| /* |
| * Copyright (C) 2003, Axis Communications AB. |
| */ |
| |
| #include <asm/irq.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/profile.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/kernel_stat.h> |
| #include <asm/arch/hwregs/reg_map.h> |
| #include <asm/arch/hwregs/reg_rdwr.h> |
| #include <asm/arch/hwregs/intr_vect.h> |
| #include <asm/arch/hwregs/intr_vect_defs.h> |
| |
| #define CPU_FIXED -1 |
| |
| /* IRQ masks (refer to comment for crisv32_do_multiple) */ |
| #define TIMER_MASK (1 << (TIMER_INTR_VECT - FIRST_IRQ)) |
| #ifdef CONFIG_ETRAX_KGDB |
| #if defined(CONFIG_ETRAX_KGDB_PORT0) |
| #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ)) |
| #elif defined(CONFIG_ETRAX_KGDB_PORT1) |
| #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ)) |
| #elif defined(CONFIG_ETRAX_KGB_PORT2) |
| #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ)) |
| #elif defined(CONFIG_ETRAX_KGDB_PORT3) |
| #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ)) |
| #endif |
| #endif |
| |
| DEFINE_SPINLOCK(irq_lock); |
| |
| struct cris_irq_allocation |
| { |
| int cpu; /* The CPU to which the IRQ is currently allocated. */ |
| cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */ |
| }; |
| |
| struct cris_irq_allocation irq_allocations[NR_IRQS] = |
| {[0 ... NR_IRQS - 1] = {0, CPU_MASK_ALL}}; |
| |
| static unsigned long irq_regs[NR_CPUS] = |
| { |
| regi_irq, |
| #ifdef CONFIG_SMP |
| regi_irq2, |
| #endif |
| }; |
| |
| unsigned long cpu_irq_counters[NR_CPUS]; |
| unsigned long irq_counters[NR_REAL_IRQS]; |
| |
| /* From irq.c. */ |
| extern void weird_irq(void); |
| |
| /* From entry.S. */ |
| extern void system_call(void); |
| extern void nmi_interrupt(void); |
| extern void multiple_interrupt(void); |
| extern void gdb_handle_exception(void); |
| extern void i_mmu_refill(void); |
| extern void i_mmu_invalid(void); |
| extern void i_mmu_access(void); |
| extern void i_mmu_execute(void); |
| extern void d_mmu_refill(void); |
| extern void d_mmu_invalid(void); |
| extern void d_mmu_access(void); |
| extern void d_mmu_write(void); |
| |
| /* From kgdb.c. */ |
| extern void kgdb_init(void); |
| extern void breakpoint(void); |
| |
| /* |
| * Build the IRQ handler stubs using macros from irq.h. First argument is the |
| * IRQ number, the second argument is the corresponding bit in |
| * intr_rw_vect_mask found in asm/arch/hwregs/intr_vect_defs.h. |
| */ |
| BUILD_IRQ(0x31, (1 << 0)) /* memarb */ |
| BUILD_IRQ(0x32, (1 << 1)) /* gen_io */ |
| BUILD_IRQ(0x33, (1 << 2)) /* iop0 */ |
| BUILD_IRQ(0x34, (1 << 3)) /* iop1 */ |
| BUILD_IRQ(0x35, (1 << 4)) /* iop2 */ |
| BUILD_IRQ(0x36, (1 << 5)) /* iop3 */ |
| BUILD_IRQ(0x37, (1 << 6)) /* dma0 */ |
| BUILD_IRQ(0x38, (1 << 7)) /* dma1 */ |
| BUILD_IRQ(0x39, (1 << 8)) /* dma2 */ |
| BUILD_IRQ(0x3a, (1 << 9)) /* dma3 */ |
| BUILD_IRQ(0x3b, (1 << 10)) /* dma4 */ |
| BUILD_IRQ(0x3c, (1 << 11)) /* dma5 */ |
| BUILD_IRQ(0x3d, (1 << 12)) /* dma6 */ |
| BUILD_IRQ(0x3e, (1 << 13)) /* dma7 */ |
| BUILD_IRQ(0x3f, (1 << 14)) /* dma8 */ |
| BUILD_IRQ(0x40, (1 << 15)) /* dma9 */ |
| BUILD_IRQ(0x41, (1 << 16)) /* ata */ |
| BUILD_IRQ(0x42, (1 << 17)) /* sser0 */ |
| BUILD_IRQ(0x43, (1 << 18)) /* sser1 */ |
| BUILD_IRQ(0x44, (1 << 19)) /* ser0 */ |
| BUILD_IRQ(0x45, (1 << 20)) /* ser1 */ |
| BUILD_IRQ(0x46, (1 << 21)) /* ser2 */ |
| BUILD_IRQ(0x47, (1 << 22)) /* ser3 */ |
| BUILD_IRQ(0x48, (1 << 23)) |
| BUILD_IRQ(0x49, (1 << 24)) /* eth0 */ |
| BUILD_IRQ(0x4a, (1 << 25)) /* eth1 */ |
| BUILD_TIMER_IRQ(0x4b, (1 << 26))/* timer */ |
| BUILD_IRQ(0x4c, (1 << 27)) /* bif_arb */ |
| BUILD_IRQ(0x4d, (1 << 28)) /* bif_dma */ |
| BUILD_IRQ(0x4e, (1 << 29)) /* ext */ |
| BUILD_IRQ(0x4f, (1 << 29)) /* ipi */ |
| |
| /* Pointers to the low-level handlers. */ |
| static void (*interrupt[NR_IRQS])(void) = { |
| IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt, |
| IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt, |
| IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt, |
| IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt, |
| IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt, |
| IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt, |
| IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt, |
| IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt, |
| IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt, |
| IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt, |
| IRQ0x4f_interrupt |
| }; |
| |
| void |
| block_irq(int irq, int cpu) |
| { |
| int intr_mask; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| intr_mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| |
| /* Remember; 1 let through, 0 block. */ |
| intr_mask &= ~(1 << (irq - FIRST_IRQ)); |
| |
| REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, intr_mask); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| } |
| |
| void |
| unblock_irq(int irq, int cpu) |
| { |
| int intr_mask; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| intr_mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| |
| /* Remember; 1 let through, 0 block. */ |
| intr_mask |= (1 << (irq - FIRST_IRQ)); |
| |
| REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, intr_mask); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| } |
| |
| /* Find out which CPU the irq should be allocated to. */ |
| static int irq_cpu(int irq) |
| { |
| int cpu; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| cpu = irq_allocations[irq - FIRST_IRQ].cpu; |
| |
| /* Fixed interrupts stay on the local CPU. */ |
| if (cpu == CPU_FIXED) |
| { |
| spin_unlock_irqrestore(&irq_lock, flags); |
| return smp_processor_id(); |
| } |
| |
| |
| /* Let the interrupt stay if possible */ |
| if (cpu_isset(cpu, irq_allocations[irq - FIRST_IRQ].mask)) |
| goto out; |
| |
| /* IRQ must be moved to another CPU. */ |
| cpu = first_cpu(irq_allocations[irq - FIRST_IRQ].mask); |
| irq_allocations[irq - FIRST_IRQ].cpu = cpu; |
| out: |
| spin_unlock_irqrestore(&irq_lock, flags); |
| return cpu; |
| } |
| |
| void |
| mask_irq(int irq) |
| { |
| int cpu; |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| block_irq(irq, cpu); |
| } |
| |
| void |
| unmask_irq(int irq) |
| { |
| unblock_irq(irq, irq_cpu(irq)); |
| } |
| |
| |
| static unsigned int startup_crisv32_irq(unsigned int irq) |
| { |
| unmask_irq(irq); |
| return 0; |
| } |
| |
| static void shutdown_crisv32_irq(unsigned int irq) |
| { |
| mask_irq(irq); |
| } |
| |
| static void enable_crisv32_irq(unsigned int irq) |
| { |
| unmask_irq(irq); |
| } |
| |
| static void disable_crisv32_irq(unsigned int irq) |
| { |
| mask_irq(irq); |
| } |
| |
| static void ack_crisv32_irq(unsigned int irq) |
| { |
| } |
| |
| static void end_crisv32_irq(unsigned int irq) |
| { |
| } |
| |
| void set_affinity_crisv32_irq(unsigned int irq, cpumask_t dest) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&irq_lock, flags); |
| irq_allocations[irq - FIRST_IRQ].mask = dest; |
| spin_unlock_irqrestore(&irq_lock, flags); |
| } |
| |
| static struct hw_interrupt_type crisv32_irq_type = { |
| .typename = "CRISv32", |
| .startup = startup_crisv32_irq, |
| .shutdown = shutdown_crisv32_irq, |
| .enable = enable_crisv32_irq, |
| .disable = disable_crisv32_irq, |
| .ack = ack_crisv32_irq, |
| .end = end_crisv32_irq, |
| .set_affinity = set_affinity_crisv32_irq |
| }; |
| |
| void |
| set_exception_vector(int n, irqvectptr addr) |
| { |
| etrax_irv->v[n] = (irqvectptr) addr; |
| } |
| |
| extern void do_IRQ(int irq, struct pt_regs * regs); |
| |
| void |
| crisv32_do_IRQ(int irq, int block, struct pt_regs* regs) |
| { |
| /* Interrupts that may not be moved to another CPU and |
| * are IRQF_DISABLED may skip blocking. This is currently |
| * only valid for the timer IRQ and the IPI and is used |
| * for the timer interrupt to avoid watchdog starvation. |
| */ |
| if (!block) { |
| do_IRQ(irq, regs); |
| return; |
| } |
| |
| block_irq(irq, smp_processor_id()); |
| do_IRQ(irq, regs); |
| |
| unblock_irq(irq, irq_cpu(irq)); |
