| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <stdarg.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/stringify.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| #include <linux/kexec.h> |
| #include <linux/debugfs.h> |
| #include <linux/irq.h> |
| #include <linux/lmb.h> |
| |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/kdump.h> |
| #include <asm/smp.h> |
| #include <asm/system.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/pci.h> |
| #include <asm/iommu.h> |
| #include <asm/btext.h> |
| #include <asm/sections.h> |
| #include <asm/machdep.h> |
| #include <asm/pSeries_reconfig.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/phyp_dump.h> |
| #include <asm/kexec.h> |
| #include <mm/mmu_decl.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) printk(KERN_ERR fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef CONFIG_PPC64 |
| int __initdata iommu_is_off; |
| int __initdata iommu_force_on; |
| unsigned long tce_alloc_start, tce_alloc_end; |
| #endif |
| |
| extern rwlock_t devtree_lock; /* temporary while merging */ |
| |
| /* export that to outside world */ |
| struct device_node *of_chosen; |
| |
| static int __init early_parse_mem(char *p) |
| { |
| if (!p) |
| return 1; |
| |
| memory_limit = PAGE_ALIGN(memparse(p, &p)); |
| DBG("memory limit = 0x%llx\n", (unsigned long long)memory_limit); |
| |
| return 0; |
| } |
| early_param("mem", early_parse_mem); |
| |
| /** |
| * move_device_tree - move tree to an unused area, if needed. |
| * |
| * The device tree may be allocated beyond our memory limit, or inside the |
| * crash kernel region for kdump. If so, move it out of the way. |
| */ |
| static void __init move_device_tree(void) |
| { |
| unsigned long start, size; |
| void *p; |
| |
| DBG("-> move_device_tree\n"); |
| |
| start = __pa(initial_boot_params); |
| size = initial_boot_params->totalsize; |
| |
| if ((memory_limit && (start + size) > memory_limit) || |
| overlaps_crashkernel(start, size)) { |
| p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size)); |
| memcpy(p, initial_boot_params, size); |
| initial_boot_params = (struct boot_param_header *)p; |
| DBG("Moved device tree to 0x%p\n", p); |
| } |
| |
| DBG("<- move_device_tree\n"); |
| } |
| |
| /* |
| * ibm,pa-features is a per-cpu property that contains a string of |
| * attribute descriptors, each of which has a 2 byte header plus up |
| * to 254 bytes worth of processor attribute bits. First header |
| * byte specifies the number of bytes following the header. |
| * Second header byte is an "attribute-specifier" type, of which |
| * zero is the only currently-defined value. |
| * Implementation: Pass in the byte and bit offset for the feature |
| * that we are interested in. The function will return -1 if the |
| * pa-features property is missing, or a 1/0 to indicate if the feature |
| * is supported/not supported. Note that the bit numbers are |
| * big-endian to match the definition in PAPR. |
| */ |
| static struct ibm_pa_feature { |
| unsigned long cpu_features; /* CPU_FTR_xxx bit */ |
| unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ |
| unsigned char pabyte; /* byte number in ibm,pa-features */ |
| unsigned char pabit; /* bit number (big-endian) */ |
| unsigned char invert; /* if 1, pa bit set => clear feature */ |
| } ibm_pa_features[] __initdata = { |
| {0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, |
| {0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, |
| {CPU_FTR_SLB, 0, 0, 2, 0}, |
| {CPU_FTR_CTRL, 0, 0, 3, 0}, |
| {CPU_FTR_NOEXECUTE, 0, 0, 6, 0}, |
| {CPU_FTR_NODSISRALIGN, 0, 1, 1, 1}, |
| {CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, |
| {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0}, |
| }; |
| |
| static void __init scan_features(unsigned long node, unsigned char *ftrs, |
| unsigned long tablelen, |
| struct ibm_pa_feature *fp, |
| unsigned long ft_size) |
| { |
| unsigned long i, len, bit; |
| |
| /* find descriptor with type == 0 */ |
| for (;;) { |
| if (tablelen < 3) |
| return; |
| len = 2 + ftrs[0]; |
| if (tablelen < len) |
| return; /* descriptor 0 not found */ |
| if (ftrs[1] == 0) |
| break; |
| tablelen -= len; |
| ftrs += len; |
| } |
| |
