| /* |
| * Cryptographic API. |
| * Support for Nomadik hardware crypto engine. |
| |
| * Copyright (C) ST-Ericsson SA 2010 |
| * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson |
| * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson |
| * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson. |
| * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson. |
| * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson. |
| * License terms: GNU General Public License (GPL) version 2 |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/klist.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/crypto.h> |
| |
| #include <linux/regulator/consumer.h> |
| #include <linux/dmaengine.h> |
| #include <linux/bitops.h> |
| |
| #include <crypto/internal/hash.h> |
| #include <crypto/sha.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/algapi.h> |
| |
| #include <linux/platform_data/crypto-ux500.h> |
| |
| #include "hash_alg.h" |
| |
| #define DEV_DBG_NAME "hashX hashX:" |
| |
| static int hash_mode; |
| module_param(hash_mode, int, 0); |
| MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1"); |
| |
| /** |
| * Pre-calculated empty message digests. |
| */ |
| static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = { |
| 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, |
| 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, |
| 0xaf, 0xd8, 0x07, 0x09 |
| }; |
| |
| static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = { |
| 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, |
| 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, |
| 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, |
| 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 |
| }; |
| |
| /* HMAC-SHA1, no key */ |
| static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = { |
| 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08, |
| 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63, |
| 0x70, 0x69, 0x0e, 0x1d |
| }; |
| |
| /* HMAC-SHA256, no key */ |
| static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = { |
| 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec, |
| 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5, |
| 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53, |
| 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad |
| }; |
| |
| /** |
| * struct hash_driver_data - data specific to the driver. |
| * |
| * @device_list: A list of registered devices to choose from. |
| * @device_allocation: A semaphore initialized with number of devices. |
| */ |
| struct hash_driver_data { |
| struct klist device_list; |
| struct semaphore device_allocation; |
| }; |
| |
| static struct hash_driver_data driver_data; |
| |
| /* Declaration of functions */ |
| /** |
| * hash_messagepad - Pads a message and write the nblw bits. |
| * @device_data: Structure for the hash device. |
| * @message: Last word of a message |
| * @index_bytes: The number of bytes in the last message |
| * |
| * This function manages the final part of the digest calculation, when less |
| * than 512 bits (64 bytes) remain in message. This means index_bytes < 64. |
| * |
| */ |
| static void hash_messagepad(struct hash_device_data *device_data, |
| const u32 *message, u8 index_bytes); |
| |
| /** |
| * release_hash_device - Releases a previously allocated hash device. |
| * @device_data: Structure for the hash device. |
| * |
| */ |
| static void release_hash_device(struct hash_device_data *device_data) |
| { |
| spin_lock(&device_data->ctx_lock); |
| device_data->current_ctx->device = NULL; |
| device_data->current_ctx = NULL; |
| spin_unlock(&device_data->ctx_lock); |
| |
| /* |
| * The down_interruptible part for this semaphore is called in |
| * cryp_get_device_data. |
| */ |
| up(&driver_data.device_allocation); |
| } |
| |
| static void hash_dma_setup_channel(struct hash_device_data *device_data, |
| struct device *dev) |
| { |
| struct hash_platform_data *platform_data = dev->platform_data; |
| dma_cap_zero(device_data->dma.mask); |
| dma_cap_set(DMA_SLAVE, device_data->dma.mask); |
| |
| device_data->dma.cfg_mem2hash = platform_data->mem_to_engine; |
| device_data->dma.chan_mem2hash = |
| dma_request_channel(device_data->dma.mask, |
| platform_data->dma_filter, |
| device_data->dma.cfg_mem2hash); |
| |
| init_completion(&device_data->dma.complete); |
| } |
| |
| static void hash_dma_callback(void *data) |
| { |
| struct hash_ctx *ctx = (struct hash_ctx *) data; |
| |
| complete(&ctx->device->dma.complete); |
| } |
| |
| static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg, |
| int len, enum dma_data_direction direction) |
| { |
| struct dma_async_tx_descriptor *desc = NULL; |
| struct dma_chan *channel = NULL; |
| dma_cookie_t cookie; |
| |
| if (direction != DMA_TO_DEVICE) { |
| dev_err(ctx->device->dev, "[%s] Invalid DMA direction", |
| __func__); |
| return -EFAULT; |
| } |
| |
| sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE); |
| |
| channel = ctx->device->dma.chan_mem2hash; |
| ctx->device->dma.sg = sg; |
| ctx->device->dma.sg_len = dma_map_sg(channel->device->dev, |
| ctx->device->dma.sg, ctx->device->dma.nents, |
| direction); |
| |
| if (!ctx->device->dma.sg_len) { |
| dev_err(ctx->device->dev, |
| "[%s]: Could not map the sg list (TO_DEVICE)", |
| __func__); |
| return -EFAULT; |
| } |
| |
| dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer " |
| "(TO_DEVICE)", __func__); |
| desc = channel->device->device_prep_slave_sg(channel, |
| ctx->device->dma.sg, ctx->device->dma.sg_len, |
| direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); |
| if (!desc) { |
| dev_err(ctx->device->dev, |
| "[%s]: device_prep_slave_sg() failed!", __func__); |
| return -EFAULT; |
| } |
| |
| desc->callback = hash_dma_callback; |
| desc->callback_param = ctx; |
| |
| cookie = desc->tx_submit(desc); |
| dma_async_issue_pending(channel); |
| |
| return 0; |
| } |
| |
| static void hash_dma_done(struct hash_ctx *ctx) |
| { |
| struct dma_chan *chan; |
| |
| chan = ctx->device->dma.chan_mem2hash; |
| chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); |
| dma_unmap_sg(chan->device->dev, ctx->device->dma.sg, |
| ctx->device->dma.sg_len, DMA_TO_DEVICE); |
| |
| } |
| |
| static int hash_dma_write(struct hash_ctx *ctx, |
| struct scatterlist *sg, int len) |
| { |
| int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE); |
| if (error) { |
| dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() " |
| "failed", __func__); |
| return error; |
| } |
| |
| return len; |
| } |
| |
| /** |
| * get_empty_message_digest - Returns a pre-calculated digest for |
| * the empty message. |
| * @device_data: Structure for the hash device. |
| * @zero_hash: Buffer to return the empty message digest. |
| * @zero_hash_size: Hash size of the empty message digest. |
