| /* |
| * Handle the memory map. |
| * The functions here do the job until bootmem takes over. |
| * |
| * Getting sanitize_e820_map() in sync with i386 version by applying change: |
| * - Provisions for empty E820 memory regions (reported by certain BIOSes). |
| * Alex Achenbach <xela@slit.de>, December 2002. |
| * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/ioport.h> |
| #include <linux/string.h> |
| #include <linux/kexec.h> |
| #include <linux/module.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/page.h> |
| #include <asm/e820.h> |
| #include <asm/proto.h> |
| #include <asm/bootsetup.h> |
| #include <asm/sections.h> |
| |
| struct e820map e820 __initdata; |
| |
| /* |
| * PFN of last memory page. |
| */ |
| unsigned long end_pfn; |
| EXPORT_SYMBOL(end_pfn); |
| |
| /* |
| * end_pfn only includes RAM, while end_pfn_map includes all e820 entries. |
| * The direct mapping extends to end_pfn_map, so that we can directly access |
| * apertures, ACPI and other tables without having to play with fixmaps. |
| */ |
| unsigned long end_pfn_map; |
| |
| /* |
| * Last pfn which the user wants to use. |
| */ |
| static unsigned long __initdata end_user_pfn = MAXMEM>>PAGE_SHIFT; |
| |
| extern struct resource code_resource, data_resource; |
| |
| /* Check for some hardcoded bad areas that early boot is not allowed to touch */ |
| static inline int bad_addr(unsigned long *addrp, unsigned long size) |
| { |
| unsigned long addr = *addrp, last = addr + size; |
| |
| /* various gunk below that needed for SMP startup */ |
| if (addr < 0x8000) { |
| *addrp = 0x8000; |
| return 1; |
| } |
| |
| /* direct mapping tables of the kernel */ |
| if (last >= table_start<<PAGE_SHIFT && addr < table_end<<PAGE_SHIFT) { |
| *addrp = table_end << PAGE_SHIFT; |
| return 1; |
| } |
| |
| /* initrd */ |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (LOADER_TYPE && INITRD_START && last >= INITRD_START && |
| addr < INITRD_START+INITRD_SIZE) { |
| *addrp = INITRD_START + INITRD_SIZE; |
| return 1; |
| } |
| #endif |
| /* kernel code */ |
| if (last >= __pa_symbol(&_text) && last < __pa_symbol(&_end)) { |
| *addrp = __pa_symbol(&_end); |
| return 1; |
| } |
| |
| if (last >= ebda_addr && addr < ebda_addr + ebda_size) { |
| *addrp = ebda_addr + ebda_size; |
| return 1; |
| } |
| |
| /* XXX ramdisk image here? */ |
| return 0; |
| } |
| |
| /* |
| * This function checks if any part of the range <start,end> is mapped |
| * with type. |
| */ |
| int __meminit |
| e820_any_mapped(unsigned long start, unsigned long end, unsigned type) |
| { |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| if (type && ei->type != type) |
| continue; |
| if (ei->addr >= end || ei->addr + ei->size <= start) |
| continue; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function checks if the entire range <start,end> is mapped with type. |
| * |
| * Note: this function only works correct if the e820 table is sorted and |
| * not-overlapping, which is the case |
| */ |
| int __init e820_all_mapped(unsigned long start, unsigned long end, unsigned type) |
| { |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| if (type && ei->type != type) |
| continue; |
| /* is the region (part) in overlap with the current region ?*/ |
| if (ei->addr >= end || ei->addr + ei->size <= start) |
| continue; |
| |
| /* if the region is at the beginning of <start,end> we move |
| * start to the end of the region since it's ok until there |
| */ |
| if (ei->addr <= start) |
| start = ei->addr + ei->size; |
| /* if start is now at or beyond end, we're done, full coverage */ |
| if (start >= end) |
| return 1; /* we're done */ |
| } |
| return 0; |
| } |
| |
| /* |
| * Find a free area in a specific range. |
| */ |