| /* loop over bits we know about */ |
| for (i = 0; i < ft_size; ++i, ++fp) { |
| if (fp->pabyte >= ftrs[0]) |
| continue; |
| bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; |
| if (bit ^ fp->invert) { |
| cur_cpu_spec->cpu_features |= fp->cpu_features; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; |
| } else { |
| cur_cpu_spec->cpu_features &= ~fp->cpu_features; |
| cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; |
| } |
| } |
| } |
| |
| static void __init check_cpu_pa_features(unsigned long node) |
| { |
| unsigned char *pa_ftrs; |
| unsigned long tablelen; |
| |
| pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); |
| if (pa_ftrs == NULL) |
| return; |
| |
| scan_features(node, pa_ftrs, tablelen, |
| ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); |
| } |
| |
| #ifdef CONFIG_PPC_STD_MMU_64 |
| static void __init check_cpu_slb_size(unsigned long node) |
| { |
| u32 *slb_size_ptr; |
| |
| slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL); |
| if (slb_size_ptr != NULL) { |
| mmu_slb_size = *slb_size_ptr; |
| return; |
| } |
| slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL); |
| if (slb_size_ptr != NULL) { |
| mmu_slb_size = *slb_size_ptr; |
| } |
| } |
| #else |
| #define check_cpu_slb_size(node) do { } while(0) |
| #endif |
| |
| static struct feature_property { |
| const char *name; |
| u32 min_value; |
| unsigned long cpu_feature; |
| unsigned long cpu_user_ftr; |
| } feature_properties[] __initdata = { |
| #ifdef CONFIG_ALTIVEC |
| {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ |
| {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_PPC64 |
| {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, |
| {"ibm,purr", 1, CPU_FTR_PURR, 0}, |
| {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, |
| #endif /* CONFIG_PPC64 */ |
| }; |
| |
| #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) |
| static inline void identical_pvr_fixup(unsigned long node) |
| { |
| unsigned int pvr; |
| char *model = of_get_flat_dt_prop(node, "model", NULL); |
| |
| /* |
| * Since 440GR(x)/440EP(x) processors have the same pvr, |
| * we check the node path and set bit 28 in the cur_cpu_spec |
| * pvr for EP(x) processor version. This bit is always 0 in |
| * the "real" pvr. Then we call identify_cpu again with |
| * the new logical pvr to enable FPU support. |
| */ |
| if (model && strstr(model, "440EP")) { |
| pvr = cur_cpu_spec->pvr_value | 0x8; |
| identify_cpu(0, pvr); |
| DBG("Using logical pvr %x for %s\n", pvr, model); |
| } |
| } |
| #else |
| #define identical_pvr_fixup(node) do { } while(0) |
| #endif |
| |
| static void __init check_cpu_feature_properties(unsigned long node) |
| { |
| unsigned long i; |
| struct feature_property *fp = feature_properties; |
| const u32 *prop; |
| |
| for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { |
| prop = of_get_flat_dt_prop(node, fp->name, NULL); |
| if (prop && *prop >= fp->min_value) { |
| cur_cpu_spec->cpu_features |= fp->cpu_feature; |
| cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; |
| } |
| } |
| } |
| |
| static int __init early_init_dt_scan_cpus(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| static int logical_cpuid = 0; |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| const u32 *prop; |
| const u32 *intserv; |
| int i, nthreads; |
| unsigned long len; |
| int found = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Get physical cpuid */ |
| intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); |
| if (intserv) { |
| nthreads = len / sizeof(int); |
| } else { |
| intserv = of_get_flat_dt_prop(node, "reg", NULL); |
| nthreads = 1; |
| } |
| |
| /* |
| * Now see if any of these threads match our boot cpu. |
| * NOTE: This must match the parsing done in smp_setup_cpu_maps. |
| */ |
| for (i = 0; i < nthreads; i++) { |
| /* |
| * version 2 of the kexec param format adds the phys cpuid of |
| * booted proc. |
| */ |
| if (initial_boot_params && initial_boot_params->version >= 2) { |
| if (intserv[i] == |
| initial_boot_params->boot_cpuid_phys) { |
| found = 1; |
| break; |
| } |
| } else { |
| /* |
| * Check if it's the boot-cpu, set it's hw index now, |
| * unfortunately this format did not support booting |