| * @zero_digest: True if zero_digest returned. |
| */ |
| static int get_empty_message_digest( |
| struct hash_device_data *device_data, |
| u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest) |
| { |
| int ret = 0; |
| struct hash_ctx *ctx = device_data->current_ctx; |
| *zero_digest = false; |
| |
| /** |
| * Caller responsible for ctx != NULL. |
| */ |
| |
| if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) { |
| if (HASH_ALGO_SHA1 == ctx->config.algorithm) { |
| memcpy(zero_hash, &zero_message_hash_sha1[0], |
| SHA1_DIGEST_SIZE); |
| *zero_hash_size = SHA1_DIGEST_SIZE; |
| *zero_digest = true; |
| } else if (HASH_ALGO_SHA256 == |
| ctx->config.algorithm) { |
| memcpy(zero_hash, &zero_message_hash_sha256[0], |
| SHA256_DIGEST_SIZE); |
| *zero_hash_size = SHA256_DIGEST_SIZE; |
| *zero_digest = true; |
| } else { |
| dev_err(device_data->dev, "[%s] " |
| "Incorrect algorithm!" |
| , __func__); |
| ret = -EINVAL; |
| goto out; |
| } |
| } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) { |
| if (!ctx->keylen) { |
| if (HASH_ALGO_SHA1 == ctx->config.algorithm) { |
| memcpy(zero_hash, &zero_message_hmac_sha1[0], |
| SHA1_DIGEST_SIZE); |
| *zero_hash_size = SHA1_DIGEST_SIZE; |
| *zero_digest = true; |
| } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) { |
| memcpy(zero_hash, &zero_message_hmac_sha256[0], |
| SHA256_DIGEST_SIZE); |
| *zero_hash_size = SHA256_DIGEST_SIZE; |
| *zero_digest = true; |
| } else { |
| dev_err(device_data->dev, "[%s] " |
| "Incorrect algorithm!" |
| , __func__); |
| ret = -EINVAL; |
| goto out; |
| } |
| } else { |
| dev_dbg(device_data->dev, "[%s] Continue hash " |
| "calculation, since hmac key avalable", |
| __func__); |
| } |
| } |
| out: |
| |
| return ret; |
| } |
| |
| /** |
| * hash_disable_power - Request to disable power and clock. |
| * @device_data: Structure for the hash device. |
| * @save_device_state: If true, saves the current hw state. |
| * |
| * This function request for disabling power (regulator) and clock, |
| * and could also save current hw state. |
| */ |
| static int hash_disable_power( |
| struct hash_device_data *device_data, |
| bool save_device_state) |
| { |
| int ret = 0; |
| struct device *dev = device_data->dev; |
| |
| spin_lock(&device_data->power_state_lock); |
| if (!device_data->power_state) |
| goto out; |
| |
| if (save_device_state) { |
| hash_save_state(device_data, |
| &device_data->state); |
| device_data->restore_dev_state = true; |
| } |
| |
| clk_disable(device_data->clk); |
| ret = regulator_disable(device_data->regulator); |
| if (ret) |
| dev_err(dev, "[%s] regulator_disable() failed!", __func__); |
| |
| device_data->power_state = false; |
| |
| out: |
| spin_unlock(&device_data->power_state_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_enable_power - Request to enable power and clock. |
| * @device_data: Structure for the hash device. |
| * @restore_device_state: If true, restores a previous saved hw state. |
| * |
| * This function request for enabling power (regulator) and clock, |
| * and could also restore a previously saved hw state. |
| */ |
| static int hash_enable_power( |
| struct hash_device_data *device_data, |
| bool restore_device_state) |
| { |
| int ret = 0; |
| struct device *dev = device_data->dev; |
| |
| spin_lock(&device_data->power_state_lock); |
| if (!device_data->power_state) { |
| ret = regulator_enable(device_data->regulator); |
| if (ret) { |
| dev_err(dev, "[%s]: regulator_enable() failed!", |
| __func__); |
| goto out; |
| } |
| ret = clk_enable(device_data->clk); |
| if (ret) { |
| dev_err(dev, "[%s]: clk_enable() failed!", |
| __func__); |
| ret = regulator_disable( |
| device_data->regulator); |
| goto out; |
| } |
| device_data->power_state = true; |
| } |
| |
| if (device_data->restore_dev_state) { |
| if (restore_device_state) { |
| device_data->restore_dev_state = false; |
| hash_resume_state(device_data, |
| &device_data->state); |
| } |
| } |
| out: |
| spin_unlock(&device_data->power_state_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_get_device_data - Checks for an available hash device and return it. |
| * @hash_ctx: Structure for the hash context. |
| * @device_data: Structure for the hash device. |
| * |
| * This function check for an available hash device and return it to |
| * the caller. |
| * Note! Caller need to release the device, calling up(). |
| */ |
| static int hash_get_device_data(struct hash_ctx *ctx, |
| struct hash_device_data **device_data) |
| { |
| int ret; |
| struct klist_iter device_iterator; |
| struct klist_node *device_node; |
| struct hash_device_data *local_device_data = NULL; |
| |
| /* Wait until a device is available */ |
| ret = down_interruptible(&driver_data.device_allocation); |
| if (ret) |
| return ret; /* Interrupted */ |
| |
| /* Select a device */ |
| klist_iter_init(&driver_data.device_list, &device_iterator); |
| device_node = klist_next(&device_iterator); |
| while (device_node) { |
| local_device_data = container_of(device_node, |
| struct hash_device_data, list_node); |
| spin_lock(&local_device_data->ctx_lock); |
| /* current_ctx allocates a device, NULL = unallocated */ |
| if (local_device_data->current_ctx) { |
| device_node = klist_next(&device_iterator); |
| } else { |
| local_device_data->current_ctx = ctx; |
| ctx->device = local_device_data; |
| spin_unlock(&local_device_data->ctx_lock); |
| break; |
| } |
| spin_unlock(&local_device_data->ctx_lock); |
| } |
| klist_iter_exit(&device_iterator); |
| |
| if (!device_node) { |
| /** |
| * No free device found. |
| * Since we allocated a device with down_interruptible, this |
| * should not be able to happen. |
| * Number of available devices, which are contained in |
| * device_allocation, is therefore decremented by not doing |
| * an up(device_allocation). |
| */ |
| return -EBUSY; |
| } |
| |
| *device_data = local_device_data; |
| |
| return 0; |
| } |
| |
| /** |
| * hash_hw_write_key - Writes the key to the hardware registries. |
| * |
| * @device_data: Structure for the hash device. |
| * @key: Key to be written. |
| * @keylen: The lengt of the key. |
| * |
| * Note! This function DOES NOT write to the NBLW registry, even though |
| * specified in the the hw design spec. Either due to incorrect info in the |
| * spec or due to a bug in the hw. |
| */ |
| static void hash_hw_write_key(struct hash_device_data *device_data, |
| const u8 *key, unsigned int keylen) |
| { |
| u32 word = 0; |
| int nwords = 1; |
| |
| HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); |
| |
| while (keylen >= 4) { |
| u32 *key_word = (u32 *)key; |
| |
| HASH_SET_DIN(key_word, nwords); |
| keylen -= 4; |
| key += 4; |
| } |
| |
| /* Take care of the remaining bytes in the last word */ |
| if (keylen) { |
| word = 0; |
| while (keylen) { |