| unsigned long __init find_e820_area(unsigned long start, unsigned long end, unsigned size) |
| { |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| unsigned long addr = ei->addr, last; |
| if (ei->type != E820_RAM) |
| continue; |
| if (addr < start) |
| addr = start; |
| if (addr > ei->addr + ei->size) |
| continue; |
| while (bad_addr(&addr, size) && addr+size <= ei->addr+ei->size) |
| ; |
| last = addr + size; |
| if (last > ei->addr + ei->size) |
| continue; |
| if (last > end) |
| continue; |
| return addr; |
| } |
| return -1UL; |
| } |
| |
| /* |
| * Free bootmem based on the e820 table for a node. |
| */ |
| void __init e820_bootmem_free(pg_data_t *pgdat, unsigned long start,unsigned long end) |
| { |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| unsigned long last, addr; |
| |
| if (ei->type != E820_RAM || |
| ei->addr+ei->size <= start || |
| ei->addr >= end) |
| continue; |
| |
| addr = round_up(ei->addr, PAGE_SIZE); |
| if (addr < start) |
| addr = start; |
| |
| last = round_down(ei->addr + ei->size, PAGE_SIZE); |
| if (last >= end) |
| last = end; |
| |
| if (last > addr && last-addr >= PAGE_SIZE) |
| free_bootmem_node(pgdat, addr, last-addr); |
| } |
| } |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| unsigned long __init e820_end_of_ram(void) |
| { |
| int i; |
| unsigned long end_pfn = 0; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| unsigned long start, end; |
| |
| start = round_up(ei->addr, PAGE_SIZE); |
| end = round_down(ei->addr + ei->size, PAGE_SIZE); |
| if (start >= end) |
| continue; |
| if (ei->type == E820_RAM) { |
| if (end > end_pfn<<PAGE_SHIFT) |
| end_pfn = end>>PAGE_SHIFT; |
| } else { |
| if (end > end_pfn_map<<PAGE_SHIFT) |
| end_pfn_map = end>>PAGE_SHIFT; |
| } |
| } |
| |
| if (end_pfn > end_pfn_map) |
| end_pfn_map = end_pfn; |
| if (end_pfn_map > MAXMEM>>PAGE_SHIFT) |
| end_pfn_map = MAXMEM>>PAGE_SHIFT; |
| if (end_pfn > end_user_pfn) |
| end_pfn = end_user_pfn; |
| if (end_pfn > end_pfn_map) |
| end_pfn = end_pfn_map; |
| |
| return end_pfn; |
| } |
| |
| /* |
| * Compute how much memory is missing in a range. |
| * Unlike the other functions in this file the arguments are in page numbers. |
| */ |
| unsigned long __init |
| e820_hole_size(unsigned long start_pfn, unsigned long end_pfn) |
| { |
| unsigned long ram = 0; |
| unsigned long start = start_pfn << PAGE_SHIFT; |
| unsigned long end = end_pfn << PAGE_SHIFT; |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct e820entry *ei = &e820.map[i]; |
| unsigned long last, addr; |
| |
| if (ei->type != E820_RAM || |
| ei->addr+ei->size <= start || |
| ei->addr >= end) |
| continue; |
| |
| addr = round_up(ei->addr, PAGE_SIZE); |
| if (addr < start) |
| addr = start; |
| |
| last = round_down(ei->addr + ei->size, PAGE_SIZE); |
| if (last >= end) |
| last = end; |
| |
| if (last > addr) |
| ram += last - addr; |
| } |
| return ((end - start) - ram) >> PAGE_SHIFT; |
| } |
| |
| /* |
| * Mark e820 reserved areas as busy for the resource manager. |
| */ |
| void __init e820_reserve_resources(void) |
| { |
| int i; |
| for (i = 0; i < e820.nr_map; i++) { |
| struct resource *res; |
| res = alloc_bootmem_low(sizeof(struct resource)); |
| switch (e820.map[i].type) { |
| case E820_RAM: res->name = "System RAM"; break; |
| case E820_ACPI: res->name = "ACPI Tables"; break; |
| case E820_NVS: res->name = "ACPI Non-volatile Storage"; break; |
| default: res->name = "reserved"; |
| } |
| res->start = e820.map[i].addr; |
| res->end = res->start + e820.map[i].size - 1; |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| request_resource(&iomem_resource, res); |
| if (e820.map[i].type == E820_RAM) { |
| /* |
| * We don't know which RAM region contains kernel data, |
| * so we try it repeatedly and let the resource manager |
| * test it. |
