| /* |
| * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx |
| * |
| * Copyright (c) 2000 Nils Faerber |
| * |
| * Based on rtc.c by Paul Gortmaker |
| * |
| * Original Driver by Nils Faerber <nils@kernelconcepts.de> |
| * |
| * Modifications from: |
| * CIH <cih@coventive.com> |
| * Nicolas Pitre <nico@fluxnic.net> |
| * Andrew Christian <andrew.christian@hp.com> |
| * |
| * Converted to the RTC subsystem and Driver Model |
| * by Richard Purdie <rpurdie@rpsys.net> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/module.h> |
| #include <linux/rtc.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/interrupt.h> |
| #include <linux/string.h> |
| #include <linux/pm.h> |
| #include <linux/bitops.h> |
| |
| #include <mach/hardware.h> |
| #include <asm/irq.h> |
| |
| #ifdef CONFIG_ARCH_PXA |
| #include <mach/regs-rtc.h> |
| #include <mach/regs-ost.h> |
| #endif |
| |
| #define RTC_DEF_DIVIDER (32768 - 1) |
| #define RTC_DEF_TRIM 0 |
| |
| static unsigned long rtc_freq = 1024; |
| static unsigned long timer_freq; |
| static struct rtc_time rtc_alarm; |
| static DEFINE_SPINLOCK(sa1100_rtc_lock); |
| |
| static inline int rtc_periodic_alarm(struct rtc_time *tm) |
| { |
| return (tm->tm_year == -1) || |
| ((unsigned)tm->tm_mon >= 12) || |
| ((unsigned)(tm->tm_mday - 1) >= 31) || |
| ((unsigned)tm->tm_hour > 23) || |
| ((unsigned)tm->tm_min > 59) || |
| ((unsigned)tm->tm_sec > 59); |
| } |
| |
| /* |
| * Calculate the next alarm time given the requested alarm time mask |
| * and the current time. |
| */ |
| static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, |
| struct rtc_time *alrm) |
| { |
| unsigned long next_time; |
| unsigned long now_time; |
| |
| next->tm_year = now->tm_year; |
| next->tm_mon = now->tm_mon; |
| next->tm_mday = now->tm_mday; |
| next->tm_hour = alrm->tm_hour; |
| next->tm_min = alrm->tm_min; |
| next->tm_sec = alrm->tm_sec; |
| |
| rtc_tm_to_time(now, &now_time); |
| rtc_tm_to_time(next, &next_time); |
| |
| if (next_time < now_time) { |
| /* Advance one day */ |
| next_time += 60 * 60 * 24; |
| rtc_time_to_tm(next_time, next); |
| } |
| } |
| |
| static int rtc_update_alarm(struct rtc_time *alrm) |
| { |
| struct rtc_time alarm_tm, now_tm; |
| unsigned long now, time; |
| int ret; |
| |
| do { |
| now = RCNR; |
| rtc_time_to_tm(now, &now_tm); |
| rtc_next_alarm_time(&alarm_tm, &now_tm, alrm); |
| ret = rtc_tm_to_time(&alarm_tm, &time); |
| if (ret != 0) |
| break; |
| |
| RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL); |
| RTAR = time; |
| } while (now != RCNR); |
| |
| return ret; |
| } |
| |
| static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct platform_device *pdev = to_platform_device(dev_id); |
| struct rtc_device *rtc = platform_get_drvdata(pdev); |
| unsigned int rtsr; |
| unsigned long events = 0; |
| |
| spin_lock(&sa1100_rtc_lock); |
| |
| rtsr = RTSR; |
| /* clear interrupt sources */ |
| RTSR = 0; |
| /* Fix for a nasty initialization problem the in SA11xx RTSR register. |
| * See also the comments in sa1100_rtc_probe(). */ |
| if (rtsr & (RTSR_ALE | RTSR_HZE)) { |
| /* This is the original code, before there was the if test |
| * above. This code does not clear interrupts that were not |
| * enabled. */ |
| RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2); |
| } else { |
| /* For some reason, it is possible to enter this routine |
| * without interruptions enabled, it has been tested with |
| * several units (Bug in SA11xx chip?). |
| * |
| * This situation leads to an infinite "loop" of interrupt |
| * routine calling and as a result the processor seems to |
| * lock on its first call to open(). */ |
| RTSR = RTSR_AL | RTSR_HZ; |
| } |
| |
| /* clear alarm interrupt if it has occurred */ |
| if (rtsr & RTSR_AL) |
| rtsr &= ~RTSR_ALE; |
| RTSR = rtsr & (RTSR_ALE | RTSR_HZE); |
| |
| /* update irq data & counter */ |
| if (rtsr & RTSR_AL) |
| events |= RTC_AF | RTC_IRQF; |
| if (rtsr & RTSR_HZ) |
| events |= RTC_UF | RTC_IRQF; |
| |
| rtc_update_irq(rtc, 1, events); |
| |
| if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm)) |
| rtc_update_alarm(&rtc_alarm); |
| |
| spin_unlock(&sa1100_rtc_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int rtc_timer1_count; |
| |
| static irqreturn_t timer1_interrupt(int irq, void *dev_id) |
| { |
| struct platform_device *pdev = to_platform_device(dev_id); |
| struct rtc_device *rtc = platform_get_drvdata(pdev); |
