blob: 5e19cd6ccda35eaf0f51df68991d69a09b18f9ca [file] [log] [blame]
/*
* This file is part of Nokia H4P bluetooth driver
*
* Copyright (C) 2005-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
* Thanks to all the Nokia people that helped with this driver,
* including Ville Tervo and Roger Quadros.
*
* Power saving functionality was removed from this driver to make
* merging easier.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/serial_reg.h>
#include <linux/skbuff.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/timer.h>
#include <linux/kthread.h>
#include <linux/io.h>
#include <linux/completion.h>
#include <linux/sizes.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/hci.h>
#include <linux/platform_data/bt-nokia-h4p.h>
#include "hci_h4p.h"
/* This should be used in function that cannot release clocks */
static void hci_h4p_set_clk(struct hci_h4p_info *info, int *clock, int enable)
{
unsigned long flags;
spin_lock_irqsave(&info->clocks_lock, flags);
if (enable && !*clock) {
BT_DBG("Enabling %p", clock);
clk_prepare_enable(info->uart_fclk);
clk_prepare_enable(info->uart_iclk);
if (atomic_read(&info->clk_users) == 0)
hci_h4p_restore_regs(info);
atomic_inc(&info->clk_users);
}
if (!enable && *clock) {
BT_DBG("Disabling %p", clock);
if (atomic_dec_and_test(&info->clk_users))
hci_h4p_store_regs(info);
clk_disable_unprepare(info->uart_fclk);
clk_disable_unprepare(info->uart_iclk);
}
*clock = enable;
spin_unlock_irqrestore(&info->clocks_lock, flags);
}
static void hci_h4p_lazy_clock_release(unsigned long data)
{
struct hci_h4p_info *info = (struct hci_h4p_info *)data;
unsigned long flags;
spin_lock_irqsave(&info->lock, flags);
if (!info->tx_enabled)
hci_h4p_set_clk(info, &info->tx_clocks_en, 0);
spin_unlock_irqrestore(&info->lock, flags);
}
/* Power management functions */
void hci_h4p_smart_idle(struct hci_h4p_info *info, bool enable)
{
u8 v;
v = hci_h4p_inb(info, UART_OMAP_SYSC);
v &= ~(UART_OMAP_SYSC_IDLEMASK);
if (enable)
v |= UART_OMAP_SYSC_SMART_IDLE;
else
v |= UART_OMAP_SYSC_NO_IDLE;
hci_h4p_outb(info, UART_OMAP_SYSC, v);
}
static inline void h4p_schedule_pm(struct hci_h4p_info *info)
{
}
static void hci_h4p_disable_tx(struct hci_h4p_info *info)
{
if (!info->pm_enabled)
return;
/* Re-enable smart-idle */
hci_h4p_smart_idle(info, 1);
gpio_set_value(info->bt_wakeup_gpio, 0);
mod_timer(&info->lazy_release, jiffies + msecs_to_jiffies(100));
info->tx_enabled = 0;
}
void hci_h4p_enable_tx(struct hci_h4p_info *info)
{
unsigned long flags;
if (!info->pm_enabled)
return;
h4p_schedule_pm(info);
spin_lock_irqsave(&info->lock, flags);
del_timer(&info->lazy_release);
hci_h4p_set_clk(info, &info->tx_clocks_en, 1);
info->tx_enabled = 1;
gpio_set_value(info->bt_wakeup_gpio, 1);
hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) |
UART_IER_THRI);
/*
* Disable smart-idle as UART TX interrupts
* are not wake-up capable
*/
hci_h4p_smart_idle(info, 0);
spin_unlock_irqrestore(&info->lock, flags);
}
static void hci_h4p_disable_rx(struct hci_h4p_info *info)
{
if (!info->pm_enabled)
return;
info->rx_enabled = 0;
if (hci_h4p_inb(info, UART_LSR) & UART_LSR_DR)
return;
