| /* |
| * Intel Wireless WiMAX Connection 2400m |
| * Generic probe/disconnect, reset and message passing |
| * |
| * |
| * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> |
| * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| * |
| * |
| * See i2400m.h for driver documentation. This contains helpers for |
| * the driver model glue [_setup()/_release()], handling device resets |
| * [_dev_reset_handle()], and the backends for the WiMAX stack ops |
| * reset [_op_reset()] and message from user [_op_msg_from_user()]. |
| * |
| * ROADMAP: |
| * |
| * i2400m_op_msg_from_user() |
| * i2400m_msg_to_dev() |
| * wimax_msg_to_user_send() |
| * |
| * i2400m_op_reset() |
| * i240m->bus_reset() |
| * |
| * i2400m_dev_reset_handle() |
| * __i2400m_dev_reset_handle() |
| * __i2400m_dev_stop() |
| * __i2400m_dev_start() |
| * |
| * i2400m_setup() |
| * i2400m_bootrom_init() |
| * register_netdev() |
| * i2400m_dev_start() |
| * __i2400m_dev_start() |
| * i2400m_dev_bootstrap() |
| * i2400m_tx_setup() |
| * i2400m->bus_dev_start() |
| * i2400m_check_mac_addr() |
| * wimax_dev_add() |
| * |
| * i2400m_release() |
| * wimax_dev_rm() |
| * i2400m_dev_stop() |
| * __i2400m_dev_stop() |
| * i2400m_dev_shutdown() |
| * i2400m->bus_dev_stop() |
| * i2400m_tx_release() |
| * unregister_netdev() |
| */ |
| #include "i2400m.h" |
| #include <linux/wimax/i2400m.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| |
| #define D_SUBMODULE driver |
| #include "debug-levels.h" |
| |
| |
| int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */ |
| module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644); |
| MODULE_PARM_DESC(idle_mode_disabled, |
| "If true, the device will not enable idle mode negotiation " |
| "with the base station (when connected) to save power."); |
| |
| /** |
| * i2400m_queue_work - schedule work on a i2400m's queue |
| * |
| * @i2400m: device descriptor |
| * |
| * @fn: function to run to execute work. It gets passed a 'struct |
| * work_struct' that is wrapped in a 'struct i2400m_work'. Once |
| * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then |
| * (2) kfree(i2400m_work). |
| * |
| * @gfp_flags: GFP flags for memory allocation. |
| * |
| * @pl: pointer to a payload buffer that you want to pass to the _work |
| * function. Use this to pack (for example) a struct with extra |
| * arguments. |
| * |
| * @pl_size: size of the payload buffer. |
| * |
| * We do this quite often, so this just saves typing; allocate a |
| * wrapper for a i2400m, get a ref to it, pack arguments and launch |
| * the work. |
| * |
| * A usual workflow is: |
| * |
| * struct my_work_args { |
| * void *something; |
| * int whatever; |
| * }; |
| * ... |
| * |
| * struct my_work_args my_args = { |
| * .something = FOO, |
| * .whaetever = BLAH |
| * }; |
| * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL, |
| * &args, sizeof(args)) |
| * |
| * And now the work function can unpack the arguments and call the |
| * real function (or do the job itself): |
| * |
| * static |
| * void my_work_fn((struct work_struct *ws) |
| * { |
| * struct i2400m_work *iw = |
| * container_of(ws, struct i2400m_work, ws); |
| * struct my_work_args *my_args = (void *) iw->pl; |
| * |
| * my_work(iw->i2400m, my_args->something, my_args->whatevert); |
| * } |
| */ |
| int i2400m_queue_work(struct i2400m *i2400m, |
| void (*fn)(struct work_struct *), gfp_t gfp_flags, |
| const void *pl, size_t pl_size) |
| { |
| int result; |
| struct i2400m_work *iw; |
| |
| BUG_ON(i2400m->work_queue == NULL); |
| result = -ENOMEM; |
| iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags); |
| if (iw == NULL) |
| goto error_kzalloc; |
| iw->i2400m = i2400m_get(i2400m); |
| memcpy(iw->pl, pl, pl_size); |
| INIT_WORK(&iw->ws, fn); |
| result = queue_work(i2400m->work_queue, &iw->ws); |