| |
| /* |
| * If we match for the first time, rtc_timer1_count will be 1. |
| * Otherwise, we wrapped around (very unlikely but |
| * still possible) so compute the amount of missed periods. |
| * The match reg is updated only when the data is actually retrieved |
| * to avoid unnecessary interrupts. |
| */ |
| OSSR = OSSR_M1; /* clear match on timer1 */ |
| |
| rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF); |
| |
| if (rtc_timer1_count == 1) |
| rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2))); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int sa1100_rtc_read_callback(struct device *dev, int data) |
| { |
| if (data & RTC_PF) { |
| /* interpolate missed periods and set match for the next */ |
| unsigned long period = timer_freq / rtc_freq; |
| unsigned long oscr = OSCR; |
| unsigned long osmr1 = OSMR1; |
| unsigned long missed = (oscr - osmr1)/period; |
| data += missed << 8; |
| OSSR = OSSR_M1; /* clear match on timer 1 */ |
| OSMR1 = osmr1 + (missed + 1)*period; |
| /* Ensure we didn't miss another match in the mean time. |
| * Here we compare (match - OSCR) 8 instead of 0 -- |
| * see comment in pxa_timer_interrupt() for explanation. |
| */ |
| while ((signed long)((osmr1 = OSMR1) - OSCR) <= 8) { |
| data += 0x100; |
| OSSR = OSSR_M1; /* clear match on timer 1 */ |
| OSMR1 = osmr1 + period; |
| } |
| } |
| return data; |
| } |
| |
| static int sa1100_rtc_open(struct device *dev) |
| { |
| int ret; |
| |
| ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED, |
| "rtc 1Hz", dev); |
| if (ret) { |
| dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz); |
| goto fail_ui; |
| } |
| ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED, |
| "rtc Alrm", dev); |
| if (ret) { |
| dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm); |
| goto fail_ai; |
| } |
| ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED, |
| "rtc timer", dev); |
| if (ret) { |
| dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1); |
| goto fail_pi; |
| } |
| return 0; |
| |
| fail_pi: |
| free_irq(IRQ_RTCAlrm, dev); |
| fail_ai: |
| free_irq(IRQ_RTC1Hz, dev); |
| fail_ui: |
| return ret; |
| } |
| |
| static void sa1100_rtc_release(struct device *dev) |
| { |
| spin_lock_irq(&sa1100_rtc_lock); |
| RTSR = 0; |
| OIER &= ~OIER_E1; |
| OSSR = OSSR_M1; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| |
| free_irq(IRQ_OST1, dev); |
| free_irq(IRQ_RTCAlrm, dev); |
| free_irq(IRQ_RTC1Hz, dev); |
| } |
| |
| |
| static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd, |
| unsigned long arg) |
| { |
| switch (cmd) { |
| case RTC_AIE_OFF: |
| spin_lock_irq(&sa1100_rtc_lock); |
| RTSR &= ~RTSR_ALE; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_AIE_ON: |
| spin_lock_irq(&sa1100_rtc_lock); |
| RTSR |= RTSR_ALE; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_UIE_OFF: |
| spin_lock_irq(&sa1100_rtc_lock); |
| RTSR &= ~RTSR_HZE; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_UIE_ON: |
| spin_lock_irq(&sa1100_rtc_lock); |
| RTSR |= RTSR_HZE; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_PIE_OFF: |
| spin_lock_irq(&sa1100_rtc_lock); |
| OIER &= ~OIER_E1; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_PIE_ON: |
| spin_lock_irq(&sa1100_rtc_lock); |
| OSMR1 = timer_freq / rtc_freq + OSCR; |
| OIER |= OIER_E1; |
| rtc_timer1_count = 1; |
| spin_unlock_irq(&sa1100_rtc_lock); |
| return 0; |
| case RTC_IRQP_READ: |
| return put_user(rtc_freq, (unsigned long *)arg); |
| case RTC_IRQP_SET: |
| if (arg < 1 || arg > timer_freq) |
| return -EINVAL; |
| rtc_freq = arg; |
| return 0; |
| } |
| return -ENOIOCTLCMD; |
| } |
| |
| static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| rtc_time_to_tm(RCNR, tm); |
| return 0; |
| } |
| |
| static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| unsigned long time; |
| int ret; |
| |
| ret = rtc_tm_to_time(tm, &time); |
| if (ret == 0) |
| RCNR = time; |
| return ret; |
| } |
| |
| static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| u32 rtsr; |
| |
| memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time)); |
| rtsr = RTSR; |
| alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; |
| alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; |
| return 0; |
| } |
| |
| static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| int ret; |
| |
| spin_lock_irq(&sa1100_rtc_lock); |
| ret = rtc_update_alarm(&alrm->time); |
| if (ret == 0) { |
