to life */ |
| in_ptr &= EDMA_REQ_Q_BASE_LO_MASK; |
| in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT; |
| writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS); |
| |
| return 0; |
| } |
| |
| /** |
| * mv_get_crpb_status - get status from most recently completed cmd |
| * @ap: ATA channel to manipulate |
| * |
| * This routine is for use when the port is in DMA mode, when it |
| * will be using the CRPB (command response block) method of |
| * returning command completion information. We check indices |
| * are good, grab status, and bump the response consumer index to |
| * prove that we're up to date. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static u8 mv_get_crpb_status(struct ata_port *ap) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct mv_port_priv *pp = ap->private_data; |
| unsigned out_index; |
| u32 out_ptr; |
| u8 ata_status; |
| |
| out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); |
| out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; |
| |
| ata_status = le16_to_cpu(pp->crpb[out_index].flags) |
| >> CRPB_FLAG_STATUS_SHIFT; |
| |
| /* increment our consumer index... */ |
| out_index = mv_inc_q_index(out_index); |
| |
| /* and, until we do NCQ, there should only be 1 CRPB waiting */ |
| WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) |
| >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK)); |
| |
| /* write out our inc'd consumer index so EDMA knows we're caught up */ |
| out_ptr &= EDMA_RSP_Q_BASE_LO_MASK; |
| out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT; |
| writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); |
| |
| /* Return ATA status register for completed CRPB */ |
| return ata_status; |
| } |
| |
| /** |
| * mv_err_intr - Handle error interrupts on the port |
| * @ap: ATA channel to manipulate |
| * @reset_allowed: bool: 0 == don't trigger from reset here |
| * |
| * In most cases, just clear the interrupt and move on. However, |
| * some cases require an eDMA reset, which is done right before |
| * the COMRESET in mv_phy_reset(). The SERR case requires a |
| * clear of pending errors in the SATA SERROR register. Finally, |
| * if the port disabled DMA, update our cached copy to match. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_err_intr(struct ata_port *ap, int reset_allowed) |
| { |
| void __iomem *port_mmio = mv_ap_base(ap); |
| u32 edma_err_cause, serr = 0; |
| |
| edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| if (EDMA_ERR_SERR & edma_err_cause) { |
| sata_scr_read(ap, SCR_ERROR, &serr); |
| sata_scr_write_flush(ap, SCR_ERROR, serr); |
| } |
| if (EDMA_ERR_SELF_DIS & edma_err_cause) { |
| struct mv_port_priv *pp = ap->private_data; |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| } |
| DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x " |
| "SERR: 0x%08x\n", ap->id, edma_err_cause, serr); |
| |
| /* Clear EDMA now that SERR cleanup done */ |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| /* check for fatal here and recover if needed */ |
| if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause)) |
| mv_stop_and_reset(ap); |
| } |
| |
| /** |
| * mv_host_intr - Handle all interrupts on the given host controller |
| * @host: host specific structure |
| * @relevant: port error bits relevant to this host controller |
| * @hc: which host controller we're to look at |
| * |
| * Read then write clear the HC interrupt status then walk each |
| * port connected to the HC and see if it needs servicing. Port |
| * success ints are reported in the HC interrupt status reg, the |
| * port error ints are reported in the higher level main |
| * interrupt status register and thus are passed in via the |
| * 'relevant' argument. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc) |
| { |
| void __iomem *mmio = host->iomap[MV_PRIMARY_BAR]; |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| struct ata_queued_cmd *qc; |
| u32 hc_irq_cause; |
| int shift, port, port0, hard_port, handled; |
| unsigned int err_mask; |