| word |= (key[keylen - 1] << (8 * (keylen - 1))); |
| keylen--; |
| } |
| |
| HASH_SET_DIN(&word, nwords); |
| } |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| |
| HASH_SET_DCAL; |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| } |
| |
| /** |
| * init_hash_hw - Initialise the hash hardware for a new calculation. |
| * @device_data: Structure for the hash device. |
| * @ctx: The hash context. |
| * |
| * This function will enable the bits needed to clear and start a new |
| * calculation. |
| */ |
| static int init_hash_hw(struct hash_device_data *device_data, |
| struct hash_ctx *ctx) |
| { |
| int ret = 0; |
| |
| ret = hash_setconfiguration(device_data, &ctx->config); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] hash_setconfiguration() " |
| "failed!", __func__); |
| return ret; |
| } |
| |
| hash_begin(device_data, ctx); |
| |
| if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC) |
| hash_hw_write_key(device_data, ctx->key, ctx->keylen); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_get_nents - Return number of entries (nents) in scatterlist (sg). |
| * |
| * @sg: Scatterlist. |
| * @size: Size in bytes. |
| * @aligned: True if sg data aligned to work in DMA mode. |
| * |
| */ |
| static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned) |
| { |
| int nents = 0; |
| bool aligned_data = true; |
| |
| while (size > 0 && sg) { |
| nents++; |
| size -= sg->length; |
| |
| /* hash_set_dma_transfer will align last nent */ |
| if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) |
| || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && |
| size > 0)) |
| aligned_data = false; |
| |
| sg = sg_next(sg); |
| } |
| |
| if (aligned) |
| *aligned = aligned_data; |
| |
| if (size != 0) |
| return -EFAULT; |
| |
| return nents; |
| } |
| |
| /** |
| * hash_dma_valid_data - checks for dma valid sg data. |
| * @sg: Scatterlist. |
| * @datasize: Datasize in bytes. |
| * |
| * NOTE! This function checks for dma valid sg data, since dma |
| * only accept datasizes of even wordsize. |
| */ |
| static bool hash_dma_valid_data(struct scatterlist *sg, int datasize) |
| { |
| bool aligned; |
| |
| /* Need to include at least one nent, else error */ |
| if (hash_get_nents(sg, datasize, &aligned) < 1) |
| return false; |
| |
| return aligned; |
| } |
| |
| /** |
| * hash_init - Common hash init function for SHA1/SHA2 (SHA256). |
| * @req: The hash request for the job. |
| * |
| * Initialize structures. |
| */ |
| static int hash_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| |
| if (!ctx->key) |
| ctx->keylen = 0; |
| |
| memset(&req_ctx->state, 0, sizeof(struct hash_state)); |
| req_ctx->updated = 0; |
| if (hash_mode == HASH_MODE_DMA) { |
| if (req->nbytes < HASH_DMA_ALIGN_SIZE) { |
| req_ctx->dma_mode = false; /* Don't use DMA */ |
| |
| pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct " |
| "to CPU mode for data size < %d", |
| __func__, HASH_DMA_ALIGN_SIZE); |
| } else { |
| if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE && |
| hash_dma_valid_data(req->src, |
| req->nbytes)) { |
| req_ctx->dma_mode = true; |
| } else { |
| req_ctx->dma_mode = false; |
| pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use" |
| " CPU mode for datalength < %d" |
| " or non-aligned data, except " |
| "in last nent", __func__, |
| HASH_DMA_PERFORMANCE_MIN_SIZE); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * hash_processblock - This function processes a single block of 512 bits (64 |
| * bytes), word aligned, starting at message. |
| * @device_data: Structure for the hash device. |
| * @message: Block (512 bits) of message to be written to |
| * the HASH hardware. |
| * |
| */ |
| static void hash_processblock( |
| struct hash_device_data *device_data, |
| const u32 *message, int length) |
| { |
| int len = length / HASH_BYTES_PER_WORD; |
| /* |
| * NBLW bits. Reset the number of bits in last word (NBLW). |
| */ |
| HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); |
| |
| /* |
| * Write message data to the HASH_DIN register. |
| */ |
| HASH_SET_DIN(message, len); |
| } |
| |
| /** |
| * hash_messagepad - Pads a message and write the nblw bits. |
| * @device_data: Structure for the hash device. |
| * @message: Last word of a message. |
| * @index_bytes: The number of bytes in the last message. |
| * |
| * This function manages the final part of the digest calculation, when less |
| * than 512 bits (64 bytes) remain in message. This means index_bytes < 64. |
| * |
| */ |
| static void hash_messagepad(struct hash_device_data *device_data, |
| const u32 *message, u8 index_bytes) |
| { |
| int nwords = 1; |
| |
| /* |
| * Clear hash str register, only clear NBLW |
| * since DCAL will be reset by hardware. |
| */ |
| HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); |
| |
| /* Main loop */ |
| while (index_bytes >= 4) { |
| HASH_SET_DIN(message, nwords); |
| index_bytes -= 4; |
| message++; |
| } |
| |
| if (index_bytes) |
| HASH_SET_DIN(message, nwords); |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| |
| /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */ |
| HASH_SET_NBLW(index_bytes * 8); |
| dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__, |
| readl_relaxed(&device_data->base->din), |
| (int)(readl_relaxed(&device_data->base->str) & |
| HASH_STR_NBLW_MASK)); |
| HASH_SET_DCAL; |
| dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d", |
| __func__, readl_relaxed(&device_data->base->din), |
| (int)(readl_relaxed(&device_data->base->str) & |
| HASH_STR_NBLW_MASK)); |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| } |
| |
| /** |
| * hash_incrementlength - Increments the length of the current message. |
| * @ctx: Hash context |
| * @incr: Length of message processed already |
| * |
| * Overflow cannot occur, because conditions for overflow are checked in |
| * hash_hw_update. |
| */ |
| static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr) |
| { |
| ctx->state.length.low_word += incr; |
| |
| /* Check for wrap-around */ |
| if (ctx->state.length.low_word < incr) |
| ctx->state.length.high_word++; |
| } |
| |
| /** |
| * hash_setconfiguration - Sets the required configuration for the hash |
| * hardware. |
| * @device_data: Structure for the hash device. |
| * @config: Pointer to a configuration structure. |
| */ |
| int hash_setconfiguration(struct hash_device_data *device_data, |
| struct hash_config *config) |
| { |
| int ret = 0; |
| |
| if (config->algorithm != HASH_ALGO_SHA1 && |
| config->algorithm != HASH_ALGO_SHA256) |
| return -EPERM; |
| |
| /* |
| * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data |
| * to be written to HASH_DIN is considered as 32 bits. |
| */ |
| HASH_SET_DATA_FORMAT(config->data_format); |
| |
| /* |
| * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256 |
| */ |
