| |
| #ifdef CONFIG_SCHEDSTATS |
| /* |
| * bump this up when changing the output format or the meaning of an existing |
| * format, so that tools can adapt (or abort) |
| */ |
| #define SCHEDSTAT_VERSION 14 |
| |
| static int show_schedstat(struct seq_file *seq, void *v) |
| { |
| int cpu; |
| int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9; |
| char *mask_str = kmalloc(mask_len, GFP_KERNEL); |
| |
| if (mask_str == NULL) |
| return -ENOMEM; |
| |
| seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); |
| seq_printf(seq, "timestamp %lu\n", jiffies); |
| for_each_online_cpu(cpu) { |
| struct rq *rq = cpu_rq(cpu); |
| #ifdef CONFIG_SMP |
| struct sched_domain *sd; |
| int dcount = 0; |
| #endif |
| |
| /* runqueue-specific stats */ |
| seq_printf(seq, |
| "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", |
| cpu, rq->yld_both_empty, |
| rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, |
| rq->sched_switch, rq->sched_count, rq->sched_goidle, |
| rq->ttwu_count, rq->ttwu_local, |
| rq->rq_sched_info.cpu_time, |
| rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); |
| |
| seq_printf(seq, "\n"); |
| |
| #ifdef CONFIG_SMP |
| /* domain-specific stats */ |
| preempt_disable(); |
| for_each_domain(cpu, sd) { |
| enum cpu_idle_type itype; |
| |
| cpumask_scnprintf(mask_str, mask_len, |
| *sched_domain_span(sd)); |
| seq_printf(seq, "domain%d %s", dcount++, mask_str); |
| for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; |
| itype++) { |
| seq_printf(seq, " %u %u %u %u %u %u %u %u", |
| sd->lb_count[itype], |
| sd->lb_balanced[itype], |
| sd->lb_failed[itype], |
| sd->lb_imbalance[itype], |
| sd->lb_gained[itype], |
| sd->lb_hot_gained[itype], |
| sd->lb_nobusyq[itype], |
| sd->lb_nobusyg[itype]); |
| } |
| seq_printf(seq, |
| " %u %u %u %u %u %u %u %u %u %u %u %u\n", |
| sd->alb_count, sd->alb_failed, sd->alb_pushed, |
| sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, |
| sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, |
| sd->ttwu_wake_remote, sd->ttwu_move_affine, |
| sd->ttwu_move_balance); |
| } |
| preempt_enable(); |
| #endif |
| } |
| kfree(mask_str); |
| return 0; |
| } |
| |
| static int schedstat_open(struct inode *inode, struct file *file) |
| { |
| unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); |
| char *buf = kmalloc(size, GFP_KERNEL); |
| struct seq_file *m; |
| int res; |
| |
| if (!buf) |
| return -ENOMEM; |
| res = single_open(file, show_schedstat, NULL); |
| if (!res) { |
| m = file->private_data; |
| m->buf = buf; |
| m->size = size; |
| } else |
| kfree(buf); |
| return res; |
| } |
| |
| static const struct file_operations proc_schedstat_operations = { |
| .open = schedstat_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init proc_schedstat_init(void) |
| { |
| proc_create("schedstat", 0, NULL, &proc_schedstat_operations); |
| return 0; |
| } |
| module_init(proc_schedstat_init); |
| |
| /* |
| * Expects runqueue lock to be held for atomicity of update |
| */ |
| static inline void |
| rq_sched_info_arrive(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) { |
| rq->rq_sched_info.run_delay += delta; |
| rq->rq_sched_info.pcount++; |
| } |
| } |
| |
| /* |
| * Expects runqueue lock to be held for atomicity of update |
| */ |
| static inline void |
| rq_sched_info_depart(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) |
| rq->rq_sched_info.cpu_time += delta; |
| } |
| |
| static inline void |
| rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) |
| { |
| if (rq) |
| rq->rq_sched_info.run_delay += delta; |
| } |
| # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) |
| # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) |
| # define schedstat_set(var, val) do { var = (val); } while (0) |
| #else /* !CONFIG_SCHEDSTATS */ |
| static inline void |
| rq_sched_info_arrive(struct rq *rq, unsigned long long delta) |
| {} |
| static inline void |
| rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) |