if (!(hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT))
return;
__hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS);
info->autorts = 0;
hci_h4p_set_clk(info, &info->rx_clocks_en, 0);
}
static void hci_h4p_enable_rx(struct hci_h4p_info *info)
{
if (!info->pm_enabled)
return;
h4p_schedule_pm(info);
hci_h4p_set_clk(info, &info->rx_clocks_en, 1);
info->rx_enabled = 1;
if (!(hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT))
return;
__hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS);
info->autorts = 1;
}
/* Negotiation functions */
int hci_h4p_send_alive_packet(struct hci_h4p_info *info)
{
struct hci_h4p_alive_hdr *hdr;
struct hci_h4p_alive_pkt *pkt;
struct sk_buff *skb;
unsigned long flags;
int len;
BT_DBG("Sending alive packet");
len = H4_TYPE_SIZE + sizeof(*hdr) + sizeof(*pkt);
skb = bt_skb_alloc(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
memset(skb->data, 0x00, len);
*skb_put(skb, 1) = H4_ALIVE_PKT;
hdr = (struct hci_h4p_alive_hdr *)skb_put(skb, sizeof(*hdr));
hdr->dlen = sizeof(*pkt);
pkt = (struct hci_h4p_alive_pkt *)skb_put(skb, sizeof(*pkt));
pkt->mid = H4P_ALIVE_REQ;
skb_queue_tail(&info->txq, skb);
spin_lock_irqsave(&info->lock, flags);
hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) |
UART_IER_THRI);
spin_unlock_irqrestore(&info->lock, flags);
BT_DBG("Alive packet sent");
return 0;
}
static void hci_h4p_alive_packet(struct hci_h4p_info *info,
struct sk_buff *skb)
{
struct hci_h4p_alive_hdr *hdr;
struct hci_h4p_alive_pkt *pkt;
BT_DBG("Received alive packet");
hdr = (struct hci_h4p_alive_hdr *)skb->data;
if (hdr->dlen != sizeof(*pkt)) {
dev_err(info->dev, "Corrupted alive message\n");
info->init_error = -EIO;
goto finish_alive;
}
pkt = (struct hci_h4p_alive_pkt *)skb_pull(skb, sizeof(*hdr));
if (pkt->mid != H4P_ALIVE_RESP) {
dev_err(info->dev, "Could not negotiate hci_h4p settings\n");
info->init_error = -EINVAL;
}
finish_alive:
complete(&info->init_completion);
kfree_skb(skb);
}
static int hci_h4p_send_negotiation(struct hci_h4p_info *info)
{
struct hci_h4p_neg_cmd *neg_cmd;
struct hci_h4p_neg_hdr *neg_hdr;
struct sk_buff *skb;
unsigned long flags;
int err, len;
u16 sysclk;
BT_DBG("Sending negotiation..");
switch (info->bt_sysclk) {
case 1:
sysclk = 12000;
break;
case 2:
sysclk = 38400;
break;
default:
return -EINVAL;
}
len = sizeof(*neg_cmd) + sizeof(*neg_hdr) + H4_TYPE_SIZE;
skb = bt_skb_alloc(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
memset(skb->data, 0x00, len);
*skb_put(skb, 1) = H4_NEG_PKT;
neg_hdr = (struct hci_h4p_neg_hdr *)skb_put(skb, sizeof(*neg_hdr));
neg_cmd = (struct hci_h4p_neg_cmd *)skb_put(skb, sizeof(*neg_cmd));
neg_hdr->dlen = sizeof(*neg_cmd);
neg_cmd->ack = H4P_NEG_REQ;
neg_cmd->baud = cpu_to_le16(BT_BAUDRATE_DIVIDER/MAX_BAUD_RATE);
neg_cmd->proto = H4P_PROTO_BYTE;
neg_cmd->sys_clk = cpu_to_le16(sysclk);
hci_h4p_change_speed(info, INIT_SPEED);
hci_h4p_set_rts(info, 1);
info->init_error = 0;
init_completion(&info->init_completion);
skb_queue_tail(&info->txq, skb);
spin_lock_irqsave(&info->lock, flags);
hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) |
UART_IER_THRI);
spin_unlock_irqrestore(&info->lock, flags);
