| /* |
| * sched_clock for unstable cpu clocks |
| * |
| * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * |
| * Updates and enhancements: |
| * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> |
| * |
| * Based on code by: |
| * Ingo Molnar <mingo@redhat.com> |
| * Guillaume Chazarain <guichaz@gmail.com> |
| * |
| * |
| * What: |
| * |
| * cpu_clock(i) provides a fast (execution time) high resolution |
| * clock with bounded drift between CPUs. The value of cpu_clock(i) |
| * is monotonic for constant i. The timestamp returned is in nanoseconds. |
| * |
| * ######################### BIG FAT WARNING ########################## |
| * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # |
| * # go backwards !! # |
| * #################################################################### |
| * |
| * There is no strict promise about the base, although it tends to start |
| * at 0 on boot (but people really shouldn't rely on that). |
| * |
| * cpu_clock(i) -- can be used from any context, including NMI. |
| * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI) |
| * local_clock() -- is cpu_clock() on the current cpu. |
| * |
| * How: |
| * |
| * The implementation either uses sched_clock() when |
| * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the |
| * sched_clock() is assumed to provide these properties (mostly it means |
| * the architecture provides a globally synchronized highres time source). |
| * |
| * Otherwise it tries to create a semi stable clock from a mixture of other |
| * clocks, including: |
| * |
| * - GTOD (clock monotomic) |
| * - sched_clock() |
| * - explicit idle events |
| * |
| * We use GTOD as base and use sched_clock() deltas to improve resolution. The |
| * deltas are filtered to provide monotonicity and keeping it within an |
| * expected window. |
| * |
| * Furthermore, explicit sleep and wakeup hooks allow us to account for time |
| * that is otherwise invisible (TSC gets stopped). |
| * |
| * |
| * Notes: |
| * |
| * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things |
| * like cpufreq interrupts that can change the base clock (TSC) multiplier |
| * and cause funny jumps in time -- although the filtering provided by |
| * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it |
| * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on |
| * sched_clock(). |
| */ |
| #include <linux/spinlock.h> |
| #include <linux/hardirq.h> |
| #include <linux/export.h> |
| #include <linux/percpu.h> |
| #include <linux/ktime.h> |
| #include <linux/sched.h> |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * This is default implementation. |
| * Architectures and sub-architectures can override this. |
| */ |
| unsigned long long __attribute__((weak)) sched_clock(void) |
| { |
| return (unsigned long long)(jiffies - INITIAL_JIFFIES) |
| * (NSEC_PER_SEC / HZ); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock); |
| |
| __read_mostly int sched_clock_running; |
| |
| #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| __read_mostly int sched_clock_stable; |
| |
| struct sched_clock_data { |
| u64 tick_raw; |
| u64 tick_gtod; |
| u64 clock; |
| }; |
| |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); |
| |
| static inline struct sched_clock_data *this_scd(void) |
| { |
| return &__get_cpu_var(sched_clock_data); |
| } |
| |
| static inline struct sched_clock_data *cpu_sdc(int cpu) |
| { |
| return &per_cpu(sched_clock_data, cpu); |
| } |
| |
| void sched_clock_init(void) |
| { |
| u64 ktime_now = ktime_to_ns(ktime_get()); |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct sched_clock_data *scd = cpu_sdc(cpu); |
| |
| scd->tick_raw = 0; |
| scd->tick_gtod = ktime_now; |
| scd->clock = ktime_now; |
| } |
| |
| sched_clock_running = 1; |
| } |
| |
| /* |
| * min, max except they take wrapping into account |
| */ |
| |
| static inline u64 wrap_min(u64 x, u64 y) |
| { |
| return (s64)(x - y) < 0 ? x : y; |
| } |
| |
| static inline u64 wrap_max(u64 x, u64 y) |
| { |
| return (s64)(x - y) > 0 ? x : y; |
| } |
| |
| /* |
| * update the percpu scd from the raw @now value |
| * |
| * - filter out backward motion |
| * - use the GTOD tick value to create a window to filter crazy TSC values |
| */ |
| static u64 sched_clock_local(struct sched_clock_data *scd) |
| { |
| u64 now, clock, old_clock, min_clock, max_clock; |
| s64 delta; |
| |
| again: |
| now = sched_clock(); |
| delta = now - scd->tick_raw; |
| if (unlikely(delta < 0)) |
| delta = 0; |
| |
| old_clock = scd->clock; |
| |
| /* |
| * scd->clock = clamp(scd->tick_gtod + delta, |
| * max(scd->tick_gtod, scd->clock), |
| * scd->tick_gtod + TICK_NSEC); |
| */ |
| |
| clock = scd->tick_gtod + delta; |
| min_clock = wrap_max(scd->tick_gtod, old_clock); |
| max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
| |
| clock = wrap_max(clock, min_clock); |
| clock = wrap_min(clock, max_clock); |
| |
| if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) |