| |
| if (hc == 0) { |
| port0 = 0; |
| } else { |
| port0 = MV_PORTS_PER_HC; |
| } |
| |
| /* we'll need the HC success int register in most cases */ |
| hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); |
| if (hc_irq_cause) { |
| writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); |
| } |
| |
| VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", |
| hc,relevant,hc_irq_cause); |
| |
| for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { |
| u8 ata_status = 0; |
| struct ata_port *ap = host->ports[port]; |
| struct mv_port_priv *pp = ap->private_data; |
| |
| hard_port = mv_hardport_from_port(port); /* range 0..3 */ |
| handled = 0; /* ensure ata_status is set if handled++ */ |
| |
| /* Note that DEV_IRQ might happen spuriously during EDMA, |
| * and should be ignored in such cases. |
| * The cause of this is still under investigation. |
| */ |
| if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { |
| /* EDMA: check for response queue interrupt */ |
| if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) { |
| ata_status = mv_get_crpb_status(ap); |
| handled = 1; |
| } |
| } else { |
| /* PIO: check for device (drive) interrupt */ |
| if ((DEV_IRQ << hard_port) & hc_irq_cause) { |
| ata_status = readb(ap->ioaddr.status_addr); |
| handled = 1; |
| /* ignore spurious intr if drive still BUSY */ |
| if (ata_status & ATA_BUSY) { |
| ata_status = 0; |
| handled = 0; |
| } |
| } |
| } |
| |
| if (ap && (ap->flags & ATA_FLAG_DISABLED)) |
| continue; |
| |
| err_mask = ac_err_mask(ata_status); |
| |
| shift = port << 1; /* (port * 2) */ |
| if (port >= MV_PORTS_PER_HC) { |
| shift++; /* skip bit 8 in the HC Main IRQ reg */ |
| } |
| if ((PORT0_ERR << shift) & relevant) { |
| mv_err_intr(ap, 1); |
| err_mask |= AC_ERR_OTHER; |
| handled = 1; |
| } |
| |
| if (handled) { |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) { |
| VPRINTK("port %u IRQ found for qc, " |
| "ata_status 0x%x\n", port,ata_status); |
| /* mark qc status appropriately */ |
| if (!(qc->tf.flags & ATA_TFLAG_POLLING)) { |
| qc->err_mask |= err_mask; |
| ata_qc_complete(qc); |
| } |
| } |
| } |
| } |
| VPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * mv_interrupt - |
| * @irq: unused |
| * @dev_instance: private data; in this case the host structure |
| * @regs: unused |
| * |
| * Read the read only register to determine if any host |
| * controllers have pending interrupts. If so, call lower level |
| * routine to handle. Also check for PCI errors which are only |
| * reported here. |
| * |
| * LOCKING: |
| * This routine holds the host lock while processing pending |
| * interrupts. |
| */ |
| static irqreturn_t mv_interrupt(int irq, void *dev_instance) |
| { |
| struct ata_host *host = dev_instance; |
| unsigned int hc, handled = 0, n_hcs; |
| void __iomem *mmio = host->iomap[MV_PRIMARY_BAR]; |
| struct mv_host_priv *hpriv; |
| u32 irq_stat; |
| |
| irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); |
| |
| /* check the cases where we either have nothing pending or have read |
| * a bogus register value which can indicate HW removal or PCI fault |
| */ |
| if (!irq_stat || (0xffffffffU == irq_stat)) { |
| return IRQ_NONE; |
| } |
| |
| n_hcs = mv_get_hc_count(host->ports[0]->flags); |
| spin_lock(&host->lock); |
| |
| for (hc = 0; hc < n_hcs; hc++) { |
| u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); |
| if (relevant) { |
| mv_host_intr(host, relevant, hc); |
| handled++; |
| } |
| } |
| |
| hpriv = host->private_data; |
| if (IS_60XX(hpriv)) { |
| /* deal with the interrupt coalescing bits */ |
| if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) { |
| writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO); |
| writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI); |
| writelfl(0, mmio + MV_IRQ_COAL_CAUSE); |
| } |
| } |
| |
| if (PCI_ERR & irq_stat) { |
| printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n", |
| readl(mmio + PCI_IRQ_CAUSE_OFS)); |
| |
| DPRINTK("All regs @ PCI error\n"); |
| mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); |
| |
| writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); |
| handled++; |
| } |
| spin_unlock(&host->lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) |
| { |
| void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); |
| unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; |
| |
| return hc_mmio + ofs; |
| } |
| |
| static unsigned int mv5_scr_offset(unsigned int sc_reg_in) |
| { |
| unsigned int ofs; |
| |
| switch (sc_reg_in) { |
| case SCR_STATUS: |
| case SCR_ERROR: |
| case SCR_CONTROL: |
| ofs = sc_reg_in * sizeof(u32); |
| break; |
| default: |
| ofs = 0xffffffffU; |
| break; |
| } |
| return ofs; |
| } |
| |
| static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in) |
| { |
| void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR]; |
| void __iomem *addr = mv5_phy_base(mmio, ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) |
| return readl(addr + ofs); |
| else |
| return (u32) ofs; |
| } |
| |
| static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) |
| { |
| void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR]; |
| void __iomem *addr = mv5_phy_base(mmio, ap->port_no); |
| unsigned int ofs = mv5_scr_offset(sc_reg_in); |
| |
| if (ofs != 0xffffffffU) |
| writelfl(val, addr + ofs); |
| } |
| |
| static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio) |
| { |
| u8 rev_id; |
| int early_5080; |
| |
| pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); |
| |
| early_5080 = (pdev->device == 0x5080) && (rev_id == 0); |
| |
| if (!early_5080) { |
| u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= (1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| mv_reset_pci_bus(pdev, mmio); |
| } |
| |
| static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x0fcfffff, mmio + MV_FLASH_CTL); |
| } |
| |
| static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, idx); |
| u32 tmp; |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| |
| hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ |
| hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| writel(0, mmio + MV_GPIO_PORT_CTL); |
| |
| /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ |
| |
| tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| tmp |= ~(1 << 0); |
| writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); |
| } |
| |
| static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *phy_mmio = mv5_phy_base(mmio, port); |
| const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); |
| u32 tmp; |
| int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); |
| |
| if (fix_apm_sq) { |
| tmp = readl(phy_mmio + MV5_LT_MODE); |
| tmp |= (1 << 19); |
| writel(tmp, phy_mmio + MV5_LT_MODE); |
| |
| tmp = readl(phy_mmio + MV5_PHY_CTL); |
| tmp &= ~0x3; |
| tmp |= 0x1; |
| writel(tmp, phy_mmio + MV5_PHY_CTL); |
| } |
| |
| tmp = readl(phy_mmio + MV5_PHY_MODE); |
| tmp &= ~mask; |
| tmp |= hpriv->signal[port].pre; |
| tmp |= hpriv->signal[port].amps; |
| writel(tmp, phy_mmio + MV5_PHY_MODE); |
| } |
| |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, port_mmio + (reg)) |
| static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); |
| |
| mv_channel_reset(hpriv, mmio, port); |
| |
| ZERO(0x028); /* command */ |
| writel(0x11f, port_mmio + EDMA_CFG_OFS); |
| ZERO(0x004); /* timer */ |
| ZERO(0x008); /* irq err cause */ |
| ZERO(0x00c); /* irq err mask */ |
| ZERO(0x010); /* rq bah */ |
| ZERO(0x014); /* rq inp */ |
| ZERO(0x018); /* rq outp */ |
| ZERO(0x01c); /* respq bah */ |
| ZERO(0x024); /* respq outp */ |
| ZERO(0x020); /* respq inp */ |
| ZERO(0x02c); /* test control */ |
| writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); |
| } |
| #undef ZERO |
| |
| #define ZERO(reg) writel(0, hc_mmio + (reg)) |
| static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int hc) |
| { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| u32 tmp; |
| |
| ZERO(0x00c); |
| ZERO(0x010); |
| ZERO(0x014); |
| ZERO(0x018); |
| |