if (!wait_for_completion_interruptible_timeout(&info->init_completion,
msecs_to_jiffies(1000)))
return -ETIMEDOUT;
if (info->init_error < 0)
return info->init_error;
/* Change to operational settings */
hci_h4p_set_auto_ctsrts(info, 0, UART_EFR_RTS);
hci_h4p_set_rts(info, 0);
hci_h4p_change_speed(info, MAX_BAUD_RATE);
err = hci_h4p_wait_for_cts(info, 1, 100);
if (err < 0)
return err;
hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_RTS);
init_completion(&info->init_completion);
err = hci_h4p_send_alive_packet(info);
if (err < 0)
return err;
if (!wait_for_completion_interruptible_timeout(&info->init_completion,
msecs_to_jiffies(1000)))
return -ETIMEDOUT;
if (info->init_error < 0)
return info->init_error;
BT_DBG("Negotiation successful");
return 0;
}
static void hci_h4p_negotiation_packet(struct hci_h4p_info *info,
struct sk_buff *skb)
{
struct hci_h4p_neg_hdr *hdr;
struct hci_h4p_neg_evt *evt;
hdr = (struct hci_h4p_neg_hdr *)skb->data;
if (hdr->dlen != sizeof(*evt)) {
info->init_error = -EIO;
goto finish_neg;
}
evt = (struct hci_h4p_neg_evt *)skb_pull(skb, sizeof(*hdr));
if (evt->ack != H4P_NEG_ACK) {
dev_err(info->dev, "Could not negotiate hci_h4p settings\n");
info->init_error = -EINVAL;
}
info->man_id = evt->man_id;
info->ver_id = evt->ver_id;
finish_neg:
complete(&info->init_completion);
kfree_skb(skb);
}
/* H4 packet handling functions */
static int hci_h4p_get_hdr_len(struct hci_h4p_info *info, u8 pkt_type)
{
long retval;
switch (pkt_type) {
case H4_EVT_PKT:
retval = HCI_EVENT_HDR_SIZE;
break;
case H4_ACL_PKT:
retval = HCI_ACL_HDR_SIZE;
break;
case H4_SCO_PKT:
retval = HCI_SCO_HDR_SIZE;
break;
case H4_NEG_PKT:
retval = H4P_NEG_HDR_SIZE;
break;
case H4_ALIVE_PKT:
retval = H4P_ALIVE_HDR_SIZE;
break;
case H4_RADIO_PKT:
retval = H4_RADIO_HDR_SIZE;
break;
default:
dev_err(info->dev, "Unknown H4 packet type 0x%.2x\n", pkt_type);
retval = -1;
break;
}
return retval;
}
static unsigned int hci_h4p_get_data_len(struct hci_h4p_info *info,
struct sk_buff *skb)
{
long retval = -1;
struct hci_acl_hdr *acl_hdr;
struct hci_sco_hdr *sco_hdr;
struct hci_event_hdr *evt_hdr;
struct hci_h4p_neg_hdr *neg_hdr;
struct hci_h4p_alive_hdr *alive_hdr;
struct hci_h4p_radio_hdr *radio_hdr;
switch (bt_cb(skb)->pkt_type) {
case H4_EVT_PKT:
evt_hdr = (struct hci_event_hdr *)skb->data;
retval = evt_hdr->plen;
break;
case H4_ACL_PKT:
acl_hdr = (struct hci_acl_hdr *)skb->data;
retval = le16_to_cpu(acl_hdr->dlen);
break;
case H4_SCO_PKT:
sco_hdr = (struct hci_sco_hdr *)skb->data;
retval = sco_hdr->dlen;
break;
case H4_RADIO_PKT:
radio_hdr = (struct hci_h4p_radio_hdr *)skb->data;
retval = radio_hdr->dlen;
break;
case H4_NEG_PKT:
neg_hdr = (struct hci_h4p_neg_hdr *)skb->data;
retval = neg_hdr->dlen;
break;
case H4_ALIVE_PKT:
alive_hdr = (struct hci_h4p_alive_hdr *)skb->data;
retval = alive_hdr->dlen;
break;
}
return retval;
}
static inline void hci_h4p_recv_frame(struct hci_h4p_info *info,
struct sk_buff *skb)
{
if (unlikely(!test_bit(HCI_RUNNING, &info->hdev->flags))) {
switch (bt_cb(skb)->pkt_type) {
case H4_NEG_PKT:
hci_h4p_negotiation_packet(info, skb);
info->rx_state = WAIT_FOR_PKT_TYPE;
return;