| error_kzalloc: |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(i2400m_queue_work); |
| |
| |
| /* |
| * Schedule i2400m's specific work on the system's queue. |
| * |
| * Used for a few cases where we really need it; otherwise, identical |
| * to i2400m_queue_work(). |
| * |
| * Returns < 0 errno code on error, 1 if ok. |
| * |
| * If it returns zero, something really bad happened, as it means the |
| * works struct was already queued, but we have just allocated it, so |
| * it should not happen. |
| */ |
| int i2400m_schedule_work(struct i2400m *i2400m, |
| void (*fn)(struct work_struct *), gfp_t gfp_flags) |
| { |
| int result; |
| struct i2400m_work *iw; |
| |
| BUG_ON(i2400m->work_queue == NULL); |
| result = -ENOMEM; |
| iw = kzalloc(sizeof(*iw), gfp_flags); |
| if (iw == NULL) |
| goto error_kzalloc; |
| iw->i2400m = i2400m_get(i2400m); |
| INIT_WORK(&iw->ws, fn); |
| result = schedule_work(&iw->ws); |
| if (result == 0) |
| result = -ENXIO; |
| error_kzalloc: |
| return result; |
| } |
| |
| |
| /* |
| * WiMAX stack operation: relay a message from user space |
| * |
| * @wimax_dev: device descriptor |
| * @pipe_name: named pipe the message is for |
| * @msg_buf: pointer to the message bytes |
| * @msg_len: length of the buffer |
| * @genl_info: passed by the generic netlink layer |
| * |
| * The WiMAX stack will call this function when a message was received |
| * from user space. |
| * |
| * For the i2400m, this is an L3L4 message, as specified in |
| * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct |
| * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be |
| * coded in Little Endian. |
| * |
| * This function just verifies that the header declaration and the |
| * payload are consistent and then deals with it, either forwarding it |
| * to the device or procesing it locally. |
| * |
| * In the i2400m, messages are basically commands that will carry an |
| * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to |
| * user space. The rx.c code might intercept the response and use it |
| * to update the driver's state, but then it will pass it on so it can |
| * be relayed back to user space. |
| * |
| * Note that asynchronous events from the device are processed and |
| * sent to user space in rx.c. |
| */ |
| static |
| int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev, |
| const char *pipe_name, |
| const void *msg_buf, size_t msg_len, |
| const struct genl_info *genl_info) |
| { |
| int result; |
| struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| struct device *dev = i2400m_dev(i2400m); |
| struct sk_buff *ack_skb; |
| |
| d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p " |
| "msg_len %zu genl_info %p)\n", wimax_dev, i2400m, |
| msg_buf, msg_len, genl_info); |
| ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len); |
| result = PTR_ERR(ack_skb); |
| if (IS_ERR(ack_skb)) |
| goto error_msg_to_dev; |
| if (unlikely(i2400m->trace_msg_from_user)) |
| wimax_msg(&i2400m->wimax_dev, "trace", |
| msg_buf, msg_len, GFP_KERNEL); |
| result = wimax_msg_send(&i2400m->wimax_dev, ack_skb); |
| error_msg_to_dev: |
| d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu " |
| "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len, |
| genl_info, result); |
| return result; |
| } |
| |
| |
| /* |
| * Context to wait for a reset to finalize |
| */ |
| struct i2400m_reset_ctx { |
| struct completion completion; |
| int result; |
| }; |
| |
| |
| /* |
| * WiMAX stack operation: reset a device |
| * |
| * @wimax_dev: device descriptor |
| * |
| * See the documentation for wimax_reset() and wimax_dev->op_reset for |
| * the requirements of this function. The WiMAX stack guarantees |
| * serialization on calls to this function. |
| * |
| * Do a warm reset on the device; if it fails, resort to a cold reset |