| */ |
| request_resource(res, &code_resource); |
| request_resource(res, &data_resource); |
| #ifdef CONFIG_KEXEC |
| request_resource(res, &crashk_res); |
| #endif |
| } |
| } |
| } |
| |
| /* |
| * Add a memory region to the kernel e820 map. |
| */ |
| void __init add_memory_region(unsigned long start, unsigned long size, int type) |
| { |
| int x = e820.nr_map; |
| |
| if (x == E820MAX) { |
| printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); |
| return; |
| } |
| |
| e820.map[x].addr = start; |
| e820.map[x].size = size; |
| e820.map[x].type = type; |
| e820.nr_map++; |
| } |
| |
| void __init e820_print_map(char *who) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| printk(" %s: %016Lx - %016Lx ", who, |
| (unsigned long long) e820.map[i].addr, |
| (unsigned long long) (e820.map[i].addr + e820.map[i].size)); |
| switch (e820.map[i].type) { |
| case E820_RAM: printk("(usable)\n"); |
| break; |
| case E820_RESERVED: |
| printk("(reserved)\n"); |
| break; |
| case E820_ACPI: |
| printk("(ACPI data)\n"); |
| break; |
| case E820_NVS: |
| printk("(ACPI NVS)\n"); |
| break; |
| default: printk("type %u\n", e820.map[i].type); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Sanitize the BIOS e820 map. |
| * |
| * Some e820 responses include overlapping entries. The following |
| * replaces the original e820 map with a new one, removing overlaps. |
| * |
| */ |
| static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map) |
| { |
| struct change_member { |
| struct e820entry *pbios; /* pointer to original bios entry */ |
| unsigned long long addr; /* address for this change point */ |
| }; |
| static struct change_member change_point_list[2*E820MAX] __initdata; |
| static struct change_member *change_point[2*E820MAX] __initdata; |
| static struct e820entry *overlap_list[E820MAX] __initdata; |
| static struct e820entry new_bios[E820MAX] __initdata; |
| struct change_member *change_tmp; |
| unsigned long current_type, last_type; |
| unsigned long long last_addr; |
| int chgidx, still_changing; |
| int overlap_entries; |
| int new_bios_entry; |
| int old_nr, new_nr, chg_nr; |
| int i; |
| |
| /* |
| Visually we're performing the following (1,2,3,4 = memory types)... |
| |
| Sample memory map (w/overlaps): |
| ____22__________________ |
| ______________________4_ |
| ____1111________________ |
| _44_____________________ |
| 11111111________________ |
| ____________________33__ |
| ___________44___________ |
| __________33333_________ |
| ______________22________ |
| ___________________2222_ |
| _________111111111______ |
| _____________________11_ |
| _________________4______ |
| |
| Sanitized equivalent (no overlap): |
| 1_______________________ |
| _44_____________________ |
| ___1____________________ |
| ____22__________________ |
| ______11________________ |
| _________1______________ |
| __________3_____________ |
| ___________44___________ |
| _____________33_________ |
| _______________2________ |
| ________________1_______ |
| _________________4______ |
| ___________________2____ |
| ____________________33__ |
| ______________________4_ |
| */ |
| |
| /* if there's only one memory region, don't bother */ |
| if (*pnr_map < 2) |
| return -1; |
| |
| old_nr = *pnr_map; |
| |
| /* bail out if we find any unreasonable addresses in bios map */ |
| for (i=0; i<old_nr; i++) |
| if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) |
| return -1; |
| |
| /* create pointers for initial change-point information (for sorting) */ |
| for (i=0; i < 2*old_nr; i++) |
| change_point[i] = &change_point_list[i]; |
| |
| /* record all known change-points (starting and ending addresses), |
| omitting those that are for empty memory regions */ |
| chgidx = 0; |
| for (i=0; i < old_nr; i++) { |