case H4_ALIVE_PKT:
hci_h4p_alive_packet(info, skb);
info->rx_state = WAIT_FOR_PKT_TYPE;
return;
}
if (!test_bit(HCI_UP, &info->hdev->flags)) {
BT_DBG("fw_event");
hci_h4p_parse_fw_event(info, skb);
return;
}
}
hci_recv_frame(info->hdev, skb);
BT_DBG("Frame sent to upper layer");
}
static inline void hci_h4p_handle_byte(struct hci_h4p_info *info, u8 byte)
{
switch (info->rx_state) {
case WAIT_FOR_PKT_TYPE:
bt_cb(info->rx_skb)->pkt_type = byte;
info->rx_count = hci_h4p_get_hdr_len(info, byte);
if (info->rx_count < 0) {
info->hdev->stat.err_rx++;
kfree_skb(info->rx_skb);
info->rx_skb = NULL;
} else {
info->rx_state = WAIT_FOR_HEADER;
}
break;
case WAIT_FOR_HEADER:
info->rx_count--;
*skb_put(info->rx_skb, 1) = byte;
if (info->rx_count != 0)
break;
info->rx_count = hci_h4p_get_data_len(info, info->rx_skb);
if (info->rx_count > skb_tailroom(info->rx_skb)) {
dev_err(info->dev, "frame too long\n");
info->garbage_bytes = info->rx_count
- skb_tailroom(info->rx_skb);
kfree_skb(info->rx_skb);
info->rx_skb = NULL;
break;
}
info->rx_state = WAIT_FOR_DATA;
break;
case WAIT_FOR_DATA:
info->rx_count--;
*skb_put(info->rx_skb, 1) = byte;
break;
default:
WARN_ON(1);
break;
}
if (info->rx_count == 0) {
/* H4+ devices should always send word aligned packets */
if (!(info->rx_skb->len % 2))
info->garbage_bytes++;
hci_h4p_recv_frame(info, info->rx_skb);
info->rx_skb = NULL;
}
}
static void hci_h4p_rx_tasklet(unsigned long data)
{
u8 byte;
struct hci_h4p_info *info = (struct hci_h4p_info *)data;
BT_DBG("tasklet woke up");
BT_DBG("rx_tasklet woke up");
while (hci_h4p_inb(info, UART_LSR) & UART_LSR_DR) {
byte = hci_h4p_inb(info, UART_RX);
if (info->garbage_bytes) {
info->garbage_bytes--;
continue;
}
if (info->rx_skb == NULL) {
info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE,
GFP_ATOMIC | GFP_DMA);
if (!info->rx_skb) {
dev_err(info->dev,
"No memory for new packet\n");
goto finish_rx;
}
info->rx_state = WAIT_FOR_PKT_TYPE;
info->rx_skb->dev = (void *)info->hdev;
}
info->hdev->stat.byte_rx++;
hci_h4p_handle_byte(info, byte);
}
if (!info->rx_enabled) {
if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT &&
info->autorts) {
__hci_h4p_set_auto_ctsrts(info, 0 , UART_EFR_RTS);
info->autorts = 0;
}
/* Flush posted write to avoid spurious interrupts */
hci_h4p_inb(info, UART_OMAP_SCR);
hci_h4p_set_clk(info, &info->rx_clocks_en, 0);
}
finish_rx:
BT_DBG("rx_ended");
}
static void hci_h4p_tx_tasklet(unsigned long data)
{
unsigned int sent = 0;
struct sk_buff *skb;
struct hci_h4p_info *info = (struct hci_h4p_info *)data;
BT_DBG("tasklet woke up");
BT_DBG("tx_tasklet woke up");
if (info->autorts != info->rx_enabled) {
if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT) {
if (info->autorts && !info->rx_enabled) {
__hci_h4p_set_auto_ctsrts(info, 0,
UART_EFR_RTS);
info->autorts = 0;
}
if (!info->autorts && info->rx_enabled) {
__hci_h4p_set_auto_ctsrts(info, 1,
UART_EFR_RTS);
info->autorts = 1;
}
} else {
hci_h4p_outb(info, UART_OMAP_SCR,
hci_h4p_inb(info, UART_OMAP_SCR) |
UART_OMAP_SCR_EMPTY_THR);
goto finish_tx;
}
}
skb = skb_dequeue(&info->txq);
if (!skb) {
/* No data in buffer */
BT_DBG("skb ready");