| } |
| |
| /* If multiple interrupts occur simultaneously we get a multiple |
| * interrupt from the CPU and software has to sort out which |
| * interrupts that happened. There are two special cases here: |
| * |
| * 1. Timer interrupts may never be blocked because of the |
| * watchdog (refer to comment in include/asr/arch/irq.h) |
| * 2. GDB serial port IRQs are unhandled here and will be handled |
| * as a single IRQ when it strikes again because the GDB |
| * stubb wants to save the registers in its own fashion. |
| */ |
| void |
| crisv32_do_multiple(struct pt_regs* regs) |
| { |
| int cpu; |
| int mask; |
| int masked; |
| int bit; |
| |
| cpu = smp_processor_id(); |
| |
| /* An extra irq_enter here to prevent softIRQs to run after |
| * each do_IRQ. This will decrease the interrupt latency. |
| */ |
| irq_enter(); |
| |
| /* Get which IRQs that happened. */ |
| masked = REG_RD_INT(intr_vect, irq_regs[cpu], r_masked_vect); |
| |
| /* Calculate new IRQ mask with these IRQs disabled. */ |
| mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| mask &= ~masked; |
| |
| /* Timer IRQ is never masked */ |
| if (masked & TIMER_MASK) |
| mask |= TIMER_MASK; |
| |
| /* Block all the IRQs */ |
| REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, mask); |
| |
| /* Check for timer IRQ and handle it special. */ |
| if (masked & TIMER_MASK) { |
| masked &= ~TIMER_MASK; |
| do_IRQ(TIMER_INTR_VECT, regs); |
| } |
| |
| #ifdef IGNORE_MASK |
| /* Remove IRQs that can't be handled as multiple. */ |
| masked &= ~IGNORE_MASK; |
| #endif |
| |
| /* Handle the rest of the IRQs. */ |
| for (bit = 0; bit < 32; bit++) |
| { |
| if (masked & (1 << bit)) |
| do_IRQ(bit + FIRST_IRQ, regs); |
| } |
| |
| /* Unblock all the IRQs. */ |
| mask = REG_RD_INT(intr_vect, irq_regs[cpu], rw_mask); |
| mask |= masked; |
| REG_WR_INT(intr_vect, irq_regs[cpu], rw_mask, mask); |
| |
| /* This irq_exit() will trigger the soft IRQs. */ |
| irq_exit(); |
| } |
| |
| /* |
| * This is called by start_kernel. It fixes the IRQ masks and setup the |
| * interrupt vector table to point to bad_interrupt pointers. |
| */ |
| void __init |
| init_IRQ(void) |
| { |
| int i; |
| int j; |
| reg_intr_vect_rw_mask vect_mask = {0}; |
| |
| /* Clear all interrupts masks. */ |
| REG_WR(intr_vect, regi_irq, rw_mask, vect_mask); |
| |
| for (i = 0; i < 256; i++) |
| etrax_irv->v[i] = weird_irq; |
| |
| /* Point all IRQs to bad handlers. */ |
| for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) { |
| irq_desc[j].chip = &crisv32_irq_type; |
| set_exception_vector(i, interrupt[j]); |
| } |
| |
| /* Mark Timer and IPI IRQs as CPU local */ |
| irq_allocations[TIMER_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; |
| irq_desc[TIMER_INTR_VECT].status |= IRQ_PER_CPU; |
| irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED; |
| irq_desc[IPI_INTR_VECT].status |= IRQ_PER_CPU; |
| |
| set_exception_vector(0x00, nmi_interrupt); |
| set_exception_vector(0x30, multiple_interrupt); |
| |
| /* Set up handler for various MMU bus faults. */ |
| set_exception_vector(0x04, i_mmu_refill); |
| set_exception_vector(0x05, i_mmu_invalid); |
| set_exception_vector(0x06, i_mmu_access); |
| set_exception_vector(0x07, i_mmu_execute); |
| set_exception_vector(0x08, d_mmu_refill); |
| set_exception_vector(0x09, d_mmu_invalid); |
| set_exception_vector(0x0a, d_mmu_access); |
| set_exception_vector(0x0b, d_mmu_write); |
| |
| /* The system-call trap is reached by "break 13". */ |
| set_exception_vector(0x1d, system_call); |
| |
| /* Exception handlers for debugging, both user-mode and kernel-mode. */ |
| |
| /* Break 8. */ |
| set_exception_vector(0x18, gdb_handle_exception); |
| /* Hardware single step. */ |
| set_exception_vector(0x3, gdb_handle_exception); |
| /* Hardware breakpoint. */ |
| set_exception_vector(0xc, gdb_handle_exception); |
| |
| #ifdef CONFIG_ETRAX_KGDB |
| kgdb_init(); |
| /* Everything is set up; now trap the kernel. */ |
| breakpoint(); |
| #endif |
| } |
| |