| switch (config->algorithm) { |
| case HASH_ALGO_SHA1: |
| HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK); |
| break; |
| |
| case HASH_ALGO_SHA256: |
| HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK); |
| break; |
| |
| default: |
| dev_err(device_data->dev, "[%s] Incorrect algorithm.", |
| __func__); |
| return -EPERM; |
| } |
| |
| /* |
| * MODE bit. This bit selects between HASH or HMAC mode for the |
| * selected algorithm. 0b0 = HASH and 0b1 = HMAC. |
| */ |
| if (HASH_OPER_MODE_HASH == config->oper_mode) |
| HASH_CLEAR_BITS(&device_data->base->cr, |
| HASH_CR_MODE_MASK); |
| else if (HASH_OPER_MODE_HMAC == config->oper_mode) { |
| HASH_SET_BITS(&device_data->base->cr, |
| HASH_CR_MODE_MASK); |
| if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) { |
| /* Truncate key to blocksize */ |
| dev_dbg(device_data->dev, "[%s] LKEY set", __func__); |
| HASH_SET_BITS(&device_data->base->cr, |
| HASH_CR_LKEY_MASK); |
| } else { |
| dev_dbg(device_data->dev, "[%s] LKEY cleared", |
| __func__); |
| HASH_CLEAR_BITS(&device_data->base->cr, |
| HASH_CR_LKEY_MASK); |
| } |
| } else { /* Wrong hash mode */ |
| ret = -EPERM; |
| dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!", |
| __func__); |
| } |
| return ret; |
| } |
| |
| /** |
| * hash_begin - This routine resets some globals and initializes the hash |
| * hardware. |
| * @device_data: Structure for the hash device. |
| * @ctx: Hash context. |
| */ |
| void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx) |
| { |
| /* HW and SW initializations */ |
| /* Note: there is no need to initialize buffer and digest members */ |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| |
| /* |
| * INIT bit. Set this bit to 0b1 to reset the HASH processor core and |
| * prepare the initialize the HASH accelerator to compute the message |
| * digest of a new message. |
| */ |
| HASH_INITIALIZE; |
| |
| /* |
| * NBLW bits. Reset the number of bits in last word (NBLW). |
| */ |
| HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK); |
| } |
| |
| int hash_process_data( |
| struct hash_device_data *device_data, |
| struct hash_ctx *ctx, struct hash_req_ctx *req_ctx, |
| int msg_length, u8 *data_buffer, u8 *buffer, u8 *index) |
| { |
| int ret = 0; |
| u32 count; |
| |
| do { |
| if ((*index + msg_length) < HASH_BLOCK_SIZE) { |
| for (count = 0; count < msg_length; count++) { |
| buffer[*index + count] = |
| *(data_buffer + count); |
| } |
| *index += msg_length; |
| msg_length = 0; |
| } else { |
| if (req_ctx->updated) { |
| |
| ret = hash_resume_state(device_data, |
| &device_data->state); |
| memmove(req_ctx->state.buffer, |
| device_data->state.buffer, |
| HASH_BLOCK_SIZE / sizeof(u32)); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] " |
| "hash_resume_state()" |
| " failed!", __func__); |
| goto out; |
| } |
| } else { |
| ret = init_hash_hw(device_data, ctx); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] " |
| "init_hash_hw()" |
| " failed!", __func__); |
| goto out; |
| } |
| req_ctx->updated = 1; |
| } |
| /* |
| * If 'data_buffer' is four byte aligned and |
| * local buffer does not have any data, we can |
| * write data directly from 'data_buffer' to |
| * HW peripheral, otherwise we first copy data |
| * to a local buffer |
| */ |
| if ((0 == (((u32)data_buffer) % 4)) |
| && (0 == *index)) |
| hash_processblock(device_data, |
| (const u32 *) |
| data_buffer, HASH_BLOCK_SIZE); |
| else { |
| for (count = 0; count < |
| (u32)(HASH_BLOCK_SIZE - |
| *index); |
| count++) { |
| buffer[*index + count] = |
| *(data_buffer + count); |
| } |
| hash_processblock(device_data, |
| (const u32 *)buffer, |
| HASH_BLOCK_SIZE); |
| } |
| hash_incrementlength(req_ctx, HASH_BLOCK_SIZE); |
| data_buffer += (HASH_BLOCK_SIZE - *index); |
| |
| msg_length -= (HASH_BLOCK_SIZE - *index); |
| *index = 0; |
| |
| ret = hash_save_state(device_data, |
| &device_data->state); |
| |
| memmove(device_data->state.buffer, |
| req_ctx->state.buffer, |
| HASH_BLOCK_SIZE / sizeof(u32)); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] " |
| "hash_save_state()" |
| " failed!", __func__); |
| goto out; |
| } |
| } |
| } while (msg_length != 0); |
| out: |
| |
| return ret; |
| } |
| |
| /** |
| * hash_dma_final - The hash dma final function for SHA1/SHA256. |
| * @req: The hash request for the job. |
| */ |
| static int hash_dma_final(struct ahash_request *req) |
| { |
| int ret = 0; |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| struct hash_device_data *device_data; |
| u8 digest[SHA256_DIGEST_SIZE]; |
| int bytes_written = 0; |
| |
| ret = hash_get_device_data(ctx, &device_data); |
| if (ret) |
| return ret; |
| |
| dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx); |
| |
| if (req_ctx->updated) { |
| ret = hash_resume_state(device_data, &device_data->state); |
| |
| if (ret) { |
| dev_err(device_data->dev, "[%s] hash_resume_state() " |
| "failed!", __func__); |
| goto out; |
| } |
| |
| } |
| |
| if (!req_ctx->updated) { |
| ret = hash_setconfiguration(device_data, &ctx->config); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] " |
| "hash_setconfiguration() failed!", |
| __func__); |
| goto out; |
| } |
| |
| /* Enable DMA input */ |
| if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) { |
| HASH_CLEAR_BITS(&device_data->base->cr, |
| HASH_CR_DMAE_MASK); |
| } else { |
| HASH_SET_BITS(&device_data->base->cr, |
| HASH_CR_DMAE_MASK); |
| HASH_SET_BITS(&device_data->base->cr, |
| HASH_CR_PRIVN_MASK); |
| } |
| |
| HASH_INITIALIZE; |
| |
| if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC) |
| hash_hw_write_key(device_data, ctx->key, ctx->keylen); |
| |
| /* Number of bits in last word = (nbytes * 8) % 32 */ |
| HASH_SET_NBLW((req->nbytes * 8) % 32); |
| req_ctx->updated = 1; |
| } |
| |
| /* Store the nents in the dma struct. */ |
| ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL); |
| if (!ctx->device->dma.nents) { |
| dev_err(device_data->dev, "[%s] " |
| "ctx->device->dma.nents = 0", __func__); |
| ret = ctx->device->dma.nents; |
| goto out; |
| } |
| |
| bytes_written = hash_dma_write(ctx, req->src, req->nbytes); |
| if (bytes_written != req->nbytes) { |
| dev_err(device_data->dev, "[%s] " |
| "hash_dma_write() failed!", __func__); |
| ret = bytes_written; |
| goto out; |
| } |
| |
| wait_for_completion(&ctx->device->dma.complete); |
| hash_dma_done(ctx); |
| |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| |
| if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) { |
| unsigned int keylen = ctx->keylen; |
| u8 *key = ctx->key; |
| |
| dev_dbg(device_data->dev, "[%s] keylen: %d", __func__, |
| ctx->keylen); |
| hash_hw_write_key(device_data, key, keylen); |
| } |
| |
| hash_get_digest(device_data, digest, ctx->config.algorithm); |
| memcpy(req->result, digest, ctx->digestsize); |
| |