| if (alrm->enabled) |
| RTSR |= RTSR_ALE; |
| else |
| RTSR &= ~RTSR_ALE; |
| } |
| spin_unlock_irq(&sa1100_rtc_lock); |
| |
| return ret; |
| } |
| |
| static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) |
| { |
| seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR); |
| seq_printf(seq, "update_IRQ\t: %s\n", |
| (RTSR & RTSR_HZE) ? "yes" : "no"); |
| seq_printf(seq, "periodic_IRQ\t: %s\n", |
| (OIER & OIER_E1) ? "yes" : "no"); |
| seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq); |
| seq_printf(seq, "RTSR\t\t: 0x%08x\n", (u32)RTSR); |
| |
| return 0; |
| } |
| |
| static const struct rtc_class_ops sa1100_rtc_ops = { |
| .open = sa1100_rtc_open, |
| .read_callback = sa1100_rtc_read_callback, |
| .release = sa1100_rtc_release, |
| .ioctl = sa1100_rtc_ioctl, |
| .read_time = sa1100_rtc_read_time, |
| .set_time = sa1100_rtc_set_time, |
| .read_alarm = sa1100_rtc_read_alarm, |
| .set_alarm = sa1100_rtc_set_alarm, |
| .proc = sa1100_rtc_proc, |
| }; |
| |
| static int sa1100_rtc_probe(struct platform_device *pdev) |
| { |
| struct rtc_device *rtc; |
| |
| timer_freq = get_clock_tick_rate(); |
| |
| /* |
| * According to the manual we should be able to let RTTR be zero |
| * and then a default diviser for a 32.768KHz clock is used. |
| * Apparently this doesn't work, at least for my SA1110 rev 5. |
| * If the clock divider is uninitialized then reset it to the |
| * default value to get the 1Hz clock. |
| */ |
| if (RTTR == 0) { |
| RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); |
| dev_warn(&pdev->dev, "warning: " |
| "initializing default clock divider/trim value\n"); |
| /* The current RTC value probably doesn't make sense either */ |
| RCNR = 0; |
| } |
| |
| device_init_wakeup(&pdev->dev, 1); |
| |
| rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops, |
| THIS_MODULE); |
| |
| if (IS_ERR(rtc)) |
| return PTR_ERR(rtc); |
| |
| platform_set_drvdata(pdev, rtc); |
| |
| /* Fix for a nasty initialization problem the in SA11xx RTSR register. |
| * See also the comments in sa1100_rtc_interrupt(). |
| * |
| * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an |
| * interrupt pending, even though interrupts were never enabled. |
| * In this case, this bit it must be reset before enabling |
| * interruptions to avoid a nonexistent interrupt to occur. |
| * |
| * In principle, the same problem would apply to bit 0, although it has |
| * never been observed to happen. |
| * |
| * This issue is addressed both here and in sa1100_rtc_interrupt(). |
| * If the issue is not addressed here, in the times when the processor |
| * wakes up with the bit set there will be one spurious interrupt. |
| * |
| * The issue is also dealt with in sa1100_rtc_interrupt() to be on the |
| * safe side, once the condition that lead to this strange |
| * initialization is unknown and could in principle happen during |
| * normal processing. |
| * |
| * Notice that clearing bit 1 and 0 is accomplished by writting ONES to |
| * the corresponding bits in RTSR. */ |
| RTSR = RTSR_AL | RTSR_HZ; |
| |
| return 0; |
| } |
| |
| static int sa1100_rtc_remove(struct platform_device *pdev) |
| { |
| struct rtc_device *rtc = platform_get_drvdata(pdev); |
| |
| if (rtc) |
| rtc_device_unregister(rtc); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int sa1100_rtc_suspend(struct device *dev) |
| { |
| if (device_may_wakeup(dev)) |
| enable_irq_wake(IRQ_RTCAlrm); |
| return 0; |
| } |
| |
| static int sa1100_rtc_resume(struct device *dev) |
| { |
| if (device_may_wakeup(dev)) |
| disable_irq_wake(IRQ_RTCAlrm); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops sa1100_rtc_pm_ops = { |
| .suspend = sa1100_rtc_suspend, |
| .resume = sa1100_rtc_resume, |
| }; |
| #endif |
| |
| static struct platform_driver sa1100_rtc_driver = { |
| .probe = sa1100_rtc_probe, |
| .remove = sa1100_rtc_remove, |
| .driver = { |
| .name = "sa1100-rtc", |
| #ifdef CONFIG_PM |
| .pm = &sa1100_rtc_pm_ops, |
| #endif |
| }, |
| }; |
| |
| static int __init sa1100_rtc_init(void) |
| { |
| return platform_driver_register(&sa1100_rtc_driver); |
| } |
| |
| static void __exit sa1100_rtc_exit(void) |
| { |
| platform_driver_unregister(&sa1100_rtc_driver); |
| } |
| |
| module_init(sa1100_rtc_init); |
| module_exit(sa1100_rtc_exit); |
| |
| MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); |
| MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:sa1100-rtc"); |