blob: 3065c57a63c19873e07d18e13122f04704e2de96 [file] [log] [blame]
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <asm/perf_event.h>
#include <asm/insn.h>
#include "perf_event.h"
/* The size of a BTS record in bytes: */
#define BTS_RECORD_SIZE 24
#define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
#define PEBS_BUFFER_SIZE PAGE_SIZE
/*
* pebs_record_32 for p4 and core not supported
struct pebs_record_32 {
u32 flags, ip;
u32 ax, bc, cx, dx;
u32 si, di, bp, sp;
};
*/
union intel_x86_pebs_dse {
u64 val;
struct {
unsigned int ld_dse:4;
unsigned int ld_stlb_miss:1;
unsigned int ld_locked:1;
unsigned int ld_reserved:26;
};
struct {
unsigned int st_l1d_hit:1;
unsigned int st_reserved1:3;
unsigned int st_stlb_miss:1;
unsigned int st_locked:1;
unsigned int st_reserved2:26;
};
};
/*
* Map PEBS Load Latency Data Source encodings to generic
* memory data source information
*/
#define P(a, b) PERF_MEM_S(a, b)
#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
static const u64 pebs_data_source[] = {
P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
};
static u64 precise_store_data(u64 status)
{
union intel_x86_pebs_dse dse;
u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
dse.val = status;
/*
* bit 4: TLB access
* 1 = stored missed 2nd level TLB
*
* so it either hit the walker or the OS
* otherwise hit 2nd level TLB
*/
if (dse.st_stlb_miss)
val |= P(TLB, MISS);
else
val |= P(TLB, HIT);
/*
* bit 0: hit L1 data cache
* if not set, then all we know is that
* it missed L1D
*/
if (dse.st_l1d_hit)
val |= P(LVL, HIT);
else
val |= P(LVL, MISS);
/*
* bit 5: Locked prefix
*/
if (dse.st_locked)
val |= P(LOCK, LOCKED);
return val;
}
static u64 precise_store_data_hsw(u64 status)
{
union perf_mem_data_src dse;
dse.val = 0;
dse.mem_op = PERF_MEM_OP_STORE;
dse.mem_lvl = PERF_MEM_LVL_NA;
if (status & 1)
dse.mem_lvl = PERF_MEM_LVL_L1;
/* Nothing else supported. Sorry. */
return dse.val;
}
static u64 load_latency_data(u64 status)
{
union intel_x86_pebs_dse dse;
u64 val;
int model = boot_cpu_data.x86_model;
int fam = boot_cpu_data.x86;
dse.val = status;
/*
* use the mapping table for bit 0-3
*/
val = pebs_data_source[dse.ld_dse];
/*
* Nehalem models do not support TLB, Lock infos
*/
if (fam == 0x6 && (model == 26 || model == 30
|| model == 31 || model == 46)) {
val |= P(TLB, NA) | P(LOCK, NA);
return val;
}
/*
* bit 4: TLB access
* 0 = did not miss 2nd level TLB
* 1 = missed 2nd level TLB
*/
if (dse.ld_stlb_miss)
val |= P(TLB, MISS) | P(TLB, L2);
else
val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
/*
* bit 5: locked prefix
*/
if (dse.ld_locked)
val |= P(LOCK, LOCKED);
return val;
}
struct pebs_record_core {
u64 flags, ip;
u64 ax, bx, cx, dx;
u64 si, di, bp, sp;
u64 r8, r9, r10, r11;
u64 r12, r13, r14, r15;
};
struct pebs_record_nhm {
u64 flags, ip;
u64 ax, bx, cx, dx;
u64 si, di, bp, sp;
u64 r8, r9, r10, r11;
u64 r12, r13, r14, r15;
u64 status, dla, dse, lat;
};
/*
* Same as pebs_record_nhm, with two additional fields.
*/
struct pebs_record_hsw {
struct pebs_record_nhm nhm;
/*
* Real IP of the event. In the Intel documentation this
* is called eventingrip.
*/
u64 real_ip;
/*
* TSX tuning information field: abort cycles and abort flags.