| tmp = readl(hc_mmio + 0x20); |
| tmp &= 0x1c1c1c1c; |
| tmp |= 0x03030303; |
| writel(tmp, hc_mmio + 0x20); |
| } |
| #undef ZERO |
| |
| static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| unsigned int hc, port; |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| for (port = 0; port < MV_PORTS_PER_HC; port++) |
| mv5_reset_hc_port(hpriv, mmio, |
| (hc * MV_PORTS_PER_HC) + port); |
| |
| mv5_reset_one_hc(hpriv, mmio, hc); |
| } |
| |
| return 0; |
| } |
| |
| #undef ZERO |
| #define ZERO(reg) writel(0, mmio + (reg)) |
| static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| tmp = readl(mmio + MV_PCI_MODE); |
| tmp &= 0xff00ffff; |
| writel(tmp, mmio + MV_PCI_MODE); |
| |
| ZERO(MV_PCI_DISC_TIMER); |
| ZERO(MV_PCI_MSI_TRIGGER); |
| writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); |
| ZERO(HC_MAIN_IRQ_MASK_OFS); |
| ZERO(MV_PCI_SERR_MASK); |
| ZERO(PCI_IRQ_CAUSE_OFS); |
| ZERO(PCI_IRQ_MASK_OFS); |
| ZERO(MV_PCI_ERR_LOW_ADDRESS); |
| ZERO(MV_PCI_ERR_HIGH_ADDRESS); |
| ZERO(MV_PCI_ERR_ATTRIBUTE); |
| ZERO(MV_PCI_ERR_COMMAND); |
| } |
| #undef ZERO |
| |
| static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| u32 tmp; |
| |
| mv5_reset_flash(hpriv, mmio); |
| |
| tmp = readl(mmio + MV_GPIO_PORT_CTL); |
| tmp &= 0x3; |
| tmp |= (1 << 5) | (1 << 6); |
| writel(tmp, mmio + MV_GPIO_PORT_CTL); |
| } |
| |
| /** |
| * mv6_reset_hc - Perform the 6xxx global soft reset |
| * @mmio: base address of the HBA |
| * |
| * This routine only applies to 6xxx parts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int n_hc) |
| { |
| void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS; |
| int i, rc = 0; |
| u32 t; |
| |
| /* Following procedure defined in PCI "main command and status |
| * register" table. |
| */ |
| t = readl(reg); |
| writel(t | STOP_PCI_MASTER, reg); |
| |
| for (i = 0; i < 1000; i++) { |
| udelay(1); |
| t = readl(reg); |
| if (PCI_MASTER_EMPTY & t) { |
| break; |
| } |
| } |
| if (!(PCI_MASTER_EMPTY & t)) { |
| printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* set reset */ |
| i = 5; |
| do { |
| writel(t | GLOB_SFT_RST, reg); |
| t = readl(reg); |
| udelay(1); |
| } while (!(GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (!(GLOB_SFT_RST & t)) { |
| printk(KERN_ERR DRV_NAME ": can't set global reset\n"); |
| rc = 1; |
| goto done; |
| } |
| |
| /* clear reset and *reenable the PCI master* (not mentioned in spec) */ |
| i = 5; |
| do { |
| writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); |
| t = readl(reg); |
| udelay(1); |
| } while ((GLOB_SFT_RST & t) && (i-- > 0)); |
| |
| if (GLOB_SFT_RST & t) { |
| printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); |
| rc = 1; |
| } |
| done: |
| return rc; |
| } |
| |
| static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, |
| void __iomem *mmio) |
| { |
| void __iomem *port_mmio; |
| u32 tmp; |
| |
| tmp = readl(mmio + MV_RESET_CFG); |
| if ((tmp & (1 << 0)) == 0) { |
| hpriv->signal[idx].amps = 0x7 << 8; |
| hpriv->signal[idx].pre = 0x1 << 5; |
| return; |
| } |
| |
| port_mmio = mv_port_base(mmio, idx); |
| tmp = readl(port_mmio + PHY_MODE2); |
| |
| hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ |
| hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ |
| } |
| |
| static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) |
| { |
| writel(0x00000060, mmio + MV_GPIO_PORT_CTL); |
| } |
| |
| static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| u32 hp_flags = hpriv->hp_flags; |
| int fix_phy_mode2 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| int fix_phy_mode4 = |
| hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); |
| u32 m2, tmp; |
| |
| if (fix_phy_mode2) { |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~(1 << 16); |
| m2 |= (1 << 31); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| |
| m2 = readl(port_mmio + PHY_MODE2); |
| m2 &= ~((1 << 16) | (1 << 31)); |
| writel(m2, port_mmio + PHY_MODE2); |
| |
| udelay(200); |
| } |
| |
| /* who knows what this magic does */ |