| * off secondary threads. |
| */ |
| if (of_get_flat_dt_prop(node, |
| "linux,boot-cpu", NULL) != NULL) { |
| found = 1; |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| /* logical cpu id is always 0 on UP kernels */ |
| logical_cpuid++; |
| #endif |
| } |
| |
| if (found) { |
| DBG("boot cpu: logical %d physical %d\n", logical_cpuid, |
| intserv[i]); |
| boot_cpuid = logical_cpuid; |
| set_hard_smp_processor_id(boot_cpuid, intserv[i]); |
| |
| /* |
| * PAPR defines "logical" PVR values for cpus that |
| * meet various levels of the architecture: |
| * 0x0f000001 Architecture version 2.04 |
| * 0x0f000002 Architecture version 2.05 |
| * If the cpu-version property in the cpu node contains |
| * such a value, we call identify_cpu again with the |
| * logical PVR value in order to use the cpu feature |
| * bits appropriate for the architecture level. |
| * |
| * A POWER6 partition in "POWER6 architected" mode |
| * uses the 0x0f000002 PVR value; in POWER5+ mode |
| * it uses 0x0f000001. |
| */ |
| prop = of_get_flat_dt_prop(node, "cpu-version", NULL); |
| if (prop && (*prop & 0xff000000) == 0x0f000000) |
| identify_cpu(0, *prop); |
| |
| identical_pvr_fixup(node); |
| } |
| |
| check_cpu_feature_properties(node); |
| check_cpu_pa_features(node); |
| check_cpu_slb_size(node); |
| |
| #ifdef CONFIG_PPC_PSERIES |
| if (nthreads > 1) |
| cur_cpu_spec->cpu_features |= CPU_FTR_SMT; |
| else |
| cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; |
| #endif |
| |
| return 0; |
| } |
| |
| void __init early_init_dt_scan_chosen_arch(unsigned long node) |
| { |
| unsigned long *lprop; |
| |
| #ifdef CONFIG_PPC64 |
| /* check if iommu is forced on or off */ |
| if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) |
| iommu_is_off = 1; |
| if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) |
| iommu_force_on = 1; |
| #endif |
| |
| /* mem=x on the command line is the preferred mechanism */ |
| lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); |
| if (lprop) |
| memory_limit = *lprop; |
| |
| #ifdef CONFIG_PPC64 |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); |
| if (lprop) |
| tce_alloc_start = *lprop; |
| lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); |
| if (lprop) |
| tce_alloc_end = *lprop; |
| #endif |
| |
| #ifdef CONFIG_KEXEC |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); |
| if (lprop) |
| crashk_res.start = *lprop; |
| |
| lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); |
| if (lprop) |
| crashk_res.end = crashk_res.start + *lprop - 1; |
| #endif |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * Interpret the ibm,dynamic-memory property in the |
| * /ibm,dynamic-reconfiguration-memory node. |
| * This contains a list of memory blocks along with NUMA affinity |
| * information. |
| */ |
| static int __init early_init_dt_scan_drconf_memory(unsigned long node) |
| { |
| __be32 *dm, *ls, *usm; |
| unsigned long l, n, flags; |
| u64 base, size, lmb_size; |
| unsigned int is_kexec_kdump = 0, rngs; |
| |
| ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); |
| if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) |
| return 0; |
| lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls); |
| |
| dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); |
| if (dm == NULL || l < sizeof(__be32)) |
| return 0; |
| |
| n = *dm++; /* number of entries */ |
| if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) |
| return 0; |
| |
| /* check if this is a kexec/kdump kernel. */ |
| usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", |
| &l); |
| if (usm != NULL) |
| is_kexec_kdump = 1; |
| |
| for (; n != 0; --n) { |
| base = dt_mem_next_cell(dt_root_addr_cells, &dm); |
| flags = dm[3]; |
| /* skip DRC index, pad, assoc. list index, flags */ |
| dm += 4; |
| /* skip this block if the reserved bit is set in flags (0x80) |
| or if the block is not assigned to this partition (0x8) */ |
| if ((flags & 0x80) || !(flags & 0x8)) |
| continue; |
| size = lmb_size; |
| rngs = 1; |
| if (is_kexec_kdump) { |
| /* |
| * For each lmb in ibm,dynamic-memory, a corresponding |
| * entry in linux,drconf-usable-memory property contains |
| * a counter 'p' followed by 'p' (base, size) duple. |