| out: |
| release_hash_device(device_data); |
| |
| /** |
| * Allocated in setkey, and only used in HMAC. |
| */ |
| kfree(ctx->key); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_hw_final - The final hash calculation function |
| * @req: The hash request for the job. |
| */ |
| int hash_hw_final(struct ahash_request *req) |
| { |
| int ret = 0; |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| struct hash_device_data *device_data; |
| u8 digest[SHA256_DIGEST_SIZE]; |
| |
| ret = hash_get_device_data(ctx, &device_data); |
| if (ret) |
| return ret; |
| |
| dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx); |
| |
| if (req_ctx->updated) { |
| ret = hash_resume_state(device_data, &device_data->state); |
| |
| if (ret) { |
| dev_err(device_data->dev, "[%s] hash_resume_state() " |
| "failed!", __func__); |
| goto out; |
| } |
| } else if (req->nbytes == 0 && ctx->keylen == 0) { |
| u8 zero_hash[SHA256_DIGEST_SIZE]; |
| u32 zero_hash_size = 0; |
| bool zero_digest = false; |
| /** |
| * Use a pre-calculated empty message digest |
| * (workaround since hw return zeroes, hw bug!?) |
| */ |
| ret = get_empty_message_digest(device_data, &zero_hash[0], |
| &zero_hash_size, &zero_digest); |
| if (!ret && likely(zero_hash_size == ctx->digestsize) && |
| zero_digest) { |
| memcpy(req->result, &zero_hash[0], ctx->digestsize); |
| goto out; |
| } else if (!ret && !zero_digest) { |
| dev_dbg(device_data->dev, "[%s] HMAC zero msg with " |
| "key, continue...", __func__); |
| } else { |
| dev_err(device_data->dev, "[%s] ret=%d, or wrong " |
| "digest size? %s", __func__, ret, |
| (zero_hash_size == ctx->digestsize) ? |
| "true" : "false"); |
| /* Return error */ |
| goto out; |
| } |
| } else if (req->nbytes == 0 && ctx->keylen > 0) { |
| dev_err(device_data->dev, "[%s] Empty message with " |
| "keylength > 0, NOT supported.", __func__); |
| goto out; |
| } |
| |
| if (!req_ctx->updated) { |
| ret = init_hash_hw(device_data, ctx); |
| if (ret) { |
| dev_err(device_data->dev, "[%s] init_hash_hw() " |
| "failed!", __func__); |
| goto out; |
| } |
| } |
| |
| if (req_ctx->state.index) { |
| hash_messagepad(device_data, req_ctx->state.buffer, |
| req_ctx->state.index); |
| } else { |
| HASH_SET_DCAL; |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| } |
| |
| if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) { |
| unsigned int keylen = ctx->keylen; |
| u8 *key = ctx->key; |
| |
| dev_dbg(device_data->dev, "[%s] keylen: %d", __func__, |
| ctx->keylen); |
| hash_hw_write_key(device_data, key, keylen); |
| } |
| |
| hash_get_digest(device_data, digest, ctx->config.algorithm); |
| memcpy(req->result, digest, ctx->digestsize); |
| |
| out: |
| release_hash_device(device_data); |
| |
| /** |
| * Allocated in setkey, and only used in HMAC. |
| */ |
| kfree(ctx->key); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_hw_update - Updates current HASH computation hashing another part of |
| * the message. |
| * @req: Byte array containing the message to be hashed (caller |
| * allocated). |
| */ |
| int hash_hw_update(struct ahash_request *req) |
| { |
| int ret = 0; |
| u8 index = 0; |
| u8 *buffer; |
| struct hash_device_data *device_data; |
| u8 *data_buffer; |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| struct crypto_hash_walk walk; |
| int msg_length = crypto_hash_walk_first(req, &walk); |
| |
| /* Empty message ("") is correct indata */ |
| if (msg_length == 0) |
| return ret; |
| |
| index = req_ctx->state.index; |
| buffer = (u8 *)req_ctx->state.buffer; |
| |
| /* Check if ctx->state.length + msg_length |
| overflows */ |
| if (msg_length > (req_ctx->state.length.low_word + msg_length) && |
| HASH_HIGH_WORD_MAX_VAL == |
| req_ctx->state.length.high_word) { |
| pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!", |
| __func__); |
| return -EPERM; |
| } |
| |
| ret = hash_get_device_data(ctx, &device_data); |
| if (ret) |
| return ret; |
| |
| /* Main loop */ |
| while (0 != msg_length) { |
| data_buffer = walk.data; |
| ret = hash_process_data(device_data, ctx, req_ctx, msg_length, |
| data_buffer, buffer, &index); |
| |
| if (ret) { |
| dev_err(device_data->dev, "[%s] hash_internal_hw_" |
| "update() failed!", __func__); |
| goto out; |
| } |
| |
| msg_length = crypto_hash_walk_done(&walk, 0); |
| } |
| |
| req_ctx->state.index = index; |
| dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))", |
| __func__, req_ctx->state.index, |
| req_ctx->state.bit_index); |
| |
| out: |
| release_hash_device(device_data); |
| |
| return ret; |
| } |
| |
| /** |
| * hash_resume_state - Function that resumes the state of an calculation. |
| * @device_data: Pointer to the device structure. |
| * @device_state: The state to be restored in the hash hardware |
| */ |
| int hash_resume_state(struct hash_device_data *device_data, |
| const struct hash_state *device_state) |
| { |
| u32 temp_cr; |
| s32 count; |
| int hash_mode = HASH_OPER_MODE_HASH; |
| |
| if (NULL == device_state) { |
| dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!", |
| __func__); |
| return -EPERM; |
| } |
| |
| /* Check correctness of index and length members */ |
| if (device_state->index > HASH_BLOCK_SIZE |
| || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) { |
| dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!", |
| __func__); |
| return -EPERM; |
| } |
| |
| /* |
| * INIT bit. Set this bit to 0b1 to reset the HASH processor core and |
| * prepare the initialize the HASH accelerator to compute the message |
| * digest of a new message. |
| */ |
| HASH_INITIALIZE; |
| |
| temp_cr = device_state->temp_cr; |
| writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr); |
| |
| if (device_data->base->cr & HASH_CR_MODE_MASK) |
| hash_mode = HASH_OPER_MODE_HMAC; |
| else |
| hash_mode = HASH_OPER_MODE_HASH; |
| |
| for (count = 0; count < HASH_CSR_COUNT; count++) { |
| if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH)) |
| break; |
| |
| writel_relaxed(device_state->csr[count], |
| &device_data->base->csrx[count]); |
| } |
| |
| writel_relaxed(device_state->csfull, &device_data->base->csfull); |
| writel_relaxed(device_state->csdatain, &device_data->base->csdatain); |
| |
| writel_relaxed(device_state->str_reg, &device_data->base->str); |
| writel_relaxed(temp_cr, &device_data->base->cr); |
| |
| return 0; |
| } |
| |
| /** |
| * hash_save_state - Function that saves the state of hardware. |
| * @device_data: Pointer to the device structure. |
| * @device_state: The strucure where the hardware state should be saved. |
| */ |
| int hash_save_state(struct hash_device_data *device_data, |
| struct hash_state *device_state) |
| { |
| u32 temp_cr; |
| u32 count; |
| int hash_mode = HASH_OPER_MODE_HASH; |
| |
| if (NULL == device_state) { |
| dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!", |