| tmp = readl(port_mmio + PHY_MODE3); |
| tmp &= ~0x7F800000; |
| tmp |= 0x2A800000; |
| writel(tmp, port_mmio + PHY_MODE3); |
| |
| if (fix_phy_mode4) { |
| u32 m4; |
| |
| m4 = readl(port_mmio + PHY_MODE4); |
| |
| if (hp_flags & MV_HP_ERRATA_60X1B2) |
| tmp = readl(port_mmio + 0x310); |
| |
| m4 = (m4 & ~(1 << 1)) | (1 << 0); |
| |
| writel(m4, port_mmio + PHY_MODE4); |
| |
| if (hp_flags & MV_HP_ERRATA_60X1B2) |
| writel(tmp, port_mmio + 0x310); |
| } |
| |
| /* Revert values of pre-emphasis and signal amps to the saved ones */ |
| m2 = readl(port_mmio + PHY_MODE2); |
| |
| m2 &= ~MV_M2_PREAMP_MASK; |
| m2 |= hpriv->signal[port].amps; |
| m2 |= hpriv->signal[port].pre; |
| m2 &= ~(1 << 16); |
| |
| /* according to mvSata 3.6.1, some IIE values are fixed */ |
| if (IS_GEN_IIE(hpriv)) { |
| m2 &= ~0xC30FF01F; |
| m2 |= 0x0000900F; |
| } |
| |
| writel(m2, port_mmio + PHY_MODE2); |
| } |
| |
| static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, |
| unsigned int port_no) |
| { |
| void __iomem *port_mmio = mv_port_base(mmio, port_no); |
| |
| writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS); |
| |
| if (IS_60XX(hpriv)) { |
| u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL); |
| ifctl |= (1 << 7); /* enable gen2i speed */ |
| ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */ |
| writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL); |
| } |
| |
| udelay(25); /* allow reset propagation */ |
| |
| /* Spec never mentions clearing the bit. Marvell's driver does |
| * clear the bit, however. |
| */ |
| writelfl(0, port_mmio + EDMA_CMD_OFS); |
| |
| hpriv->ops->phy_errata(hpriv, mmio, port_no); |
| |
| if (IS_50XX(hpriv)) |
| mdelay(1); |
| } |
| |
| static void mv_stop_and_reset(struct ata_port *ap) |
| { |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR]; |
| |
| mv_stop_dma(ap); |
| |
| mv_channel_reset(hpriv, mmio, ap->port_no); |
| |
| __mv_phy_reset(ap, 0); |
| } |
| |
| static inline void __msleep(unsigned int msec, int can_sleep) |
| { |
| if (can_sleep) |
| msleep(msec); |
| else |
| mdelay(msec); |
| } |
| |
| /** |
| * __mv_phy_reset - Perform eDMA reset followed by COMRESET |
| * @ap: ATA channel to manipulate |
| * |
| * Part of this is taken from __sata_phy_reset and modified to |
| * not sleep since this routine gets called from interrupt level. |
| * |
| * LOCKING: |
| * Inherited from caller. This is coded to safe to call at |
| * interrupt level, i.e. it does not sleep. |
| */ |
| static void __mv_phy_reset(struct ata_port *ap, int can_sleep) |
| { |
| struct mv_port_priv *pp = ap->private_data; |
| struct mv_host_priv *hpriv = ap->host->private_data; |
| void __iomem *port_mmio = mv_ap_base(ap); |
| struct ata_taskfile tf; |
| struct ata_device *dev = &ap->device[0]; |
| unsigned long timeout; |
| int retry = 5; |
| u32 sstatus; |
| |
| VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); |
| |
| DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x " |
| "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), |
| mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); |
| |
| /* Issue COMRESET via SControl */ |
| comreset_retry: |
| sata_scr_write_flush(ap, SCR_CONTROL, 0x301); |
| __msleep(1, can_sleep); |
| |
| sata_scr_write_flush(ap, SCR_CONTROL, 0x300); |
| __msleep(20, can_sleep); |
| |
| timeout = jiffies + msecs_to_jiffies(200); |
| do { |
| sata_scr_read(ap, SCR_STATUS, &sstatus); |
| if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0)) |
| break; |
| |
| __msleep(1, can_sleep); |
| } while (time_before(jiffies, timeout)); |
| |
| /* work around errata */ |
| if (IS_60XX(hpriv) && |
| (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) && |
| (retry-- > 0)) |
| goto comreset_retry; |
| |
| DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x " |
| "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), |
| mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); |
| |
| if (ata_port_online(ap)) { |
| ata_port_probe(ap); |
| } else { |
| sata_scr_read(ap, SCR_STATUS, &sstatus); |