| * Now read the counter from |
| * linux,drconf-usable-memory property |
| */ |
| rngs = dt_mem_next_cell(dt_root_size_cells, &usm); |
| if (!rngs) /* there are no (base, size) duple */ |
| continue; |
| } |
| do { |
| if (is_kexec_kdump) { |
| base = dt_mem_next_cell(dt_root_addr_cells, |
| &usm); |
| size = dt_mem_next_cell(dt_root_size_cells, |
| &usm); |
| } |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| continue; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| lmb_add(base, size); |
| } while (--rngs); |
| } |
| lmb_dump_all(); |
| return 0; |
| } |
| #else |
| #define early_init_dt_scan_drconf_memory(node) 0 |
| #endif /* CONFIG_PPC_PSERIES */ |
| |
| static int __init early_init_dt_scan_memory(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| __be32 *reg, *endp; |
| unsigned long l; |
| |
| /* Look for the ibm,dynamic-reconfiguration-memory node */ |
| if (depth == 1 && |
| strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) |
| return early_init_dt_scan_drconf_memory(node); |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL) { |
| /* |
| * The longtrail doesn't have a device_type on the |
| * /memory node, so look for the node called /memory@0. |
| */ |
| if (depth != 1 || strcmp(uname, "memory@0") != 0) |
| return 0; |
| } else if (strcmp(type, "memory") != 0) |
| return 0; |
| |
| reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); |
| if (reg == NULL) |
| reg = of_get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| return 0; |
| |
| endp = reg + (l / sizeof(__be32)); |
| |
| DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n", |
| uname, l, reg[0], reg[1], reg[2], reg[3]); |
| |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| u64 base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| DBG(" - %llx , %llx\n", (unsigned long long)base, |
| (unsigned long long)size); |
| #ifdef CONFIG_PPC64 |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| continue; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| #endif |
| lmb_add(base, size); |
| |
| memstart_addr = min((u64)memstart_addr, base); |
| } |
| |
| return 0; |
| } |
| |
| static void __init early_reserve_mem(void) |
| { |
| u64 base, size; |
| u64 *reserve_map; |
| unsigned long self_base; |
| unsigned long self_size; |
| |
| reserve_map = (u64 *)(((unsigned long)initial_boot_params) + |
| initial_boot_params->off_mem_rsvmap); |
| |
| /* before we do anything, lets reserve the dt blob */ |
| self_base = __pa((unsigned long)initial_boot_params); |
| self_size = initial_boot_params->totalsize; |
| lmb_reserve(self_base, self_size); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* then reserve the initrd, if any */ |
| if (initrd_start && (initrd_end > initrd_start)) |
| lmb_reserve(__pa(initrd_start), initrd_end - initrd_start); |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| #ifdef CONFIG_PPC32 |
| /* |
| * Handle the case where we might be booting from an old kexec |
| * image that setup the mem_rsvmap as pairs of 32-bit values |
| */ |
| if (*reserve_map > 0xffffffffull) { |
| u32 base_32, size_32; |
| u32 *reserve_map_32 = (u32 *)reserve_map; |
| |
| while (1) { |
| base_32 = *(reserve_map_32++); |
| size_32 = *(reserve_map_32++); |
| if (size_32 == 0) |
| break; |
| /* skip if the reservation is for the blob */ |
| if (base_32 == self_base && size_32 == self_size) |
| continue; |
| DBG("reserving: %x -> %x\n", base_32, size_32); |
| lmb_reserve(base_32, size_32); |
| } |
| return; |
| } |
| #endif |
| while (1) { |
| base = *(reserve_map++); |
| size = *(reserve_map++); |
| if (size == 0) |
| break; |
| DBG("reserving: %llx -> %llx\n", base, size); |
| lmb_reserve(base, size); |
| } |
| } |
| |
| #ifdef CONFIG_PHYP_DUMP |
| /** |
| * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg |
| * |
| * Function to find the largest size we need to reserve |
| * during early boot process. |
| * |
| * It either looks for boot param and returns that OR |
| * returns larger of 256 or 5% rounded down to multiples of 256MB. |
| * |
| */ |
| static inline unsigned long phyp_dump_calculate_reserve_size(void) |
| { |
| unsigned long tmp; |
| |
| if (phyp_dump_info->reserve_bootvar) |