| if (biosmap[i].size != 0) { |
| change_point[chgidx]->addr = biosmap[i].addr; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| } |
| } |
| chg_nr = chgidx; |
| |
| /* sort change-point list by memory addresses (low -> high) */ |
| still_changing = 1; |
| while (still_changing) { |
| still_changing = 0; |
| for (i=1; i < chg_nr; i++) { |
| /* if <current_addr> > <last_addr>, swap */ |
| /* or, if current=<start_addr> & last=<end_addr>, swap */ |
| if ((change_point[i]->addr < change_point[i-1]->addr) || |
| ((change_point[i]->addr == change_point[i-1]->addr) && |
| (change_point[i]->addr == change_point[i]->pbios->addr) && |
| (change_point[i-1]->addr != change_point[i-1]->pbios->addr)) |
| ) |
| { |
| change_tmp = change_point[i]; |
| change_point[i] = change_point[i-1]; |
| change_point[i-1] = change_tmp; |
| still_changing=1; |
| } |
| } |
| } |
| |
| /* create a new bios memory map, removing overlaps */ |
| overlap_entries=0; /* number of entries in the overlap table */ |
| new_bios_entry=0; /* index for creating new bios map entries */ |
| last_type = 0; /* start with undefined memory type */ |
| last_addr = 0; /* start with 0 as last starting address */ |
| /* loop through change-points, determining affect on the new bios map */ |
| for (chgidx=0; chgidx < chg_nr; chgidx++) |
| { |
| /* keep track of all overlapping bios entries */ |
| if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) |
| { |
| /* add map entry to overlap list (> 1 entry implies an overlap) */ |
| overlap_list[overlap_entries++]=change_point[chgidx]->pbios; |
| } |
| else |
| { |
| /* remove entry from list (order independent, so swap with last) */ |
| for (i=0; i<overlap_entries; i++) |
| { |
| if (overlap_list[i] == change_point[chgidx]->pbios) |
| overlap_list[i] = overlap_list[overlap_entries-1]; |
| } |
| overlap_entries--; |
| } |
| /* if there are overlapping entries, decide which "type" to use */ |
| /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ |
| current_type = 0; |
| for (i=0; i<overlap_entries; i++) |
| if (overlap_list[i]->type > current_type) |
| current_type = overlap_list[i]->type; |
| /* continue building up new bios map based on this information */ |
| if (current_type != last_type) { |
| if (last_type != 0) { |
| new_bios[new_bios_entry].size = |
| change_point[chgidx]->addr - last_addr; |
| /* move forward only if the new size was non-zero */ |
| if (new_bios[new_bios_entry].size != 0) |
| if (++new_bios_entry >= E820MAX) |
| break; /* no more space left for new bios entries */ |
| } |
| if (current_type != 0) { |
| new_bios[new_bios_entry].addr = change_point[chgidx]->addr; |
| new_bios[new_bios_entry].type = current_type; |
| last_addr=change_point[chgidx]->addr; |
| } |
| last_type = current_type; |
| } |
| } |
| new_nr = new_bios_entry; /* retain count for new bios entries */ |
| |
| /* copy new bios mapping into original location */ |
| memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry)); |
| *pnr_map = new_nr; |
| |
| return 0; |
| } |
| |
| /* |
| * Copy the BIOS e820 map into a safe place. |
| * |
| * Sanity-check it while we're at it.. |
| * |
| * If we're lucky and live on a modern system, the setup code |
| * will have given us a memory map that we can use to properly |
| * set up memory. If we aren't, we'll fake a memory map. |
| */ |
| static int __init copy_e820_map(struct e820entry * biosmap, int nr_map) |
| { |
| /* Only one memory region (or negative)? Ignore it */ |
| if (nr_map < 2) |
| return -1; |
| |
| do { |
| unsigned long start = biosmap->addr; |
| unsigned long size = biosmap->size; |
| unsigned long end = start + size; |
| unsigned long type = biosmap->type; |
| |
| /* Overflow in 64 bits? Ignore the memory map. */ |
| if (start > end) |
| return -1; |
| |