*/
u64 tsx_tuning;
};
void init_debug_store_on_cpu(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
if (!ds)
return;
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
(u32)((u64)(unsigned long)ds),
(u32)((u64)(unsigned long)ds >> 32));
}
void fini_debug_store_on_cpu(int cpu)
{
if (!per_cpu(cpu_hw_events, cpu).ds)
return;
wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
}
static int alloc_pebs_buffer(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
int node = cpu_to_node(cpu);
int max, thresh = 1; /* always use a single PEBS record */
void *buffer;
if (!x86_pmu.pebs)
return 0;
buffer = kmalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL | __GFP_ZERO, node);
if (unlikely(!buffer))
return -ENOMEM;
max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
ds->pebs_buffer_base = (u64)(unsigned long)buffer;
ds->pebs_index = ds->pebs_buffer_base;
ds->pebs_absolute_maximum = ds->pebs_buffer_base +
max * x86_pmu.pebs_record_size;
ds->pebs_interrupt_threshold = ds->pebs_buffer_base +
thresh * x86_pmu.pebs_record_size;
return 0;
}
static void release_pebs_buffer(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
if (!ds || !x86_pmu.pebs)
return;
kfree((void *)(unsigned long)ds->pebs_buffer_base);
ds->pebs_buffer_base = 0;
}
static int alloc_bts_buffer(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
int node = cpu_to_node(cpu);
int max, thresh;
void *buffer;
if (!x86_pmu.bts)
return 0;
buffer = kmalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_ZERO, node);
if (unlikely(!buffer))
return -ENOMEM;
max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
thresh = max / 16;
ds->bts_buffer_base = (u64)(unsigned long)buffer;
ds->bts_index = ds->bts_buffer_base;
ds->bts_absolute_maximum = ds->bts_buffer_base +
max * BTS_RECORD_SIZE;
ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
thresh * BTS_RECORD_SIZE;
return 0;
}
static void release_bts_buffer(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
if (!ds || !x86_pmu.bts)
return;
kfree((void *)(unsigned long)ds->bts_buffer_base);
ds->bts_buffer_base = 0;
}
static int alloc_ds_buffer(int cpu)
{
int node = cpu_to_node(cpu);
struct debug_store *ds;
ds = kmalloc_node(sizeof(*ds), GFP_KERNEL | __GFP_ZERO, node);
if (unlikely(!ds))
return -ENOMEM;
per_cpu(cpu_hw_events, cpu).ds = ds;
return 0;
}
static void release_ds_buffer(int cpu)
{
struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
if (!ds)
return;
per_cpu(cpu_hw_events, cpu).ds = NULL;
kfree(ds);
}
void release_ds_buffers(void)
{
int cpu;
if (!x86_pmu.bts && !x86_pmu.pebs)
return;
get_online_cpus();
for_each_online_cpu(cpu)
fini_debug_store_on_cpu(cpu);
for_each_possible_cpu(cpu) {
release_pebs_buffer(cpu);
release_bts_buffer(cpu);
release_ds_buffer(cpu);
}
put_online_cpus();
}
void reserve_ds_buffers(void)
{
int bts_err = 0, pebs_err = 0;
int cpu;
x86_pmu.bts_active = 0;
x86_pmu.pebs_active = 0;
if (!x86_pmu.bts && !x86_pmu.pebs)
return;
if (!x86_pmu.bts)
bts_err = 1;
if (!x86_pmu.pebs)
pebs_err = 1;
get_online_cpus();
for_each_possible_cpu(cpu) {
if (alloc_ds_buffer(cpu)) {
bts_err = 1;
pebs_err = 1;
}
if (!bts_err && alloc_bts_buffer(cpu))
bts_err = 1;
if (!pebs_err && alloc_pebs_buffer(cpu))
pebs_err = 1;
if (bts_err && pebs_err)
break;
}
if (bts_err) {
for_each_possible_cpu(cpu)
release_bts_buffer(cpu);
}
if (pebs_err) {
for_each_possible_cpu(cpu)
release_pebs_buffer(cpu);
}
if (bts_err && pebs_err) {
for_each_possible_cpu(cpu)
release_ds_buffer(cpu);
} else {
if (x86_pmu.bts && !bts_err)
x86_pmu.bts_active = 1;
if (x86_pmu.pebs && !pebs_err)
x86_pmu.pebs_active = 1;
for_each_online_cpu(cpu)
init_debug_store_on_cpu(cpu);
}
put_online_cpus();
}
/*
* BTS
*/
struct event_constraint bts_constraint =
EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
void intel_pmu_enable_bts(u64 config)
{
unsigned long debugctlmsr;
debugctlmsr = get_debugctlmsr();
debugctlmsr |= DEBUGCTLMSR_TR;
debugctlmsr |= DEBUGCTLMSR_BTS;
debugctlmsr |= DEBUGCTLMSR_BTINT;
if (!(config & ARCH_PERFMON_EVENTSEL_OS))
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
if (!(config & ARCH_PERFMON_EVENTSEL_USR))
debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
update_debugctlmsr(debugctlmsr);
}
void intel_pmu_disable_bts(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long debugctlmsr;
if (!cpuc->ds)
return;
debugctlmsr = get_debugctlmsr();
debugctlmsr &=
~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
update_debugctlmsr(debugctlmsr);
}
int intel_pmu_drain_bts_buffer(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct debug_store *ds = cpuc->ds;
struct bts_record {
u64 from;
u64 to;
u64 flags;
};
struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
struct bts_record *at, *top;
struct perf_output_handle handle;
struct perf_event_header header;
struct perf_sample_data data;
struct pt_regs regs;
if (!event)
return 0;
if (!x86_pmu.bts_active)
return 0;
at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
top = (struct bts_record *)(unsigned long)ds->bts_index;
if (top <= at)
return 0;
memset(&regs, 0, sizeof(regs));
ds->bts_index = ds->bts_buffer_base;
perf_sample_data_init(&data, 0, event->hw.last_period);
/*
* Prepare a generic sample, i.e. fill in the invariant fields.