| {} |
| static inline void |
| rq_sched_info_depart(struct rq *rq, unsigned long long delta) |
| {} |
| # define schedstat_inc(rq, field) do { } while (0) |
| # define schedstat_add(rq, field, amt) do { } while (0) |
| # define schedstat_set(var, val) do { } while (0) |
| #endif |
| |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| static inline void sched_info_reset_dequeued(struct task_struct *t) |
| { |
| t->sched_info.last_queued = 0; |
| } |
| |
| /* |
| * Called when a process is dequeued from the active array and given |
| * the cpu. We should note that with the exception of interactive |
| * tasks, the expired queue will become the active queue after the active |
| * queue is empty, without explicitly dequeuing and requeuing tasks in the |
| * expired queue. (Interactive tasks may be requeued directly to the |
| * active queue, thus delaying tasks in the expired queue from running; |
| * see scheduler_tick()). |
| * |
| * Though we are interested in knowing how long it was from the *first* time a |
| * task was queued to the time that it finally hit a cpu, we call this routine |
| * from dequeue_task() to account for possible rq->clock skew across cpus. The |
| * delta taken on each cpu would annul the skew. |
| */ |
| static inline void sched_info_dequeued(struct task_struct *t) |
| { |
| unsigned long long now = task_rq(t)->clock, delta = 0; |
| |
| if (unlikely(sched_info_on())) |
| if (t->sched_info.last_queued) |
| delta = now - t->sched_info.last_queued; |
| sched_info_reset_dequeued(t); |
| t->sched_info.run_delay += delta; |
| |
| rq_sched_info_dequeued(task_rq(t), delta); |
| } |
| |
| /* |
| * Called when a task finally hits the cpu. We can now calculate how |
| * long it was waiting to run. We also note when it began so that we |
| * can keep stats on how long its timeslice is. |
| */ |
| static void sched_info_arrive(struct task_struct *t) |
| { |
| unsigned long long now = task_rq(t)->clock, delta = 0; |
| |
| if (t->sched_info.last_queued) |
| delta = now - t->sched_info.last_queued; |
| sched_info_reset_dequeued(t); |
| t->sched_info.run_delay += delta; |
| t->sched_info.last_arrival = now; |
| t->sched_info.pcount++; |
| |
| rq_sched_info_arrive(task_rq(t), delta); |
| } |
| |
| /* |
| * Called when a process is queued into either the active or expired |
| * array. The time is noted and later used to determine how long we |
| * had to wait for us to reach the cpu. Since the expired queue will |
| * become the active queue after active queue is empty, without dequeuing |
| * and requeuing any tasks, we are interested in queuing to either. It |
| * is unusual but not impossible for tasks to be dequeued and immediately |
| * requeued in the same or another array: this can happen in sched_yield(), |
| * set_user_nice(), and even load_balance() as it moves tasks from runqueue |
| * to runqueue. |
| * |
| * This function is only called from enqueue_task(), but also only updates |
| * the timestamp if it is already not set. It's assumed that |
| * sched_info_dequeued() will clear that stamp when appropriate. |
| */ |
| static inline void sched_info_queued(struct task_struct *t) |
| { |
| if (unlikely(sched_info_on())) |
| if (!t->sched_info.last_queued) |
| t->sched_info.last_queued = task_rq(t)->clock; |
| } |
| |
| /* |
| * Called when a process ceases being the active-running process, either |
| * voluntarily or involuntarily. Now we can calculate how long we ran. |
| * Also, if the process is still in the TASK_RUNNING state, call |
| * sched_info_queued() to mark that it has now again started waiting on |
| * the runqueue. |
| */ |
| static inline void sched_info_depart(struct task_struct *t) |
| { |
| unsigned long long delta = task_rq(t)->clock - |
| t->sched_info.last_arrival; |
| |
| t->sched_info.cpu_time += delta; |
| rq_sched_info_depart(task_rq(t), delta); |
| |
| if (t->state == TASK_RUNNING) |
| sched_info_queued(t); |