| return phyp_dump_info->reserve_bootvar; |
| |
| /* divide by 20 to get 5% of value */ |
| tmp = lmb_end_of_DRAM(); |
| do_div(tmp, 20); |
| |
| /* round it down in multiples of 256 */ |
| tmp = tmp & ~0x0FFFFFFFUL; |
| |
| return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END); |
| } |
| |
| /** |
| * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory |
| * |
| * This routine may reserve memory regions in the kernel only |
| * if the system is supported and a dump was taken in last |
| * boot instance or if the hardware is supported and the |
| * scratch area needs to be setup. In other instances it returns |
| * without reserving anything. The memory in case of dump being |
| * active is freed when the dump is collected (by userland tools). |
| */ |
| static void __init phyp_dump_reserve_mem(void) |
| { |
| unsigned long base, size; |
| unsigned long variable_reserve_size; |
| |
| if (!phyp_dump_info->phyp_dump_configured) { |
| printk(KERN_ERR "Phyp-dump not supported on this hardware\n"); |
| return; |
| } |
| |
| if (!phyp_dump_info->phyp_dump_at_boot) { |
| printk(KERN_INFO "Phyp-dump disabled at boot time\n"); |
| return; |
| } |
| |
| variable_reserve_size = phyp_dump_calculate_reserve_size(); |
| |
| if (phyp_dump_info->phyp_dump_is_active) { |
| /* Reserve *everything* above RMR.Area freed by userland tools*/ |
| base = variable_reserve_size; |
| size = lmb_end_of_DRAM() - base; |
| |
| /* XXX crashed_ram_end is wrong, since it may be beyond |
| * the memory_limit, it will need to be adjusted. */ |
| lmb_reserve(base, size); |
| |
| phyp_dump_info->init_reserve_start = base; |
| phyp_dump_info->init_reserve_size = size; |
| } else { |
| size = phyp_dump_info->cpu_state_size + |
| phyp_dump_info->hpte_region_size + |
| variable_reserve_size; |
| base = lmb_end_of_DRAM() - size; |
| lmb_reserve(base, size); |
| phyp_dump_info->init_reserve_start = base; |
| phyp_dump_info->init_reserve_size = size; |
| } |
| } |
| #else |
| static inline void __init phyp_dump_reserve_mem(void) {} |
| #endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */ |
| |
| |
| void __init early_init_devtree(void *params) |
| { |
| phys_addr_t limit; |
| |
| DBG(" -> early_init_devtree(%p)\n", params); |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* Some machines might need RTAS info for debugging, grab it now. */ |
| of_scan_flat_dt(early_init_dt_scan_rtas, NULL); |
| #endif |
| |
| #ifdef CONFIG_PHYP_DUMP |
| /* scan tree to see if dump occured during last boot */ |
| of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL); |
| #endif |
| |
| /* Retrieve various informations from the /chosen node of the |
| * device-tree, including the platform type, initrd location and |
| * size, TCE reserve, and more ... |
| */ |
| of_scan_flat_dt(early_init_dt_scan_chosen, NULL); |
| |
| /* Scan memory nodes and rebuild LMBs */ |
| lmb_init(); |
| of_scan_flat_dt(early_init_dt_scan_root, NULL); |
| of_scan_flat_dt(early_init_dt_scan_memory, NULL); |
| |
| /* Save command line for /proc/cmdline and then parse parameters */ |
| strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE); |
| parse_early_param(); |
| |
| /* Reserve LMB regions used by kernel, initrd, dt, etc... */ |
| lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); |
| /* If relocatable, reserve first 32k for interrupt vectors etc. */ |
| if (PHYSICAL_START > MEMORY_START) |
| lmb_reserve(MEMORY_START, 0x8000); |
| reserve_kdump_trampoline(); |
| reserve_crashkernel(); |
| early_reserve_mem(); |
| phyp_dump_reserve_mem(); |
| |
| limit = memory_limit; |
| if (! limit) { |
| phys_addr_t memsize; |
| |
| /* Ensure that total memory size is page-aligned, because |
| * otherwise mark_bootmem() gets upset. */ |
| lmb_analyze(); |
| memsize = lmb_phys_mem_size(); |
| if ((memsize & PAGE_MASK) != memsize) |
| limit = memsize & PAGE_MASK; |
| } |
| lmb_enforce_memory_limit(limit); |
| |
| lmb_analyze(); |
| lmb_dump_all(); |
| |
| DBG("Phys. mem: %llx\n", lmb_phys_mem_size()); |
| |
| /* We may need to relocate the flat tree, do it now. |
| * FIXME .. and the initrd too? */ |
| move_device_tree(); |
| |
| DBG("Scanning CPUs ...\n"); |
| |
| /* Retreive CPU related informations from the flat tree |