| * and return -ENODEV. On successful warm reset, we need to block |
| * until it is complete. |
| * |
| * The bus-driver implementation of reset takes care of falling back |
| * to cold reset if warm fails. |
| */ |
| static |
| int i2400m_op_reset(struct wimax_dev *wimax_dev) |
| { |
| int result; |
| struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); |
| struct device *dev = i2400m_dev(i2400m); |
| struct i2400m_reset_ctx ctx = { |
| .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion), |
| .result = 0, |
| }; |
| |
| d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev); |
| mutex_lock(&i2400m->init_mutex); |
| i2400m->reset_ctx = &ctx; |
| mutex_unlock(&i2400m->init_mutex); |
| result = i2400m->bus_reset(i2400m, I2400M_RT_WARM); |
| if (result < 0) |
| goto out; |
| result = wait_for_completion_timeout(&ctx.completion, 4*HZ); |
| if (result == 0) |
| result = -ETIMEDOUT; |
| else if (result > 0) |
| result = ctx.result; |
| /* if result < 0, pass it on */ |
| mutex_lock(&i2400m->init_mutex); |
| i2400m->reset_ctx = NULL; |
| mutex_unlock(&i2400m->init_mutex); |
| out: |
| d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result); |
| return result; |
| } |
| |
| |
| /* |
| * Check the MAC address we got from boot mode is ok |
| * |
| * @i2400m: device descriptor |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| */ |
| static |
| int i2400m_check_mac_addr(struct i2400m *i2400m) |
| { |
| int result; |
| struct device *dev = i2400m_dev(i2400m); |
| struct sk_buff *skb; |
| const struct i2400m_tlv_detailed_device_info *ddi; |
| struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| const unsigned char zeromac[ETH_ALEN] = { 0 }; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| skb = i2400m_get_device_info(i2400m); |
| if (IS_ERR(skb)) { |
| result = PTR_ERR(skb); |
| dev_err(dev, "Cannot verify MAC address, error reading: %d\n", |
| result); |
| goto error; |
| } |
| /* Extract MAC addresss */ |
| ddi = (void *) skb->data; |
| BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address)); |
| d_printf(2, dev, "GET DEVICE INFO: mac addr " |
| "%02x:%02x:%02x:%02x:%02x:%02x\n", |
| ddi->mac_address[0], ddi->mac_address[1], |
| ddi->mac_address[2], ddi->mac_address[3], |
| ddi->mac_address[4], ddi->mac_address[5]); |
| if (!memcmp(net_dev->perm_addr, ddi->mac_address, |
| sizeof(ddi->mac_address))) |
| goto ok; |
| dev_warn(dev, "warning: device reports a different MAC address " |
| "to that of boot mode's\n"); |
| dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n", |
| ddi->mac_address[0], ddi->mac_address[1], |
| ddi->mac_address[2], ddi->mac_address[3], |
| ddi->mac_address[4], ddi->mac_address[5]); |
| dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n", |
| net_dev->perm_addr[0], net_dev->perm_addr[1], |
| net_dev->perm_addr[2], net_dev->perm_addr[3], |
| net_dev->perm_addr[4], net_dev->perm_addr[5]); |
| if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac))) |
| dev_err(dev, "device reports an invalid MAC address, " |
| "not updating\n"); |
| else { |
| dev_warn(dev, "updating MAC address\n"); |
| net_dev->addr_len = ETH_ALEN; |
| memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN); |
| memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN); |
| } |
| ok: |
| result = 0; |
| kfree_skb(skb); |
| error: |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| } |
| |
| |
| /** |
| * __i2400m_dev_start - Bring up driver communication with the device |
| * |
| * @i2400m: device descriptor |
| * @flags: boot mode flags |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Uploads firmware and brings up all the resources needed to be able |
| * to communicate with the device. |
| * |
| * TX needs to be setup before the bus-specific code (otherwise on |
| * shutdown, the bus-tx code could try to access it). |
| */ |