| } |
| |
| /* |
| * Called when tasks are switched involuntarily due, typically, to expiring |
| * their time slice. (This may also be called when switching to or from |
| * the idle task.) We are only called when prev != next. |
| */ |
| static inline void |
| __sched_info_switch(struct task_struct *prev, struct task_struct *next) |
| { |
| struct rq *rq = task_rq(prev); |
| |
| /* |
| * prev now departs the cpu. It's not interesting to record |
| * stats about how efficient we were at scheduling the idle |
| * process, however. |
| */ |
| if (prev != rq->idle) |
| sched_info_depart(prev); |
| |
| if (next != rq->idle) |
| sched_info_arrive(next); |
| } |
| static inline void |
| sched_info_switch(struct task_struct *prev, struct task_struct *next) |
| { |
| if (unlikely(sched_info_on())) |
| __sched_info_switch(prev, next); |
| } |
| #else |
| #define sched_info_queued(t) do { } while (0) |
| #define sched_info_reset_dequeued(t) do { } while (0) |
| #define sched_info_dequeued(t) do { } while (0) |
| #define sched_info_switch(t, next) do { } while (0) |
| #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ |
| |
| /* |
| * The following are functions that support scheduler-internal time accounting. |
| * These functions are generally called at the timer tick. None of this depends |
| * on CONFIG_SCHEDSTATS. |
| */ |
| |
| /** |
| * account_group_user_time - Maintain utime for a thread group. |
| * |
| * @tsk: Pointer to task structure. |
| * @cputime: Time value by which to increment the utime field of the |
| * thread_group_cputime structure. |
| * |
| * If thread group time is being maintained, get the structure for the |
| * running CPU and update the utime field there. |
| */ |
| static inline void account_group_user_time(struct task_struct *tsk, |
| cputime_t cputime) |
| { |
| struct signal_struct *sig; |
| |
| /* tsk == current, ensure it is safe to use ->signal */ |
| if (unlikely(tsk->exit_state)) |
| return; |
| |
| sig = tsk->signal; |
| if (sig->cputime.totals) { |
| struct task_cputime *times; |
| |
| times = per_cpu_ptr(sig->cputime.totals, get_cpu()); |
| times->utime = cputime_add(times->utime, cputime); |
| put_cpu_no_resched(); |
| } |
| } |
| |
| /** |
| * account_group_system_time - Maintain stime for a thread group. |
| * |
| * @tsk: Pointer to task structure. |
| * @cputime: Time value by which to increment the stime field of the |
| * thread_group_cputime structure. |
| * |
| * If thread group time is being maintained, get the structure for the |
| * running CPU and update the stime field there. |
| */ |
| static inline void account_group_system_time(struct task_struct *tsk, |
| cputime_t cputime) |
| { |
| struct signal_struct *sig; |
| |
| /* tsk == current, ensure it is safe to use ->signal */ |
| if (unlikely(tsk->exit_state)) |
| return; |
| |
| sig = tsk->signal; |
| if (sig->cputime.totals) { |
| struct task_cputime *times; |
| |
| times = per_cpu_ptr(sig->cputime.totals, get_cpu()); |
| times->stime = cputime_add(times->stime, cputime); |
| put_cpu_no_resched(); |
| } |
| } |
| |
| /** |
| * account_group_exec_runtime - Maintain exec runtime for a thread group. |
| * |
| * @tsk: Pointer to task structure. |
| * @ns: Time value by which to increment the sum_exec_runtime field |
| * of the thread_group_cputime structure. |
| * |
| * If thread group time is being maintained, get the structure for the |
| * running CPU and update the sum_exec_runtime field there. |
| */ |
| static inline void account_group_exec_runtime(struct task_struct *tsk, |
| unsigned long long ns) |
| { |
| struct signal_struct *sig; |
| |
| sig = tsk->signal; |
| /* see __exit_signal()->task_rq_unlock_wait() */ |
| barrier(); |
| if (unlikely(!sig)) |
| return; |
| |
| if (sig->cputime.totals) { |
| struct task_cputime *times; |
| |
| times = per_cpu_ptr(sig->cputime.totals, get_cpu()); |
| times->sum_exec_runtime += ns; |
| put_cpu_no_resched(); |
| } |
| } |