| goto again; |
| |
| return clock; |
| } |
| |
| static u64 sched_clock_remote(struct sched_clock_data *scd) |
| { |
| struct sched_clock_data *my_scd = this_scd(); |
| u64 this_clock, remote_clock; |
| u64 *ptr, old_val, val; |
| |
| #if BITS_PER_LONG != 64 |
| again: |
| /* |
| * Careful here: The local and the remote clock values need to |
| * be read out atomic as we need to compare the values and |
| * then update either the local or the remote side. So the |
| * cmpxchg64 below only protects one readout. |
| * |
| * We must reread via sched_clock_local() in the retry case on |
| * 32bit as an NMI could use sched_clock_local() via the |
| * tracer and hit between the readout of |
| * the low32bit and the high 32bit portion. |
| */ |
| this_clock = sched_clock_local(my_scd); |
| /* |
| * We must enforce atomic readout on 32bit, otherwise the |
| * update on the remote cpu can hit inbetween the readout of |
| * the low32bit and the high 32bit portion. |
| */ |
| remote_clock = cmpxchg64(&scd->clock, 0, 0); |
| #else |
| /* |
| * On 64bit the read of [my]scd->clock is atomic versus the |
| * update, so we can avoid the above 32bit dance. |
| */ |
| sched_clock_local(my_scd); |
| again: |
| this_clock = my_scd->clock; |
| remote_clock = scd->clock; |
| #endif |
| |
| /* |
| * Use the opportunity that we have both locks |
| * taken to couple the two clocks: we take the |
| * larger time as the latest time for both |
| * runqueues. (this creates monotonic movement) |
| */ |
| if (likely((s64)(remote_clock - this_clock) < 0)) { |
| ptr = &scd->clock; |
| old_val = remote_clock; |
| val = this_clock; |
| } else { |
| /* |
| * Should be rare, but possible: |
| */ |
| ptr = &my_scd->clock; |
| old_val = this_clock; |
| val = remote_clock; |
| } |
| |
| if (cmpxchg64(ptr, old_val, val) != old_val) |
| goto again; |
| |
| return val; |
| } |
| |
| /* |
| * Similar to cpu_clock(), but requires local IRQs to be disabled. |
| * |
| * See cpu_clock(). |
| */ |
| u64 sched_clock_cpu(int cpu) |
| { |
| struct sched_clock_data *scd; |
| u64 clock; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| if (sched_clock_stable) |
| return sched_clock(); |
| |
| if (unlikely(!sched_clock_running)) |
| return 0ull; |
| |
| scd = cpu_sdc(cpu); |
| |
| if (cpu != smp_processor_id()) |
| clock = sched_clock_remote(scd); |
| else |
| clock = sched_clock_local(scd); |
| |
| return clock; |
| } |
| |
| void sched_clock_tick(void) |
| { |
| struct sched_clock_data *scd; |
| u64 now, now_gtod; |
| |
| if (sched_clock_stable) |
| return; |
| |
| if (unlikely(!sched_clock_running)) |
| return; |
| |
| WARN_ON_ONCE(!irqs_disabled()); |
| |
| scd = this_scd(); |
| now_gtod = ktime_to_ns(ktime_get()); |
| now = sched_clock(); |
| |
| scd->tick_raw = now; |
| scd->tick_gtod = now_gtod; |
| sched_clock_local(scd); |
| } |
| |
| /* |
| * We are going deep-idle (irqs are disabled): |
| */ |
| void sched_clock_idle_sleep_event(void) |
| { |
| sched_clock_cpu(smp_processor_id()); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); |
| |
| /* |
| * We just idled delta nanoseconds (called with irqs disabled): |
| */ |
| void sched_clock_idle_wakeup_event(u64 delta_ns) |
| { |
| if (timekeeping_suspended) |
| return; |
| |
| sched_clock_tick(); |
| touch_softlockup_watchdog(); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); |
| |
| /* |
| * As outlined at the top, provides a fast, high resolution, nanosecond |
| * time source that is monotonic per cpu argument and has bounded drift |
| * between cpus. |
| * |
| * ######################### BIG FAT WARNING ########################## |
| * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # |
| * # go backwards !! # |
| * #################################################################### |
| */ |
| u64 cpu_clock(int cpu) |
| { |
| u64 clock; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| clock = sched_clock_cpu(cpu); |
| local_irq_restore(flags); |
| |
| return clock; |
| } |
| |
| /* |
| * Similar to cpu_clock() for the current cpu. Time will only be observed |
| * to be monotonic if care is taken to only compare timestampt taken on the |
| * same CPU. |
| * |
| * See cpu_clock(). |
| */ |
| u64 local_clock(void) |
| { |
| u64 clock; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| clock = sched_clock_cpu(smp_processor_id()); |
| local_irq_restore(flags); |
| |
| return clock; |
| } |
| |
| #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| |
| void sched_clock_init(void) |
| { |
| sched_clock_running = 1; |
| } |
| |
| u64 sched_clock_cpu(int cpu) |
| { |
| if (unlikely(!sched_clock_running)) |
| return 0; |
| |
| return sched_clock(); |
| } |
| |
| u64 cpu_clock(int cpu) |
| { |
| return sched_clock_cpu(cpu); |
| } |
| |
| u64 local_clock(void) |
| { |
| return sched_clock_cpu(0); |
| } |
| |
| #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| |
| EXPORT_SYMBOL_GPL(cpu_clock); |
| EXPORT_SYMBOL_GPL(local_clock); |