* We will overwrite the from and to address before we output
* the sample.
*/
perf_prepare_sample(&header, &data, event, &regs);
if (perf_output_begin(&handle, event, header.size * (top - at)))
return 1;
for (; at < top; at++) {
data.ip = at->from;
data.addr = at->to;
perf_output_sample(&handle, &header, &data, event);
}
perf_output_end(&handle);
/* There's new data available. */
event->hw.interrupts++;
event->pending_kill = POLL_IN;
return 1;
}
/*
* PEBS
*/
struct event_constraint intel_core2_pebs_event_constraints[] = {
INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
INTEL_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
INTEL_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_atom_pebs_event_constraints[] = {
INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_nehalem_pebs_event_constraints[] = {
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
INTEL_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
INTEL_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
INTEL_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_westmere_pebs_event_constraints[] = {
INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
INTEL_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
INTEL_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_snb_pebs_event_constraints[] = {
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x02d4, 0xf), /* MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_ivb_pebs_event_constraints[] = {
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_hsw_pebs_event_constraints[] = {
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
INTEL_PST_HSW_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
INTEL_UEVENT_CONSTRAINT(0x01c5, 0xf), /* BR_MISP_RETIRED.CONDITIONAL */
INTEL_UEVENT_CONSTRAINT(0x04c5, 0xf), /* BR_MISP_RETIRED.ALL_BRANCHES */
INTEL_UEVENT_CONSTRAINT(0x20c5, 0xf), /* BR_MISP_RETIRED.NEAR_TAKEN */
INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.* */
/* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
INTEL_UEVENT_CONSTRAINT(0x11d0, 0xf),
/* MEM_UOPS_RETIRED.STLB_MISS_STORES */
INTEL_UEVENT_CONSTRAINT(0x12d0, 0xf),
INTEL_UEVENT_CONSTRAINT(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
INTEL_UEVENT_CONSTRAINT(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
/* MEM_UOPS_RETIRED.SPLIT_STORES */
INTEL_UEVENT_CONSTRAINT(0x42d0, 0xf),
INTEL_UEVENT_CONSTRAINT(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
INTEL_PST_HSW_CONSTRAINT(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
INTEL_UEVENT_CONSTRAINT(0x01d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L1_HIT */
INTEL_UEVENT_CONSTRAINT(0x02d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L2_HIT */
INTEL_UEVENT_CONSTRAINT(0x04d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L3_HIT */
/* MEM_LOAD_UOPS_RETIRED.HIT_LFB */
INTEL_UEVENT_CONSTRAINT(0x40d1, 0xf),
/* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS */
INTEL_UEVENT_CONSTRAINT(0x01d2, 0xf),
/* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT */
INTEL_UEVENT_CONSTRAINT(0x02d2, 0xf),
/* MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM */
INTEL_UEVENT_CONSTRAINT(0x01d3, 0xf),
INTEL_UEVENT_CONSTRAINT(0x04c8, 0xf), /* HLE_RETIRED.Abort */
INTEL_UEVENT_CONSTRAINT(0x04c9, 0xf), /* RTM_RETIRED.Abort */
EVENT_CONSTRAINT_END
};
struct event_constraint *intel_pebs_constraints(struct perf_event *event)
{
struct event_constraint *c;
if (!event->attr.precise_ip)
return NULL;
if (x86_pmu.pebs_constraints) {
for_each_event_constraint(c, x86_pmu.pebs_constraints) {
if ((event->hw.config & c->cmask) == c->code) {
event->hw.flags |= c->flags;
return c;
}
}
}
return &emptyconstraint;
}
void intel_pmu_pebs_enable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
cpuc->pebs_enabled |= 1ULL << hwc->idx;