| static |
| int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags) |
| { |
| int result; |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct net_device *net_dev = wimax_dev->net_dev; |
| struct device *dev = i2400m_dev(i2400m); |
| int times = 3; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| retry: |
| result = i2400m_dev_bootstrap(i2400m, flags); |
| if (result < 0) { |
| dev_err(dev, "cannot bootstrap device: %d\n", result); |
| goto error_bootstrap; |
| } |
| result = i2400m_tx_setup(i2400m); |
| if (result < 0) |
| goto error_tx_setup; |
| result = i2400m->bus_dev_start(i2400m); |
| if (result < 0) |
| goto error_bus_dev_start; |
| i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name); |
| if (i2400m->work_queue == NULL) { |
| result = -ENOMEM; |
| dev_err(dev, "cannot create workqueue\n"); |
| goto error_create_workqueue; |
| } |
| /* At this point is ok to send commands to the device */ |
| result = i2400m_check_mac_addr(i2400m); |
| if (result < 0) |
| goto error_check_mac_addr; |
| i2400m->ready = 1; |
| wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED); |
| result = i2400m_dev_initialize(i2400m); |
| if (result < 0) |
| goto error_dev_initialize; |
| /* At this point, reports will come for the device and set it |
| * to the right state if it is different than UNINITIALIZED */ |
| d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| net_dev, i2400m, result); |
| return result; |
| |
| error_dev_initialize: |
| error_check_mac_addr: |
| destroy_workqueue(i2400m->work_queue); |
| error_create_workqueue: |
| i2400m->bus_dev_stop(i2400m); |
| error_bus_dev_start: |
| i2400m_tx_release(i2400m); |
| error_tx_setup: |
| error_bootstrap: |
| if (result == -ERESTARTSYS && times-- > 0) { |
| flags = I2400M_BRI_SOFT; |
| goto retry; |
| } |
| d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", |
| net_dev, i2400m, result); |
| return result; |
| } |
| |
| |
| static |
| int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| { |
| int result; |
| mutex_lock(&i2400m->init_mutex); /* Well, start the device */ |
| result = __i2400m_dev_start(i2400m, bm_flags); |
| if (result >= 0) |
| i2400m->updown = 1; |
| mutex_unlock(&i2400m->init_mutex); |
| return result; |
| } |
| |
| |
| /** |
| * i2400m_dev_stop - Tear down driver communication with the device |
| * |
| * @i2400m: device descriptor |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Releases all the resources allocated to communicate with the device. |
| */ |
| static |
| void __i2400m_dev_stop(struct i2400m *i2400m) |
| { |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING); |
| i2400m_dev_shutdown(i2400m); |
| i2400m->ready = 0; |
| destroy_workqueue(i2400m->work_queue); |
| i2400m->bus_dev_stop(i2400m); |
| i2400m_tx_release(i2400m); |
| wimax_state_change(wimax_dev, WIMAX_ST_DOWN); |
| d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); |
| } |
| |
| |
| /* |
| * Watch out -- we only need to stop if there is a need for it. The |
| * device could have reset itself and failed to come up again (see |
| * _i2400m_dev_reset_handle()). |
| */ |
| static |
| void i2400m_dev_stop(struct i2400m *i2400m) |
| { |
| mutex_lock(&i2400m->init_mutex); |
| if (i2400m->updown) { |
| __i2400m_dev_stop(i2400m); |
| i2400m->updown = 0; |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| } |
| |
| |
| /* |
| * The device has rebooted; fix up the device and the driver |
| * |
| * Tear down the driver communication with the device, reload the |
| * firmware and reinitialize the communication with the device. |
| * |
| * If someone calls a reset when the device's firmware is down, in |
| * theory we won't see it because we are not listening. However, just |
| * in case, leave the code to handle it. |
| * |
| * If there is a reset context, use it; this means someone is waiting |