| add_memory_region(start, size, type); |
| } while (biosmap++,--nr_map); |
| return 0; |
| } |
| |
| void early_panic(char *msg) |
| { |
| early_printk(msg); |
| panic(msg); |
| } |
| |
| void __init setup_memory_region(void) |
| { |
| /* |
| * Try to copy the BIOS-supplied E820-map. |
| * |
| * Otherwise fake a memory map; one section from 0k->640k, |
| * the next section from 1mb->appropriate_mem_k |
| */ |
| sanitize_e820_map(E820_MAP, &E820_MAP_NR); |
| if (copy_e820_map(E820_MAP, E820_MAP_NR) < 0) |
| early_panic("Cannot find a valid memory map"); |
| printk(KERN_INFO "BIOS-provided physical RAM map:\n"); |
| e820_print_map("BIOS-e820"); |
| } |
| |
| static int __init parse_memopt(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| end_user_pfn = memparse(p, &p); |
| end_user_pfn >>= PAGE_SHIFT; |
| return 0; |
| } |
| early_param("mem", parse_memopt); |
| |
| static int userdef __initdata; |
| |
| static int __init parse_memmap_opt(char *p) |
| { |
| char *oldp; |
| unsigned long long start_at, mem_size; |
| |
| if (!strcmp(p, "exactmap")) { |
| #ifdef CONFIG_CRASH_DUMP |
| /* If we are doing a crash dump, we |
| * still need to know the real mem |
| * size before original memory map is |
| * reset. |
| */ |
| saved_max_pfn = e820_end_of_ram(); |
| #endif |
| end_pfn_map = 0; |
| e820.nr_map = 0; |
| userdef = 1; |
| return 0; |
| } |
| |
| oldp = p; |
| mem_size = memparse(p, &p); |
| if (p == oldp) |
| return -EINVAL; |
| if (*p == '@') { |
| start_at = memparse(p+1, &p); |
| add_memory_region(start_at, mem_size, E820_RAM); |
| } else if (*p == '#') { |
| start_at = memparse(p+1, &p); |
| add_memory_region(start_at, mem_size, E820_ACPI); |
| } else if (*p == '$') { |
| start_at = memparse(p+1, &p); |
| add_memory_region(start_at, mem_size, E820_RESERVED); |
| } else { |
| end_user_pfn = (mem_size >> PAGE_SHIFT); |
| } |
| return *p == '\0' ? 0 : -EINVAL; |
| } |
| early_param("memmap", parse_memmap_opt); |
| |
| void finish_e820_parsing(void) |
| { |
| if (userdef) { |
| printk(KERN_INFO "user-defined physical RAM map:\n"); |
| e820_print_map("user"); |
| } |
| } |
| |
| unsigned long pci_mem_start = 0xaeedbabe; |
| EXPORT_SYMBOL(pci_mem_start); |
| |
| /* |
| * Search for the biggest gap in the low 32 bits of the e820 |
| * memory space. We pass this space to PCI to assign MMIO resources |
| * for hotplug or unconfigured devices in. |
| * Hopefully the BIOS let enough space left. |
| */ |
| __init void e820_setup_gap(void) |
| { |
| unsigned long gapstart, gapsize, round; |
| unsigned long last; |
| int i; |
| int found = 0; |
| |
| last = 0x100000000ull; |
| gapstart = 0x10000000; |
| gapsize = 0x400000; |
| i = e820.nr_map; |
| while (--i >= 0) { |
| unsigned long long start = e820.map[i].addr; |
| unsigned long long end = start + e820.map[i].size; |
| |
| /* |
| * Since "last" is at most 4GB, we know we'll |
| * fit in 32 bits if this condition is true |
| */ |
| if (last > end) { |
| unsigned long gap = last - end; |
| |
| if (gap > gapsize) { |
| gapsize = gap; |
| gapstart = end; |
| found = 1; |
| } |
| } |
| if (start < last) |
| last = start; |
| } |
| |
| if (!found) { |
| gapstart = (end_pfn << PAGE_SHIFT) + 1024*1024; |
| printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit address range\n" |
| KERN_ERR "PCI: Unassigned devices with 32bit resource registers may break!\n"); |
| } |
| |
| /* |
| * See how much we want to round up: start off with |
| * rounding to the next 1MB area. |
| */ |
| round = 0x100000; |
| while ((gapsize >> 4) > round) |
| round += round; |
| /* Fun with two's complement */ |
| pci_mem_start = (gapstart + round) & -round; |
| |
| printk(KERN_INFO "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n", |
| pci_mem_start, gapstart, gapsize); |
| } |