if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
cpuc->pebs_enabled |= 1ULL << 63;
}
void intel_pmu_pebs_disable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_LDLAT)
cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
else if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_ST)
cpuc->pebs_enabled &= ~(1ULL << 63);
if (cpuc->enabled)
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
}
void intel_pmu_pebs_enable_all(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
if (cpuc->pebs_enabled)
wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
}
void intel_pmu_pebs_disable_all(void)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
if (cpuc->pebs_enabled)
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}
static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long from = cpuc->lbr_entries[0].from;
unsigned long old_to, to = cpuc->lbr_entries[0].to;
unsigned long ip = regs->ip;
int is_64bit = 0;
/*
* We don't need to fixup if the PEBS assist is fault like
*/
if (!x86_pmu.intel_cap.pebs_trap)
return 1;
/*
* No LBR entry, no basic block, no rewinding
*/
if (!cpuc->lbr_stack.nr || !from || !to)
return 0;
/*
* Basic blocks should never cross user/kernel boundaries
*/
if (kernel_ip(ip) != kernel_ip(to))
return 0;
/*
* unsigned math, either ip is before the start (impossible) or
* the basic block is larger than 1 page (sanity)
*/
if ((ip - to) > PAGE_SIZE)
return 0;
/*
* We sampled a branch insn, rewind using the LBR stack
*/
if (ip == to) {
set_linear_ip(regs, from);
return 1;
}
do {
struct insn insn;
u8 buf[MAX_INSN_SIZE];
void *kaddr;
old_to = to;
if (!kernel_ip(ip)) {
int bytes, size = MAX_INSN_SIZE;
bytes = copy_from_user_nmi(buf, (void __user *)to, size);
if (bytes != size)
return 0;
kaddr = buf;
} else
kaddr = (void *)to;
#ifdef CONFIG_X86_64
is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif
insn_init(&insn, kaddr, is_64bit);
insn_get_length(&insn);
to += insn.length;
} while (to < ip);
if (to == ip) {
set_linear_ip(regs, old_to);
return 1;
}
/*
* Even though we decoded the basic block, the instruction stream
* never matched the given IP, either the TO or the IP got corrupted.
*/
return 0;
}
static void __intel_pmu_pebs_event(struct perf_event *event,
struct pt_regs *iregs, void *__pebs)
{
/*
* We cast to pebs_record_nhm to get the load latency data
* if extra_reg MSR_PEBS_LD_LAT_THRESHOLD used
*/
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct pebs_record_nhm *pebs = __pebs;
struct pebs_record_hsw *pebs_hsw = __pebs;
struct perf_sample_data data;
struct pt_regs regs;
u64 sample_type;
int fll, fst;
if (!intel_pmu_save_and_restart(event))
return;
fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
fst = event->hw.flags & (PERF_X86_EVENT_PEBS_ST |
PERF_X86_EVENT_PEBS_ST_HSW);
perf_sample_data_init(&data, 0, event->hw.last_period);
data.period = event->hw.last_period;
sample_type = event->attr.sample_type;
/*
* if PEBS-LL or PreciseStore
*/
if (fll || fst) {
/*
* Use latency for weight (only avail with PEBS-LL)
*/
if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
data.weight = pebs->lat;
/*
* data.data_src encodes the data source
*/
if (sample_type & PERF_SAMPLE_DATA_SRC) {
if (fll)
data.data_src.val = load_latency_data(pebs->dse);
else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
data.data_src.val =
precise_store_data_hsw(pebs->dse);
else
data.data_src.val = precise_store_data(pebs->dse);
}
}
/*
* We use the interrupt regs as a base because the PEBS record
* does not contain a full regs set, specifically it seems to
* lack segment descriptors, which get used by things like
* user_mode().
*
* In the simple case fix up only the IP and BP,SP regs, for
* PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
* A possible PERF_SAMPLE_REGS will have to transfer all regs.