| * for us to tell him when the reset operation is complete and the |
| * device is ready to rock again. |
| * |
| * NOTE: if we are in the process of bringing up or down the |
| * communication with the device [running i2400m_dev_start() or |
| * _stop()], don't do anything, let it fail and handle it. |
| * |
| * This function is ran always in a thread context |
| */ |
| static |
| void __i2400m_dev_reset_handle(struct work_struct *ws) |
| { |
| int result; |
| struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws); |
| struct i2400m *i2400m = iw->i2400m; |
| struct device *dev = i2400m_dev(i2400m); |
| enum wimax_st wimax_state; |
| struct i2400m_reset_ctx *ctx = i2400m->reset_ctx; |
| |
| d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m); |
| result = 0; |
| if (mutex_trylock(&i2400m->init_mutex) == 0) { |
| /* We are still in i2400m_dev_start() [let it fail] or |
| * i2400m_dev_stop() [we are shutting down anyway, so |
| * ignore it] or we are resetting somewhere else. */ |
| dev_err(dev, "device rebooted\n"); |
| i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS); |
| complete(&i2400m->msg_completion); |
| goto out; |
| } |
| wimax_state = wimax_state_get(&i2400m->wimax_dev); |
| if (wimax_state < WIMAX_ST_UNINITIALIZED) { |
| dev_info(dev, "device rebooted: it is down, ignoring\n"); |
| goto out_unlock; /* ifconfig up/down wasn't called */ |
| } |
| dev_err(dev, "device rebooted: reinitializing driver\n"); |
| __i2400m_dev_stop(i2400m); |
| i2400m->updown = 0; |
| result = __i2400m_dev_start(i2400m, |
| I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); |
| if (result < 0) { |
| dev_err(dev, "device reboot: cannot start the device: %d\n", |
| result); |
| result = i2400m->bus_reset(i2400m, I2400M_RT_BUS); |
| if (result >= 0) |
| result = -ENODEV; |
| } else |
| i2400m->updown = 1; |
| out_unlock: |
| if (i2400m->reset_ctx) { |
| ctx->result = result; |
| complete(&ctx->completion); |
| } |
| mutex_unlock(&i2400m->init_mutex); |
| out: |
| i2400m_put(i2400m); |
| kfree(iw); |
| d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m); |
| return; |
| } |
| |
| |
| /** |
| * i2400m_dev_reset_handle - Handle a device's reset in a thread context |
| * |
| * Schedule a device reset handling out on a thread context, so it |
| * is safe to call from atomic context. We can't use the i2400m's |
| * queue as we are going to destroy it and reinitialize it as part of |
| * the driver bringup/bringup process. |
| * |
| * See __i2400m_dev_reset_handle() for details; that takes care of |
| * reinitializing the driver to handle the reset, calling into the |
| * bus-specific functions ops as needed. |
| */ |
| int i2400m_dev_reset_handle(struct i2400m *i2400m) |
| { |
| return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle, |
| GFP_ATOMIC); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle); |
| |
| |
| /** |
| * i2400m_setup - bus-generic setup function for the i2400m device |
| * |
| * @i2400m: device descriptor (bus-specific parts have been initialized) |
| * |
| * Returns: 0 if ok, < 0 errno code on error. |
| * |
| * Initializes the bus-generic parts of the i2400m driver; the |
| * bus-specific parts have been initialized, function pointers filled |
| * out by the bus-specific probe function. |
| * |
| * As well, this registers the WiMAX and net device nodes. Once this |
| * function returns, the device is operative and has to be ready to |
| * receive and send network traffic and WiMAX control operations. |
| */ |
| int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags) |
| { |
| int result = -ENODEV; |
| struct device *dev = i2400m_dev(i2400m); |
| struct wimax_dev *wimax_dev = &i2400m->wimax_dev; |
| struct net_device *net_dev = i2400m->wimax_dev.net_dev; |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| |