| __func__); |
| return -ENOTSUPP; |
| } |
| |
| /* Write dummy value to force digest intermediate calculation. This |
| * actually makes sure that there isn't any ongoing calculation in the |
| * hardware. |
| */ |
| while (device_data->base->str & HASH_STR_DCAL_MASK) |
| cpu_relax(); |
| |
| temp_cr = readl_relaxed(&device_data->base->cr); |
| |
| device_state->str_reg = readl_relaxed(&device_data->base->str); |
| |
| device_state->din_reg = readl_relaxed(&device_data->base->din); |
| |
| if (device_data->base->cr & HASH_CR_MODE_MASK) |
| hash_mode = HASH_OPER_MODE_HMAC; |
| else |
| hash_mode = HASH_OPER_MODE_HASH; |
| |
| for (count = 0; count < HASH_CSR_COUNT; count++) { |
| if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH)) |
| break; |
| |
| device_state->csr[count] = |
| readl_relaxed(&device_data->base->csrx[count]); |
| } |
| |
| device_state->csfull = readl_relaxed(&device_data->base->csfull); |
| device_state->csdatain = readl_relaxed(&device_data->base->csdatain); |
| |
| device_state->temp_cr = temp_cr; |
| |
| return 0; |
| } |
| |
| /** |
| * hash_check_hw - This routine checks for peripheral Ids and PCell Ids. |
| * @device_data: |
| * |
| */ |
| int hash_check_hw(struct hash_device_data *device_data) |
| { |
| /* Checking Peripheral Ids */ |
| if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) |
| && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) |
| && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) |
| && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) |
| && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) |
| && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) |
| && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) |
| && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3) |
| ) { |
| return 0; |
| } |
| |
| dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!", |
| __func__); |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * hash_get_digest - Gets the digest. |
| * @device_data: Pointer to the device structure. |
| * @digest: User allocated byte array for the calculated digest. |
| * @algorithm: The algorithm in use. |
| */ |
| void hash_get_digest(struct hash_device_data *device_data, |
| u8 *digest, int algorithm) |
| { |
| u32 temp_hx_val, count; |
| int loop_ctr; |
| |
| if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) { |
| dev_err(device_data->dev, "[%s] Incorrect algorithm %d", |
| __func__, algorithm); |
| return; |
| } |
| |
| if (algorithm == HASH_ALGO_SHA1) |
| loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32); |
| else |
| loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32); |
| |
| dev_dbg(device_data->dev, "[%s] digest array:(0x%x)", |
| __func__, (u32) digest); |
| |
| /* Copy result into digest array */ |
| for (count = 0; count < loop_ctr; count++) { |
| temp_hx_val = readl_relaxed(&device_data->base->hx[count]); |
| digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF); |
| digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF); |
| digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF); |
| digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF); |
| } |
| } |
| |
| /** |
| * hash_update - The hash update function for SHA1/SHA2 (SHA256). |
| * @req: The hash request for the job. |
| */ |
| static int ahash_update(struct ahash_request *req) |
| { |
| int ret = 0; |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| |
| if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) |
| ret = hash_hw_update(req); |
| /* Skip update for DMA, all data will be passed to DMA in final */ |
| |
| if (ret) { |
| pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!", |
| __func__); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * hash_final - The hash final function for SHA1/SHA2 (SHA256). |
| * @req: The hash request for the job. |
| */ |
| static int ahash_final(struct ahash_request *req) |
| { |
| int ret = 0; |
| struct hash_req_ctx *req_ctx = ahash_request_ctx(req); |
| |
| pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes); |
| |
| if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode) |
| ret = hash_dma_final(req); |
| else |
| ret = hash_hw_final(req); |
| |
| if (ret) { |
| pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed", |
| __func__); |
| } |
| |
| return ret; |
| } |
| |
| static int hash_setkey(struct crypto_ahash *tfm, |
| const u8 *key, unsigned int keylen, int alg) |
| { |
| int ret = 0; |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| /** |
| * Freed in final. |
| */ |
| ctx->key = kmemdup(key, keylen, GFP_KERNEL); |
| if (!ctx->key) { |
| pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key " |
| "for %d\n", __func__, alg); |
| return -ENOMEM; |
| } |
| ctx->keylen = keylen; |
| |
| return ret; |
| } |
| |
| static int ahash_sha1_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ctx->config.data_format = HASH_DATA_8_BITS; |
| ctx->config.algorithm = HASH_ALGO_SHA1; |
| ctx->config.oper_mode = HASH_OPER_MODE_HASH; |
| ctx->digestsize = SHA1_DIGEST_SIZE; |
| |
| return hash_init(req); |
| } |
| |
| static int ahash_sha256_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ctx->config.data_format = HASH_DATA_8_BITS; |
| ctx->config.algorithm = HASH_ALGO_SHA256; |
| ctx->config.oper_mode = HASH_OPER_MODE_HASH; |
| ctx->digestsize = SHA256_DIGEST_SIZE; |
| |
| return hash_init(req); |
| } |
| |
| static int ahash_sha1_digest(struct ahash_request *req) |
| { |
| int ret2, ret1; |
| |
| ret1 = ahash_sha1_init(req); |
| if (ret1) |
| goto out; |
| |
| ret1 = ahash_update(req); |
| ret2 = ahash_final(req); |
| |
| out: |
| return ret1 ? ret1 : ret2; |
| } |
| |
| static int ahash_sha256_digest(struct ahash_request *req) |
| { |
| int ret2, ret1; |
| |
| ret1 = ahash_sha256_init(req); |
| if (ret1) |
| goto out; |
| |
| ret1 = ahash_update(req); |
| ret2 = ahash_final(req); |
| |
| out: |
| return ret1 ? ret1 : ret2; |
| } |
| |
| static int hmac_sha1_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ctx->config.data_format = HASH_DATA_8_BITS; |
| ctx->config.algorithm = HASH_ALGO_SHA1; |
| ctx->config.oper_mode = HASH_OPER_MODE_HMAC; |
| ctx->digestsize = SHA1_DIGEST_SIZE; |
| |
| return hash_init(req); |
| } |
| |
| static int hmac_sha256_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ctx->config.data_format = HASH_DATA_8_BITS; |
| ctx->config.algorithm = HASH_ALGO_SHA256; |
| ctx->config.oper_mode = HASH_OPER_MODE_HMAC; |
| ctx->digestsize = SHA256_DIGEST_SIZE; |
| |
| return hash_init(req); |
| } |
| |
| static int hmac_sha1_digest(struct ahash_request *req) |
| { |
| int ret2, ret1; |
| |
| ret1 = hmac_sha1_init(req); |
| if (ret1) |
| goto out; |
| |
| ret1 = ahash_update(req); |
| ret2 = ahash_final(req); |
| |
| out: |
| return ret1 ? ret1 : ret2; |
| } |
| |
| static int hmac_sha256_digest(struct ahash_request *req) |