| ata_port_printk(ap, KERN_INFO, |
| "no device found (phy stat %08x)\n", sstatus); |
| ata_port_disable(ap); |
| return; |
| } |
| ap->cbl = ATA_CBL_SATA; |
| |
| /* even after SStatus reflects that device is ready, |
| * it seems to take a while for link to be fully |
| * established (and thus Status no longer 0x80/0x7F), |
| * so we poll a bit for that, here. |
| */ |
| retry = 20; |
| while (1) { |
| u8 drv_stat = ata_check_status(ap); |
| if ((drv_stat != 0x80) && (drv_stat != 0x7f)) |
| break; |
| __msleep(500, can_sleep); |
| if (retry-- <= 0) |
| break; |
| } |
| |
| tf.lbah = readb(ap->ioaddr.lbah_addr); |
| tf.lbam = readb(ap->ioaddr.lbam_addr); |
| tf.lbal = readb(ap->ioaddr.lbal_addr); |
| tf.nsect = readb(ap->ioaddr.nsect_addr); |
| |
| dev->class = ata_dev_classify(&tf); |
| if (!ata_dev_enabled(dev)) { |
| VPRINTK("Port disabled post-sig: No device present.\n"); |
| ata_port_disable(ap); |
| } |
| |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; |
| |
| VPRINTK("EXIT\n"); |
| } |
| |
| static void mv_phy_reset(struct ata_port *ap) |
| { |
| __mv_phy_reset(ap, 1); |
| } |
| |
| /** |
| * mv_eng_timeout - Routine called by libata when SCSI times out I/O |
| * @ap: ATA channel to manipulate |
| * |
| * Intent is to clear all pending error conditions, reset the |
| * chip/bus, fail the command, and move on. |
| * |
| * LOCKING: |
| * This routine holds the host lock while failing the command. |
| */ |
| static void mv_eng_timeout(struct ata_port *ap) |
| { |
| void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR]; |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| |
| ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n"); |
| DPRINTK("All regs @ start of eng_timeout\n"); |
| mv_dump_all_regs(mmio, ap->port_no, to_pci_dev(ap->host->dev)); |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n", |
| mmio, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd); |
| |
| spin_lock_irqsave(&ap->host->lock, flags); |
| mv_err_intr(ap, 0); |
| mv_stop_and_reset(ap); |
| spin_unlock_irqrestore(&ap->host->lock, flags); |
| |
| WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); |
| if (qc->flags & ATA_QCFLAG_ACTIVE) { |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| ata_eh_qc_complete(qc); |
| } |
| } |
| |
| /** |
| * mv_port_init - Perform some early initialization on a single port. |
| * @port: libata data structure storing shadow register addresses |
| * @port_mmio: base address of the port |
| * |
| * Initialize shadow register mmio addresses, clear outstanding |
| * interrupts on the port, and unmask interrupts for the future |
| * start of the port. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) |
| { |
| void __iomem *shd_base = port_mmio + SHD_BLK_OFS; |
| unsigned serr_ofs; |
| |
| /* PIO related setup |
| */ |
| port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); |
| port->error_addr = |
| port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); |
| port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); |
| port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); |
| port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); |
| port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); |
| port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); |
| port->status_addr = |
| port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); |
| /* special case: control/altstatus doesn't have ATA_REG_ address */ |
| port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS; |
| |
| /* unused: */ |
| port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL; |
| |
| /* Clear any currently outstanding port interrupt conditions */ |
| serr_ofs = mv_scr_offset(SCR_ERROR); |
| writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs); |
| writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); |
| |
| /* unmask all EDMA error interrupts */ |
| writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS); |
| |
| VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", |