| snprintf(wimax_dev->name, sizeof(wimax_dev->name), |
| "i2400m-%s:%s", dev->bus->name, dev->bus_id); |
| |
| i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL); |
| if (i2400m->bm_cmd_buf == NULL) { |
| dev_err(dev, "cannot allocate USB command buffer\n"); |
| goto error_bm_cmd_kzalloc; |
| } |
| i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL); |
| if (i2400m->bm_ack_buf == NULL) { |
| dev_err(dev, "cannot allocate USB ack buffer\n"); |
| goto error_bm_ack_buf_kzalloc; |
| } |
| result = i2400m_bootrom_init(i2400m, bm_flags); |
| if (result < 0) { |
| dev_err(dev, "read mac addr: bootrom init " |
| "failed: %d\n", result); |
| goto error_bootrom_init; |
| } |
| result = i2400m_read_mac_addr(i2400m); |
| if (result < 0) |
| goto error_read_mac_addr; |
| |
| result = register_netdev(net_dev); /* Okey dokey, bring it up */ |
| if (result < 0) { |
| dev_err(dev, "cannot register i2400m network device: %d\n", |
| result); |
| goto error_register_netdev; |
| } |
| netif_carrier_off(net_dev); |
| |
| result = i2400m_dev_start(i2400m, bm_flags); |
| if (result < 0) |
| goto error_dev_start; |
| |
| i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user; |
| i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle; |
| i2400m->wimax_dev.op_reset = i2400m_op_reset; |
| result = wimax_dev_add(&i2400m->wimax_dev, net_dev); |
| if (result < 0) |
| goto error_wimax_dev_add; |
| /* User space needs to do some init stuff */ |
| wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED); |
| |
| /* Now setup all that requires a registered net and wimax device. */ |
| result = i2400m_debugfs_add(i2400m); |
| if (result < 0) { |
| dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result); |
| goto error_debugfs_setup; |
| } |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| |
| error_debugfs_setup: |
| wimax_dev_rm(&i2400m->wimax_dev); |
| error_wimax_dev_add: |
| i2400m_dev_stop(i2400m); |
| error_dev_start: |
| unregister_netdev(net_dev); |
| error_register_netdev: |
| error_read_mac_addr: |
| error_bootrom_init: |
| kfree(i2400m->bm_ack_buf); |
| error_bm_ack_buf_kzalloc: |
| kfree(i2400m->bm_cmd_buf); |
| error_bm_cmd_kzalloc: |
| d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(i2400m_setup); |
| |
| |
| /** |
| * i2400m_release - release the bus-generic driver resources |
| * |
| * Sends a disconnect message and undoes any setup done by i2400m_setup() |
| */ |
| void i2400m_release(struct i2400m *i2400m) |
| { |
| struct device *dev = i2400m_dev(i2400m); |
| |
| d_fnstart(3, dev, "(i2400m %p)\n", i2400m); |
| netif_stop_queue(i2400m->wimax_dev.net_dev); |
| |
| i2400m_debugfs_rm(i2400m); |
| wimax_dev_rm(&i2400m->wimax_dev); |
| i2400m_dev_stop(i2400m); |
| unregister_netdev(i2400m->wimax_dev.net_dev); |
| kfree(i2400m->bm_ack_buf); |
| kfree(i2400m->bm_cmd_buf); |
| d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); |
| } |
| EXPORT_SYMBOL_GPL(i2400m_release); |
| |
| |
| /* |
| * Debug levels control; see debug.h |
| */ |
| struct d_level D_LEVEL[] = { |
| D_SUBMODULE_DEFINE(control), |
| D_SUBMODULE_DEFINE(driver), |
| D_SUBMODULE_DEFINE(debugfs), |
| D_SUBMODULE_DEFINE(fw), |
| D_SUBMODULE_DEFINE(netdev), |
| D_SUBMODULE_DEFINE(rfkill), |
| D_SUBMODULE_DEFINE(rx), |
| D_SUBMODULE_DEFINE(tx), |
| }; |
| size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL); |
| |
| |
| static |
| int __init i2400m_driver_init(void) |
| { |
| return 0; |
| } |
| module_init(i2400m_driver_init); |
| |
| static |
| void __exit i2400m_driver_exit(void) |
| { |
| /* for scheds i2400m_dev_reset_handle() */ |
| flush_scheduled_work(); |
| return; |
| } |
| module_exit(i2400m_driver_exit); |
| |
| MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>"); |
| MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver"); |
| MODULE_LICENSE("GPL"); |