| { |
| int ret2, ret1; |
| |
| ret1 = hmac_sha256_init(req); |
| if (ret1) |
| goto out; |
| |
| ret1 = ahash_update(req); |
| ret2 = ahash_final(req); |
| |
| out: |
| return ret1 ? ret1 : ret2; |
| } |
| |
| static int hmac_sha1_setkey(struct crypto_ahash *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1); |
| } |
| |
| static int hmac_sha256_setkey(struct crypto_ahash *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256); |
| } |
| |
| struct hash_algo_template { |
| struct hash_config conf; |
| struct ahash_alg hash; |
| }; |
| |
| static int hash_cra_init(struct crypto_tfm *tfm) |
| { |
| struct hash_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct hash_algo_template *hash_alg; |
| |
| hash_alg = container_of(__crypto_ahash_alg(alg), |
| struct hash_algo_template, |
| hash); |
| |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct hash_req_ctx)); |
| |
| ctx->config.data_format = HASH_DATA_8_BITS; |
| ctx->config.algorithm = hash_alg->conf.algorithm; |
| ctx->config.oper_mode = hash_alg->conf.oper_mode; |
| |
| ctx->digestsize = hash_alg->hash.halg.digestsize; |
| |
| return 0; |
| } |
| |
| static struct hash_algo_template hash_algs[] = { |
| { |
| .conf.algorithm = HASH_ALGO_SHA1, |
| .conf.oper_mode = HASH_OPER_MODE_HASH, |
| .hash = { |
| .init = hash_init, |
| .update = ahash_update, |
| .final = ahash_final, |
| .digest = ahash_sha1_digest, |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct hash_ctx), |
| .halg.base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "sha1-ux500", |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct hash_ctx), |
| .cra_init = hash_cra_init, |
| .cra_module = THIS_MODULE, |
| } |
| } |
| }, |
| { |
| .conf.algorithm = HASH_ALGO_SHA256, |
| .conf.oper_mode = HASH_OPER_MODE_HASH, |
| .hash = { |
| .init = hash_init, |
| .update = ahash_update, |
| .final = ahash_final, |
| .digest = ahash_sha256_digest, |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct hash_ctx), |
| .halg.base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-ux500", |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct hash_ctx), |
| .cra_type = &crypto_ahash_type, |
| .cra_init = hash_cra_init, |
| .cra_module = THIS_MODULE, |
| } |
| } |
| |
| }, |
| { |
| .conf.algorithm = HASH_ALGO_SHA1, |
| .conf.oper_mode = HASH_OPER_MODE_HMAC, |
| .hash = { |
| .init = hash_init, |
| .update = ahash_update, |
| .final = ahash_final, |
| .digest = hmac_sha1_digest, |
| .setkey = hmac_sha1_setkey, |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct hash_ctx), |
| .halg.base = { |
| .cra_name = "hmac(sha1)", |
| .cra_driver_name = "hmac-sha1-ux500", |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct hash_ctx), |
| .cra_type = &crypto_ahash_type, |
| .cra_init = hash_cra_init, |
| .cra_module = THIS_MODULE, |
| } |
| } |
| }, |
| { |
| .conf.algorithm = HASH_ALGO_SHA256, |
| .conf.oper_mode = HASH_OPER_MODE_HMAC, |
| .hash = { |
| .init = hash_init, |
| .update = ahash_update, |
| .final = ahash_final, |
| .digest = hmac_sha256_digest, |
| .setkey = hmac_sha256_setkey, |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct hash_ctx), |
| .halg.base = { |
| .cra_name = "hmac(sha256)", |
| .cra_driver_name = "hmac-sha256-ux500", |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct hash_ctx), |
| .cra_type = &crypto_ahash_type, |
| .cra_init = hash_cra_init, |
| .cra_module = THIS_MODULE, |
| } |
| } |
| } |
| }; |
| |
| /** |
| * hash_algs_register_all - |
| */ |
| static int ahash_algs_register_all(struct hash_device_data *device_data) |
| { |
| int ret; |
| int i; |
| int count; |
| |
| for (i = 0; i < ARRAY_SIZE(hash_algs); i++) { |
| ret = crypto_register_ahash(&hash_algs[i].hash); |
| if (ret) { |
| count = i; |
| dev_err(device_data->dev, "[%s] alg registration failed", |
| hash_algs[i].hash.halg.base.cra_driver_name); |
| goto unreg; |
| } |
| } |
| return 0; |
| unreg: |
| for (i = 0; i < count; i++) |
| crypto_unregister_ahash(&hash_algs[i].hash); |
| return ret; |
| } |
| |
| /** |
| * hash_algs_unregister_all - |
| */ |
| static void ahash_algs_unregister_all(struct hash_device_data *device_data) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hash_algs); i++) |
| crypto_unregister_ahash(&hash_algs[i].hash); |
| } |
| |
| /** |
| * ux500_hash_probe - Function that probes the hash hardware. |
| * @pdev: The platform device. |
| */ |
| static int ux500_hash_probe(struct platform_device *pdev) |
| { |
| int ret = 0; |
| struct resource *res = NULL; |
| struct hash_device_data *device_data; |
| struct device *dev = &pdev->dev; |
| |
| device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC); |
| if (!device_data) { |
| dev_dbg(dev, "[%s] kzalloc() failed!", __func__); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| device_data->dev = dev; |
| device_data->current_ctx = NULL; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__); |
| ret = -ENODEV; |
| goto out_kfree; |
| } |
| |
| res = request_mem_region(res->start, resource_size(res), pdev->name); |
| if (res == NULL) { |
| dev_dbg(dev, "[%s] request_mem_region() failed!", __func__); |
| ret = -EBUSY; |
| goto out_kfree; |
| } |
| |
| device_data->base = ioremap(res->start, resource_size(res)); |
| if (!device_data->base) { |
| dev_err(dev, "[%s] ioremap() failed!", |
| __func__); |
| ret = -ENOMEM; |
| goto out_free_mem; |
| } |
| spin_lock_init(&device_data->ctx_lock); |
| spin_lock_init(&device_data->power_state_lock); |
| |
| /* Enable power for HASH1 hardware block */ |
| device_data->regulator = regulator_get(dev, "v-ape"); |
| if (IS_ERR(device_data->regulator)) { |
| dev_err(dev, "[%s] regulator_get() failed!", __func__); |
| ret = PTR_ERR(device_data->regulator); |
| device_data->regulator = NULL; |
| goto out_unmap; |
| } |
| |
| /* Enable the clock for HASH1 hardware block */ |
| device_data->clk = clk_get(dev, NULL); |
| if (IS_ERR(device_data->clk)) { |
| dev_err(dev, "[%s] clk_get() failed!", __func__); |
| ret = PTR_ERR(device_data->clk); |
| goto out_regulator; |
| } |
| |
| /* Enable device power (and clock) */ |
| ret = hash_enable_power(device_data, false); |
| if (ret) { |
| dev_err(dev, "[%s]: hash_enable_power() failed!", __func__); |
| goto out_clk; |
| } |
| |
| ret = hash_check_hw(device_data); |
| if (ret) { |
| dev_err(dev, "[%s] hash_check_hw() failed!", __func__); |
| goto out_power; |
| } |
| |
| if (hash_mode == HASH_MODE_DMA) |
| hash_dma_setup_channel(device_data, dev); |
| |
| platform_set_drvdata(pdev, device_data); |
| |
| /* Put the new device into the device list... */ |
| klist_add_tail(&device_data->list_node, &driver_data.device_list); |
| /* ... and signal that a new device is available. */ |
| up(&driver_data.device_allocation); |
| |
| ret = ahash_algs_register_all(device_data); |
| if (ret) { |