| readl(port_mmio + EDMA_CFG_OFS), |
| readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS), |
| readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS)); |
| } |
| |
| static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv, |
| unsigned int board_idx) |
| { |
| u8 rev_id; |
| u32 hp_flags = hpriv->hp_flags; |
| |
| pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); |
| |
| switch(board_idx) { |
| case chip_5080: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_50XX; |
| |
| switch (rev_id) { |
| case 0x1: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying 50XXB2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_504x: |
| case chip_508x: |
| hpriv->ops = &mv5xxx_ops; |
| hp_flags |= MV_HP_50XX; |
| |
| switch (rev_id) { |
| case 0x0: |
| hp_flags |= MV_HP_ERRATA_50XXB0; |
| break; |
| case 0x3: |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_50XXB2; |
| break; |
| } |
| break; |
| |
| case chip_604x: |
| case chip_608x: |
| hpriv->ops = &mv6xxx_ops; |
| |
| switch (rev_id) { |
| case 0x7: |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| case 0x9: |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying B2 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1B2; |
| break; |
| } |
| break; |
| |
| case chip_7042: |
| case chip_6042: |
| hpriv->ops = &mv6xxx_ops; |
| |
| hp_flags |= MV_HP_GEN_IIE; |
| |
| switch (rev_id) { |
| case 0x0: |
| hp_flags |= MV_HP_ERRATA_XX42A0; |
| break; |
| case 0x1: |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| default: |
| dev_printk(KERN_WARNING, &pdev->dev, |
| "Applying 60X1C0 workarounds to unknown rev\n"); |
| hp_flags |= MV_HP_ERRATA_60X1C0; |
| break; |
| } |
| break; |
| |
| default: |
| printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx); |
| return 1; |
| } |
| |
| hpriv->hp_flags = hp_flags; |
| |
| return 0; |
| } |
| |
| /** |
| * mv_init_host - Perform some early initialization of the host. |
| * @pdev: host PCI device |
| * @probe_ent: early data struct representing the host |
| * |
| * If possible, do an early global reset of the host. Then do |
| * our port init and clear/unmask all/relevant host interrupts. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent, |
| unsigned int board_idx) |
| { |
| int rc = 0, n_hc, port, hc; |
| void __iomem *mmio = probe_ent->iomap[MV_PRIMARY_BAR]; |
| struct mv_host_priv *hpriv = probe_ent->private_data; |
| |
| /* global interrupt mask */ |
| writel(0, mmio + HC_MAIN_IRQ_MASK_OFS); |
| |
| rc = mv_chip_id(pdev, hpriv, board_idx); |
| if (rc) |
| goto done; |
| |
| n_hc = mv_get_hc_count(probe_ent->port_flags); |
| probe_ent->n_ports = MV_PORTS_PER_HC * n_hc; |
| |
| for (port = 0; port < probe_ent->n_ports; port++) |
| hpriv->ops->read_preamp(hpriv, port, mmio); |
| |
| rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); |
| if (rc) |
| goto done; |
| |
| hpriv->ops->reset_flash(hpriv, mmio); |
| hpriv->ops->reset_bus(pdev, mmio); |
| hpriv->ops->enable_leds(hpriv, mmio); |
| |
| for (port = 0; port < probe_ent->n_ports; port++) { |
| if (IS_60XX(hpriv)) { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| |
| u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL); |
| ifctl |= (1 << 7); /* enable gen2i speed */ |
| ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */ |
| writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL); |
| } |
| |
| hpriv->ops->phy_errata(hpriv, mmio, port); |
| } |
| |
| for (port = 0; port < probe_ent->n_ports; port++) { |
| void __iomem *port_mmio = mv_port_base(mmio, port); |
| mv_port_init(&probe_ent->port[port], port_mmio); |
| } |
| |
| for (hc = 0; hc < n_hc; hc++) { |
| void __iomem *hc_mmio = mv_hc_base(mmio, hc); |
| |
| VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " |
| "(before clear)=0x%08x\n", hc, |
| readl(hc_mmio + HC_CFG_OFS), |
| readl(hc_mmio + HC_IRQ_CAUSE_OFS)); |
| |
| /* Clear any currently outstanding hc interrupt conditions */ |
| writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); |
| } |
| |
