| #ifndef _PPC64_PGTABLE_H |
| #define _PPC64_PGTABLE_H |
| |
| /* |
| * This file contains the functions and defines necessary to modify and use |
| * the ppc64 hashed page table. |
| */ |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/config.h> |
| #include <linux/stddef.h> |
| #include <asm/processor.h> /* For TASK_SIZE */ |
| #include <asm/mmu.h> |
| #include <asm/page.h> |
| #include <asm/tlbflush.h> |
| struct mm_struct; |
| #endif /* __ASSEMBLY__ */ |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| #include <asm/pgtable-64k.h> |
| #else |
| #include <asm/pgtable-4k.h> |
| #endif |
| |
| #define FIRST_USER_ADDRESS 0 |
| |
| /* |
| * Size of EA range mapped by our pagetables. |
| */ |
| #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ |
| PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) |
| #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) |
| |
| #if TASK_SIZE_USER64 > PGTABLE_RANGE |
| #error TASK_SIZE_USER64 exceeds pagetable range |
| #endif |
| |
| #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) |
| #error TASK_SIZE_USER64 exceeds user VSID range |
| #endif |
| |
| /* |
| * Define the address range of the vmalloc VM area. |
| */ |
| #define VMALLOC_START (0xD000000000000000ul) |
| #define VMALLOC_SIZE (0x80000000000UL) |
| #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) |
| |
| /* |
| * Define the address range of the imalloc VM area. |
| */ |
| #define PHBS_IO_BASE VMALLOC_END |
| #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ |
| #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) |
| |
| /* |
| * Common bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PowerPC PTE as closely as possible. Additional |
| * bits may be defined in pgtable-*.h |
| */ |
| #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ |
| #define _PAGE_USER 0x0002 /* matches one of the PP bits */ |
| #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ |
| #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ |
| #define _PAGE_GUARDED 0x0008 |
| #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ |
| #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ |
| #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ |
| #define _PAGE_DIRTY 0x0080 /* C: page changed */ |
| #define _PAGE_ACCESSED 0x0100 /* R: page referenced */ |
| #define _PAGE_RW 0x0200 /* software: user write access allowed */ |
| #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ |
| #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ |
| |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) |
| |
| #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) |
| |
| /* __pgprot defined in asm-ppc64/page.h */ |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) |
| |
| #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) |
| #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) |
| #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) |
| #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ |
| _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) |
| #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) |
| |
| #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) |
| #define HAVE_PAGE_AGP |
| |
| /* PTEIDX nibble */ |
| #define _PTEIDX_SECONDARY 0x8 |
| #define _PTEIDX_GROUP_IX 0x7 |
| |
| |
| /* |
| * POWER4 and newer have per page execute protection, older chips can only |
| * do this on a segment (256MB) basis. |
| * |
| * Also, write permissions imply read permissions. |
| * This is the closest we can get.. |
| * |
| * Note due to the way vm flags are laid out, the bits are XWR |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_READONLY_X |
| #define __P101 PAGE_READONLY_X |
| #define __P110 PAGE_COPY_X |
| #define __P111 PAGE_COPY_X |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_READONLY_X |
| #define __S101 PAGE_READONLY_X |
| #define __S110 PAGE_SHARED_X |
| #define __S111 PAGE_SHARED_X |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| #endif /* __ASSEMBLY__ */ |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| |
| #define HAVE_ARCH_UNMAPPED_AREA |
| #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN |
| |
| #endif |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * mk_pte takes a (struct page *) as input |
| */ |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| { |
| pte_t pte; |
| |
| |
| pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| #define pte_modify(_pte, newprot) \ |
| (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) |
| |
| #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) |
| #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) |
| |
| /* pte_clear moved to later in this file */ |
| |
| #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) == 0) |
| #define pmd_present(pmd) (pmd_val(pmd) != 0) |
| #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) |
| #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) |
| #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) |
| |
| #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) |
| #define pud_none(pud) (!pud_val(pud)) |
| #define pud_bad(pud) ((pud_val(pud)) == 0) |
| #define pud_present(pud) (pud_val(pud) != 0) |
| #define pud_clear(pudp) (pud_val(*(pudp)) = 0) |
| #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS) |
| |
| #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) |
| |
| /* |
| * Find an entry in a page-table-directory. We combine the address region |
| * (the high order N bits) and the pgd portion of the address. |
| */ |
| /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ |
| #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) |
| |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| #define pmd_offset(pudp,addr) \ |
| (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) |
| |
| #define pte_offset_kernel(dir,addr) \ |
| (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) |
| |
| #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) |
| #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) |
| #define pte_unmap(pte) do { } while(0) |
| #define pte_unmap_nested(pte) do { } while(0) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| /* This now only contains the vmalloc pages */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} |
| |
| static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } |
| static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_USER; return pte; } |
| static inline pte_t pte_exprotect(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_EXEC; return pte; } |
| static inline pte_t pte_wrprotect(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_RW); return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { |
| pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { |
| pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkread(pte_t pte) { |
| pte_val(pte) |= _PAGE_USER; return pte; } |
| static inline pte_t pte_mkexec(pte_t pte) { |
| pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { |
| pte_val(pte) |= _PAGE_RW; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { |
| pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { |
| pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkhuge(pte_t pte) { |
| return pte; } |
| |
| /* Atomic PTE updates */ |
| static inline unsigned long pte_update(pte_t *p, unsigned long clr) |
| { |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__( |
| "1: ldarx %0,0,%3 # pte_update\n\ |
| andi. %1,%0,%6\n\ |
| bne- 1b \n\ |
| andc %1,%0,%4 \n\ |
| stdcx. %1,0,%3 \n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) |
| : "cc" ); |
| return old; |
| } |
| |
| /* PTE updating functions, this function puts the PTE in the |
| * batch, doesn't actually triggers the hash flush immediately, |
| * you need to call flush_tlb_pending() to do that. |
| * Pass -1 for "normal" size (4K or 64K) |
| */ |
| extern void hpte_update(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, unsigned long pte, int huge); |
| |
| static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| |
| if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) |
| return 0; |
| old = pte_update(ptep, _PAGE_ACCESSED); |
| if (old & _PAGE_HASHPTE) { |
| hpte_update(mm, addr, ptep, old, 0); |
| flush_tlb_pending(); |
| } |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| ({ \ |
| int __r; \ |
| __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ |
| __r; \ |
| }) |
| |
| /* |
| * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the |
| * moment we always flush but we need to fix hpte_update and test if the |
| * optimisation is worth it. |
| */ |
| static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| |
| if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) |
| return 0; |
| old = pte_update(ptep, _PAGE_DIRTY); |
| if (old & _PAGE_HASHPTE) |
| hpte_update(mm, addr, ptep, old, 0); |
| return (old & _PAGE_DIRTY) != 0; |
| } |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ |
| ({ \ |
| int __r; \ |
| __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ |
| __r; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| unsigned long old; |
| |
| if ((pte_val(*ptep) & _PAGE_RW) == 0) |
| return; |
| old = pte_update(ptep, _PAGE_RW); |
| if (old & _PAGE_HASHPTE) |
| hpte_update(mm, addr, ptep, old, 0); |
| } |
| |
| /* |
| * We currently remove entries from the hashtable regardless of whether |
| * the entry was young or dirty. The generic routines only flush if the |
| * entry was young or dirty which is not good enough. |
| * |
| * We should be more intelligent about this but for the moment we override |
| * these functions and force a tlb flush unconditionally |
| */ |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young(__vma, __address, __ptep) \ |
| ({ \ |
| int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ |
| __ptep); \ |
| __young; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH |
| #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ |
| ({ \ |
| int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ |
| __ptep); \ |
| flush_tlb_page(__vma, __address); \ |
| __dirty; \ |
| }) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old = pte_update(ptep, ~0UL); |
| |
| if (old & _PAGE_HASHPTE) |
| hpte_update(mm, addr, ptep, old, 0); |
| return __pte(old); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t * ptep) |
| { |
| unsigned long old = pte_update(ptep, ~0UL); |
| |
| if (old & _PAGE_HASHPTE) |
| hpte_update(mm, addr, ptep, old, 0); |
| } |
| |
| /* |
| * set_pte stores a linux PTE into the linux page table. |
| */ |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| if (pte_present(*ptep)) { |
| pte_clear(mm, addr, ptep); |
| flush_tlb_pending(); |
| } |
| pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| if (mmu_virtual_psize != MMU_PAGE_64K) |
| pte = __pte(pte_val(pte) | _PAGE_COMBO); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| *ptep = pte; |
| } |
| |
| /* Set the dirty and/or accessed bits atomically in a linux PTE, this |
| * function doesn't need to flush the hash entry |
| */ |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) |
| { |
| unsigned long bits = pte_val(entry) & |
| (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__( |
| "1: ldarx %0,0,%4\n\ |
| andi. %1,%0,%6\n\ |
| bne- 1b \n\ |
| or %0,%3,%0\n\ |
| stdcx. %0,0,%4\n\ |
| bne- 1b" |
| :"=&r" (old), "=&r" (tmp), "=m" (*ptep) |
| :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) |
| :"cc"); |
| } |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ |
| do { \ |
| __ptep_set_access_flags(__ptep, __entry, __dirty); \ |
| flush_tlb_page_nohash(__vma, __address); \ |
| } while(0) |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) |
| |
| struct file; |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot); |
| #define __HAVE_PHYS_MEM_ACCESS_PROT |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| extern pgd_t swapper_pg_dir[]; |
| |
| extern void paging_init(void); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \ |
| free_pgd_range(tlb, addr, end, floor, ceiling) |
| #endif |
| |
| /* |
| * This gets called at the end of handling a page fault, when |
| * the kernel has put a new PTE into the page table for the process. |
| * We use it to put a corresponding HPTE into the hash table |
| * ahead of time, instead of waiting for the inevitable extra |
| * hash-table miss exception. |
| */ |
| struct vm_area_struct; |
| extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); |
| |
| /* Encode and de-code a swap entry */ |
| #define __swp_type(entry) (((entry).val >> 1) & 0x3f) |
| #define __swp_offset(entry) ((entry).val >> 8) |
| #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) |
| #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) |
| #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) |
| #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) |
| |
| /* |
| * kern_addr_valid is intended to indicate whether an address is a valid |
| * kernel address. Most 32-bit archs define it as always true (like this) |
| * but most 64-bit archs actually perform a test. What should we do here? |
| * The only use is in fs/ncpfs/dir.c |
| */ |
| #define kern_addr_valid(addr) (1) |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| void pgtable_cache_init(void); |
| |
| /* |
| * find_linux_pte returns the address of a linux pte for a given |
| * effective address and directory. If not found, it returns zero. |
| */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) |
| { |
| pgd_t *pg; |
| pud_t *pu; |
| pmd_t *pm; |
| pte_t *pt = NULL; |
| |
| pg = pgdir + pgd_index(ea); |
| if (!pgd_none(*pg)) { |
| pu = pud_offset(pg, ea); |
| if (!pud_none(*pu)) { |
| pm = pmd_offset(pu, ea); |
| if (pmd_present(*pm)) |
| pt = pte_offset_kernel(pm, ea); |
| } |
| } |
| return pt; |
| } |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _PPC64_PGTABLE_H */ |