| dev_err(dev, "[%s] ahash_algs_register_all() " |
| "failed!", __func__); |
| goto out_power; |
| } |
| |
| dev_info(dev, "[%s] successfully probed\n", __func__); |
| return 0; |
| |
| out_power: |
| hash_disable_power(device_data, false); |
| |
| out_clk: |
| clk_put(device_data->clk); |
| |
| out_regulator: |
| regulator_put(device_data->regulator); |
| |
| out_unmap: |
| iounmap(device_data->base); |
| |
| out_free_mem: |
| release_mem_region(res->start, resource_size(res)); |
| |
| out_kfree: |
| kfree(device_data); |
| out: |
| return ret; |
| } |
| |
| /** |
| * ux500_hash_remove - Function that removes the hash device from the platform. |
| * @pdev: The platform device. |
| */ |
| static int ux500_hash_remove(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct hash_device_data *device_data; |
| struct device *dev = &pdev->dev; |
| |
| device_data = platform_get_drvdata(pdev); |
| if (!device_data) { |
| dev_err(dev, "[%s]: platform_get_drvdata() failed!", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| /* Try to decrease the number of available devices. */ |
| if (down_trylock(&driver_data.device_allocation)) |
| return -EBUSY; |
| |
| /* Check that the device is free */ |
| spin_lock(&device_data->ctx_lock); |
| /* current_ctx allocates a device, NULL = unallocated */ |
| if (device_data->current_ctx) { |
| /* The device is busy */ |
| spin_unlock(&device_data->ctx_lock); |
| /* Return the device to the pool. */ |
| up(&driver_data.device_allocation); |
| return -EBUSY; |
| } |
| |
| spin_unlock(&device_data->ctx_lock); |
| |
| /* Remove the device from the list */ |
| if (klist_node_attached(&device_data->list_node)) |
| klist_remove(&device_data->list_node); |
| |
| /* If this was the last device, remove the services */ |
| if (list_empty(&driver_data.device_list.k_list)) |
| ahash_algs_unregister_all(device_data); |
| |
| if (hash_disable_power(device_data, false)) |
| dev_err(dev, "[%s]: hash_disable_power() failed", |
| __func__); |
| |
| clk_put(device_data->clk); |
| regulator_put(device_data->regulator); |
| |
| iounmap(device_data->base); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (res) |
| release_mem_region(res->start, resource_size(res)); |
| |
| kfree(device_data); |
| |
| return 0; |
| } |
| |
| /** |
| * ux500_hash_shutdown - Function that shutdown the hash device. |
| * @pdev: The platform device |
| */ |
| static void ux500_hash_shutdown(struct platform_device *pdev) |
| { |
| struct resource *res = NULL; |
| struct hash_device_data *device_data; |
| |
| device_data = platform_get_drvdata(pdev); |
| if (!device_data) { |
| dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!", |
| __func__); |
| return; |
| } |
| |
| /* Check that the device is free */ |
| spin_lock(&device_data->ctx_lock); |
| /* current_ctx allocates a device, NULL = unallocated */ |
| if (!device_data->current_ctx) { |
| if (down_trylock(&driver_data.device_allocation)) |
| dev_dbg(&pdev->dev, "[%s]: Cryp still in use!" |
| "Shutting down anyway...", __func__); |
| /** |
| * (Allocate the device) |
| * Need to set this to non-null (dummy) value, |
| * to avoid usage if context switching. |
| */ |
| device_data->current_ctx++; |
| } |
| spin_unlock(&device_data->ctx_lock); |
| |
| /* Remove the device from the list */ |
| if (klist_node_attached(&device_data->list_node)) |
| klist_remove(&device_data->list_node); |
| |
| /* If this was the last device, remove the services */ |
| if (list_empty(&driver_data.device_list.k_list)) |
| ahash_algs_unregister_all(device_data); |
| |
| iounmap(device_data->base); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (res) |
| release_mem_region(res->start, resource_size(res)); |
| |
| if (hash_disable_power(device_data, false)) |
| dev_err(&pdev->dev, "[%s] hash_disable_power() failed", |
| __func__); |
| } |
| |
| /** |
| * ux500_hash_suspend - Function that suspends the hash device. |
| * @dev: Device to suspend. |
| */ |
| static int ux500_hash_suspend(struct device *dev) |
| { |
| int ret; |
| struct hash_device_data *device_data; |
| struct hash_ctx *temp_ctx = NULL; |
| |
| device_data = dev_get_drvdata(dev); |
| if (!device_data) { |
| dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__); |
| return -ENOMEM; |
| } |
| |
| spin_lock(&device_data->ctx_lock); |
| if (!device_data->current_ctx) |
| device_data->current_ctx++; |
| spin_unlock(&device_data->ctx_lock); |
| |
| if (device_data->current_ctx == ++temp_ctx) { |
| if (down_interruptible(&driver_data.device_allocation)) |
| dev_dbg(dev, "[%s]: down_interruptible() failed", |
| __func__); |
| ret = hash_disable_power(device_data, false); |
| |
| } else |
| ret = hash_disable_power(device_data, true); |
| |
| if (ret) |
| dev_err(dev, "[%s]: hash_disable_power()", __func__); |
| |
| return ret; |
| } |
| |
| /** |
| * ux500_hash_resume - Function that resume the hash device. |
| * @dev: Device to resume. |
| */ |
| static int ux500_hash_resume(struct device *dev) |
| { |
| int ret = 0; |
| struct hash_device_data *device_data; |
| struct hash_ctx *temp_ctx = NULL; |
| |
| device_data = dev_get_drvdata(dev); |
| if (!device_data) { |
| dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__); |
| return -ENOMEM; |
| } |
| |
| spin_lock(&device_data->ctx_lock); |
| if (device_data->current_ctx == ++temp_ctx) |
| device_data->current_ctx = NULL; |
| spin_unlock(&device_data->ctx_lock); |
| |
| if (!device_data->current_ctx) |
| up(&driver_data.device_allocation); |
| else |
| ret = hash_enable_power(device_data, true); |
| |
| if (ret) |
| dev_err(dev, "[%s]: hash_enable_power() failed!", __func__); |
| |
| return ret; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume); |
| |
| static struct platform_driver hash_driver = { |
| .probe = ux500_hash_probe, |
| .remove = ux500_hash_remove, |
| .shutdown = ux500_hash_shutdown, |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "hash1", |
| .pm = &ux500_hash_pm, |
| } |
| }; |
| |
| /** |
| * ux500_hash_mod_init - The kernel module init function. |
| */ |
| static int __init ux500_hash_mod_init(void) |
| { |
| klist_init(&driver_data.device_list, NULL, NULL); |
| /* Initialize the semaphore to 0 devices (locked state) */ |
| sema_init(&driver_data.device_allocation, 0); |
| |
| return platform_driver_register(&hash_driver); |
| } |
| |
| /** |
| * ux500_hash_mod_fini - The kernel module exit function. |
| */ |
| static void __exit ux500_hash_mod_fini(void) |
| { |
| platform_driver_unregister(&hash_driver); |
| } |
| |
| module_init(ux500_hash_mod_init); |
| module_exit(ux500_hash_mod_fini); |
| |
| MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine."); |
| MODULE_LICENSE("GPL"); |
| |
| MODULE_ALIAS("sha1-all"); |
| MODULE_ALIAS("sha256-all"); |
| MODULE_ALIAS("hmac-sha1-all"); |
| MODULE_ALIAS("hmac-sha256-all"); |