| * (altivec support, boot CPU ID, ...) |
| */ |
| of_scan_flat_dt(early_init_dt_scan_cpus, NULL); |
| |
| DBG(" <- early_init_devtree()\n"); |
| } |
| |
| |
| /** |
| * Indicates whether the root node has a given value in its |
| * compatible property. |
| */ |
| int machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| int rc = 0; |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| rc = of_device_is_compatible(root, compat); |
| of_node_put(root); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(machine_is_compatible); |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. The device tree and list |
| * are protected by a rw_lock. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet. |
| * |
| *******/ |
| |
| /** |
| * of_find_node_by_phandle - Find a node given a phandle |
| * @handle: phandle of the node to find |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_phandle(phandle handle) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->linux_phandle == handle) |
| break; |
| of_node_get(np); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_phandle); |
| |
| /** |
| * of_find_next_cache_node - Find a node's subsidiary cache |
| * @np: node of type "cpu" or "cache" |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. Caller should hold a reference |
| * to np. |
| */ |
| struct device_node *of_find_next_cache_node(struct device_node *np) |
| { |
| struct device_node *child; |
| const phandle *handle; |
| |
| handle = of_get_property(np, "l2-cache", NULL); |
| if (!handle) |
| handle = of_get_property(np, "next-level-cache", NULL); |
| |
| if (handle) |
| return of_find_node_by_phandle(*handle); |
| |
| /* OF on pmac has nodes instead of properties named "l2-cache" |
| * beneath CPU nodes. |
| */ |
| if (!strcmp(np->type, "cpu")) |
| for_each_child_of_node(np, child) |
| if (!strcmp(child->type, "cache")) |
| return child; |
| |
| return NULL; |
| } |
| |
| /** |
| * of_node_get - Increment refcount of a node |
| * @node: Node to inc refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Returns node. |
| */ |
| struct device_node *of_node_get(struct device_node *node) |
| { |
| if (node) |
| kref_get(&node->kref); |
| return node; |
| } |
| EXPORT_SYMBOL(of_node_get); |
| |
| static inline struct device_node * kref_to_device_node(struct kref *kref) |
| { |
| return container_of(kref, struct device_node, kref); |
| } |
| |
| /** |
| * of_node_release - release a dynamically allocated node |
| * @kref: kref element of the node to be released |
| * |
| * In of_node_put() this function is passed to kref_put() |
| * as the destructor. |
| */ |
| static void of_node_release(struct kref *kref) |
| { |
| struct device_node *node = kref_to_device_node(kref); |
| struct property *prop = node->properties; |
| |
| /* We should never be releasing nodes that haven't been detached. */ |
| if (!of_node_check_flag(node, OF_DETACHED)) { |
| printk("WARNING: Bad of_node_put() on %s\n", node->full_name); |
| dump_stack(); |
| kref_init(&node->kref); |
| return; |
| } |
| |
| if (!of_node_check_flag(node, OF_DYNAMIC)) |
| return; |
| |
| while (prop) { |
| struct property *next = prop->next; |
| kfree(prop->name); |
| kfree(prop->value); |
| kfree(prop); |
| prop = next; |
| |
| if (!prop) { |
| prop = node->deadprops; |
| node->deadprops = NULL; |
| } |
| } |
| kfree(node->full_name); |
| kfree(node->data); |
| kfree(node); |
| } |
| |
| /** |
| * of_node_put - Decrement refcount of a node |
| * @node: Node to dec refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| */ |
| void of_node_put(struct device_node *node) |
| { |
| if (node) |
| kref_put(&node->kref, of_node_release); |
| } |
| EXPORT_SYMBOL(of_node_put); |
| |
| /* |
| * Plug a device node into the tree and global list. |
| */ |
| void of_attach_node(struct device_node *np) |
| { |
| unsigned long flags; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| np->sibling = np->parent->child; |
| np->allnext = allnodes; |
| np->parent->child = np; |
| allnodes = np; |
| write_unlock_irqrestore(&devtree_lock, flags); |
| } |
| |
| /* |
| * "Unplug" a node from the device tree. The caller must hold |
| * a reference to the node. The memory associated with the node |