*/
regs = *iregs;
regs.flags = pebs->flags;
set_linear_ip(&regs, pebs->ip);
regs.bp = pebs->bp;
regs.sp = pebs->sp;
if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
regs.ip = pebs_hsw->real_ip;
regs.flags |= PERF_EFLAGS_EXACT;
} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(&regs))
regs.flags |= PERF_EFLAGS_EXACT;
else
regs.flags &= ~PERF_EFLAGS_EXACT;
if ((event->attr.sample_type & PERF_SAMPLE_ADDR) &&
x86_pmu.intel_cap.pebs_format >= 1)
data.addr = pebs->dla;
if (has_branch_stack(event))
data.br_stack = &cpuc->lbr_stack;
if (perf_event_overflow(event, &data, &regs))
x86_pmu_stop(event, 0);
}
static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct debug_store *ds = cpuc->ds;
struct perf_event *event = cpuc->events[0]; /* PMC0 only */
struct pebs_record_core *at, *top;
int n;
if (!x86_pmu.pebs_active)
return;
at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
/*
* Whatever else happens, drain the thing
*/
ds->pebs_index = ds->pebs_buffer_base;
if (!test_bit(0, cpuc->active_mask))
return;
WARN_ON_ONCE(!event);
if (!event->attr.precise_ip)
return;
n = top - at;
if (n <= 0)
return;
/*
* Should not happen, we program the threshold at 1 and do not
* set a reset value.
*/
WARN_ONCE(n > 1, "bad leftover pebs %d\n", n);
at += n - 1;
__intel_pmu_pebs_event(event, iregs, at);
}
static void __intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, void *at,
void *top)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct debug_store *ds = cpuc->ds;
struct perf_event *event = NULL;
u64 status = 0;
int bit;
ds->pebs_index = ds->pebs_buffer_base;
for (; at < top; at += x86_pmu.pebs_record_size) {
struct pebs_record_nhm *p = at;
for_each_set_bit(bit, (unsigned long *)&p->status,
x86_pmu.max_pebs_events) {
event = cpuc->events[bit];
if (!test_bit(bit, cpuc->active_mask))
continue;
WARN_ON_ONCE(!event);
if (!event->attr.precise_ip)
continue;
if (__test_and_set_bit(bit, (unsigned long *)&status))
continue;
break;
}
if (!event || bit >= x86_pmu.max_pebs_events)
continue;
__intel_pmu_pebs_event(event, iregs, at);
}
}
static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct debug_store *ds = cpuc->ds;
struct pebs_record_nhm *at, *top;
int n;
if (!x86_pmu.pebs_active)
return;
at = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
ds->pebs_index = ds->pebs_buffer_base;
n = top - at;
if (n <= 0)
return;
/*
* Should not happen, we program the threshold at 1 and do not
* set a reset value.
*/
WARN_ONCE(n > x86_pmu.max_pebs_events,
"Unexpected number of pebs records %d\n", n);
return __intel_pmu_drain_pebs_nhm(iregs, at, top);
}
static void intel_pmu_drain_pebs_hsw(struct pt_regs *iregs)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct debug_store *ds = cpuc->ds;
struct pebs_record_hsw *at, *top;
int n;
if (!x86_pmu.pebs_active)
return;
at = (struct pebs_record_hsw *)(unsigned long)ds->pebs_buffer_base;
top = (struct pebs_record_hsw *)(unsigned long)ds->pebs_index;
n = top - at;
if (n <= 0)
return;
/*
* Should not happen, we program the threshold at 1 and do not
* set a reset value.
*/
WARN_ONCE(n > x86_pmu.max_pebs_events,
"Unexpected number of pebs records %d\n", n);
return __intel_pmu_drain_pebs_nhm(iregs, at, top);
}
/*
* BTS, PEBS probe and setup
*/
void intel_ds_init(void)
{
/*
* No support for 32bit formats
*/
if (!boot_cpu_has(X86_FEATURE_DTES64))
return;
x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
if (x86_pmu.pebs) {
char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
int format = x86_pmu.intel_cap.pebs_format;
switch (format) {
case 0:
printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
break;
case 1:
printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
break;
case 2:
pr_cont("PEBS fmt2%c, ", pebs_type);
x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
x86_pmu.drain_pebs = intel_pmu_drain_pebs_hsw;
break;
default:
printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
x86_pmu.pebs = 0;
}
}
}
void perf_restore_debug_store(void)
{
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
if (!x86_pmu.bts && !x86_pmu.pebs)
return;
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
}