| /* Clear any currently outstanding host interrupt conditions */ |
| writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); |
| |
| /* and unmask interrupt generation for host regs */ |
| writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); |
| writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); |
| |
| VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " |
| "PCI int cause/mask=0x%08x/0x%08x\n", |
| readl(mmio + HC_MAIN_IRQ_CAUSE_OFS), |
| readl(mmio + HC_MAIN_IRQ_MASK_OFS), |
| readl(mmio + PCI_IRQ_CAUSE_OFS), |
| readl(mmio + PCI_IRQ_MASK_OFS)); |
| |
| done: |
| return rc; |
| } |
| |
| /** |
| * mv_print_info - Dump key info to kernel log for perusal. |
| * @probe_ent: early data struct representing the host |
| * |
| * FIXME: complete this. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static void mv_print_info(struct ata_probe_ent *probe_ent) |
| { |
| struct pci_dev *pdev = to_pci_dev(probe_ent->dev); |
| struct mv_host_priv *hpriv = probe_ent->private_data; |
| u8 rev_id, scc; |
| const char *scc_s; |
| |
| /* Use this to determine the HW stepping of the chip so we know |
| * what errata to workaround |
| */ |
| pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); |
| |
| pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); |
| if (scc == 0) |
| scc_s = "SCSI"; |
| else if (scc == 0x01) |
| scc_s = "RAID"; |
| else |
| scc_s = "unknown"; |
| |
| dev_printk(KERN_INFO, &pdev->dev, |
| "%u slots %u ports %s mode IRQ via %s\n", |
| (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports, |
| scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); |
| } |
| |
| /** |
| * mv_init_one - handle a positive probe of a Marvell host |
| * @pdev: PCI device found |
| * @ent: PCI device ID entry for the matched host |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| static int printed_version = 0; |
| struct device *dev = &pdev->dev; |
| struct ata_probe_ent *probe_ent; |
| struct mv_host_priv *hpriv; |
| unsigned int board_idx = (unsigned int)ent->driver_data; |
| int rc; |
| |
| if (!printed_version++) |
| dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); |
| |
| rc = pcim_enable_device(pdev); |
| if (rc) |
| return rc; |
| pci_set_master(pdev); |
| |
| rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); |
| if (rc == -EBUSY) |
| pcim_pin_device(pdev); |
| if (rc) |
| return rc; |
| |
| probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL); |
| if (probe_ent == NULL) |
| return -ENOMEM; |
| |
| probe_ent->dev = pci_dev_to_dev(pdev); |
| INIT_LIST_HEAD(&probe_ent->node); |
| |
| hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); |
| if (!hpriv) |
| return -ENOMEM; |
| |
| probe_ent->sht = mv_port_info[board_idx].sht; |
| probe_ent->port_flags = mv_port_info[board_idx].flags; |
| probe_ent->pio_mask = mv_port_info[board_idx].pio_mask; |
| probe_ent->udma_mask = mv_port_info[board_idx].udma_mask; |
| probe_ent->port_ops = mv_port_info[board_idx].port_ops; |
| |
| probe_ent->irq = pdev->irq; |
| probe_ent->irq_flags = IRQF_SHARED; |
| probe_ent->iomap = pcim_iomap_table(pdev); |
| probe_ent->private_data = hpriv; |
| |
| /* initialize adapter */ |
| rc = mv_init_host(pdev, probe_ent, board_idx); |
| if (rc) |
| return rc; |
| |
| /* Enable interrupts */ |
| if (msi && !pci_enable_msi(pdev)) |
| pci_intx(pdev, 1); |
| |
| mv_dump_pci_cfg(pdev, 0x68); |
| mv_print_info(probe_ent); |
| |
| if (ata_device_add(probe_ent) == 0) |
| return -ENODEV; |
| |
| devm_kfree(dev, probe_ent); |
| return 0; |
| } |
| |
| static int __init mv_init(void) |
| { |
| return pci_register_driver(&mv_pci_driver); |
| } |
| |
| static void __exit mv_exit(void) |
| { |
| pci_unregister_driver(&mv_pci_driver); |
| } |
| |
| MODULE_AUTHOR("Brett Russ"); |
| MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, mv_pci_tbl); |
| MODULE_VERSION(DRV_VERSION); |
| |
| module_param(msi, int, 0444); |
| MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); |
| |
| module_init(mv_init); |
| module_exit(mv_exit); |