| * is not freed until its refcount goes to zero. |
| */ |
| void of_detach_node(struct device_node *np) |
| { |
| struct device_node *parent; |
| unsigned long flags; |
| |
| write_lock_irqsave(&devtree_lock, flags); |
| |
| parent = np->parent; |
| if (!parent) |
| goto out_unlock; |
| |
| if (allnodes == np) |
| allnodes = np->allnext; |
| else { |
| struct device_node *prev; |
| for (prev = allnodes; |
| prev->allnext != np; |
| prev = prev->allnext) |
| ; |
| prev->allnext = np->allnext; |
| } |
| |
| if (parent->child == np) |
| parent->child = np->sibling; |
| else { |
| struct device_node *prevsib; |
| for (prevsib = np->parent->child; |
| prevsib->sibling != np; |
| prevsib = prevsib->sibling) |
| ; |
| prevsib->sibling = np->sibling; |
| } |
| |
| of_node_set_flag(np, OF_DETACHED); |
| |
| out_unlock: |
| write_unlock_irqrestore(&devtree_lock, flags); |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * Fix up the uninitialized fields in a new device node: |
| * name, type and pci-specific fields |
| */ |
| |
| static int of_finish_dynamic_node(struct device_node *node) |
| { |
| struct device_node *parent = of_get_parent(node); |
| int err = 0; |
| const phandle *ibm_phandle; |
| |
| node->name = of_get_property(node, "name", NULL); |
| node->type = of_get_property(node, "device_type", NULL); |
| |
| if (!node->name) |
| node->name = "<NULL>"; |
| if (!node->type) |
| node->type = "<NULL>"; |
| |
| if (!parent) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| /* We don't support that function on PowerMac, at least |
| * not yet |
| */ |
| if (machine_is(powermac)) |
| return -ENODEV; |
| |
| /* fix up new node's linux_phandle field */ |
| if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL))) |
| node->linux_phandle = *ibm_phandle; |
| |
| out: |
| of_node_put(parent); |
| return err; |
| } |
| |
| static int prom_reconfig_notifier(struct notifier_block *nb, |
| unsigned long action, void *node) |
| { |
| int err; |
| |
| switch (action) { |
| case PSERIES_RECONFIG_ADD: |
| err = of_finish_dynamic_node(node); |
| if (err < 0) { |
| printk(KERN_ERR "finish_node returned %d\n", err); |
| err = NOTIFY_BAD; |
| } |
| break; |
| default: |
| err = NOTIFY_DONE; |
| break; |
| } |
| return err; |
| } |
| |
| static struct notifier_block prom_reconfig_nb = { |
| .notifier_call = prom_reconfig_notifier, |
| .priority = 10, /* This one needs to run first */ |
| }; |
| |
| static int __init prom_reconfig_setup(void) |
| { |
| return pSeries_reconfig_notifier_register(&prom_reconfig_nb); |
| } |
| __initcall(prom_reconfig_setup); |
| #endif |
| |
| /* Find the device node for a given logical cpu number, also returns the cpu |
| * local thread number (index in ibm,interrupt-server#s) if relevant and |
| * asked for (non NULL) |
| */ |
| struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) |
| { |
| int hardid; |
| struct device_node *np; |
| |
| hardid = get_hard_smp_processor_id(cpu); |
| |
| for_each_node_by_type(np, "cpu") { |
| const u32 *intserv; |
| unsigned int plen, t; |
| |
| /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist |
| * fallback to "reg" property and assume no threads |
| */ |
| intserv = of_get_property(np, "ibm,ppc-interrupt-server#s", |
| &plen); |
| if (intserv == NULL) { |
| const u32 *reg = of_get_property(np, "reg", NULL); |
| if (reg == NULL) |
| continue; |
| if (*reg == hardid) { |
| if (thread) |
| *thread = 0; |
| return np; |
| } |
| } else { |
| plen /= sizeof(u32); |
| for (t = 0; t < plen; t++) { |
| if (hardid == intserv[t]) { |
| if (thread) |
| *thread = t; |
| return np; |
| } |
| } |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_get_cpu_node); |
| |
| #if defined(CONFIG_DEBUG_FS) && defined(DEBUG) |
| static struct debugfs_blob_wrapper flat_dt_blob; |
| |
| static int __init export_flat_device_tree(void) |
| { |
| struct dentry *d; |
| |
| flat_dt_blob.data = initial_boot_params; |
| flat_dt_blob.size = initial_boot_params->totalsize; |
| |
| d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR, |
| powerpc_debugfs_root, &flat_dt_blob); |
| if (!d) |
| return 1; |
| |
| return 0; |
| } |
| __initcall(export_flat_device_tree); |
| #endif |