if (hci_h4p_inb(info, UART_LSR) & UART_LSR_TEMT) {
hci_h4p_outb(info, UART_IER,
hci_h4p_inb(info, UART_IER) &
~UART_IER_THRI);
hci_h4p_inb(info, UART_OMAP_SCR);
hci_h4p_disable_tx(info);
return;
}
hci_h4p_outb(info, UART_OMAP_SCR,
hci_h4p_inb(info, UART_OMAP_SCR) |
UART_OMAP_SCR_EMPTY_THR);
goto finish_tx;
}
/* Copy data to tx fifo */
while (!(hci_h4p_inb(info, UART_OMAP_SSR) & UART_OMAP_SSR_TXFULL) &&
(sent < skb->len)) {
hci_h4p_outb(info, UART_TX, skb->data[sent]);
sent++;
}
info->hdev->stat.byte_tx += sent;
if (skb->len == sent) {
kfree_skb(skb);
} else {
skb_pull(skb, sent);
skb_queue_head(&info->txq, skb);
}
hci_h4p_outb(info, UART_OMAP_SCR, hci_h4p_inb(info, UART_OMAP_SCR) &
~UART_OMAP_SCR_EMPTY_THR);
hci_h4p_outb(info, UART_IER, hci_h4p_inb(info, UART_IER) |
UART_IER_THRI);
finish_tx:
/* Flush posted write to avoid spurious interrupts */
hci_h4p_inb(info, UART_OMAP_SCR);
}
static irqreturn_t hci_h4p_interrupt(int irq, void *data)
{
struct hci_h4p_info *info = (struct hci_h4p_info *)data;
u8 iir, msr;
int ret;
ret = IRQ_NONE;
iir = hci_h4p_inb(info, UART_IIR);
if (iir & UART_IIR_NO_INT)
return IRQ_HANDLED;
BT_DBG("In interrupt handler iir 0x%.2x", iir);
iir &= UART_IIR_ID;
if (iir == UART_IIR_MSI) {
msr = hci_h4p_inb(info, UART_MSR);
ret = IRQ_HANDLED;
}
if (iir == UART_IIR_RLSI) {
hci_h4p_inb(info, UART_RX);
hci_h4p_inb(info, UART_LSR);
ret = IRQ_HANDLED;
}
if (iir == UART_IIR_RDI) {
hci_h4p_rx_tasklet((unsigned long)data);
ret = IRQ_HANDLED;
}
if (iir == UART_IIR_THRI) {
hci_h4p_tx_tasklet((unsigned long)data);
ret = IRQ_HANDLED;
}
return ret;
}
static irqreturn_t hci_h4p_wakeup_interrupt(int irq, void *dev_inst)
{
struct hci_h4p_info *info = dev_inst;
int should_wakeup;
struct hci_dev *hdev;
if (!info->hdev)
return IRQ_HANDLED;
should_wakeup = gpio_get_value(info->host_wakeup_gpio);
hdev = info->hdev;
if (!test_bit(HCI_RUNNING, &hdev->flags)) {
if (should_wakeup == 1)
complete_all(&info->test_completion);
return IRQ_HANDLED;
}
BT_DBG("gpio interrupt %d", should_wakeup);
/* Check if wee have missed some interrupts */
if (info->rx_enabled == should_wakeup)
return IRQ_HANDLED;
if (should_wakeup)
hci_h4p_enable_rx(info);
else
hci_h4p_disable_rx(info);
return IRQ_HANDLED;
}
static inline void hci_h4p_set_pm_limits(struct hci_h4p_info *info, bool set)
{
struct hci_h4p_platform_data *bt_plat_data = info->dev->platform_data;
const char *sset = set ? "set" : "clear";
if (unlikely(!bt_plat_data || !bt_plat_data->set_pm_limits))
return;
if (set != !!test_bit(H4P_ACTIVE_MODE, &info->pm_flags)) {
bt_plat_data->set_pm_limits(info->dev, set);
if (set)
set_bit(H4P_ACTIVE_MODE, &info->pm_flags);
else
clear_bit(H4P_ACTIVE_MODE, &info->pm_flags);
BT_DBG("Change pm constraints to: %s", sset);
return;
}
BT_DBG("pm constraints remains: %s", sset);
}
static int hci_h4p_reset(struct hci_h4p_info *info)
{
int err;
err = hci_h4p_reset_uart(info);
if (err < 0) {
dev_err(info->dev, "Uart reset failed\n");
return err;
}
hci_h4p_init_uart(info);
hci_h4p_set_rts(info, 0);
gpio_set_value(info->reset_gpio, 0);
gpio_set_value(info->bt_wakeup_gpio, 1);
msleep(10);
if (gpio_get_value(info->host_wakeup_gpio) == 1) {
dev_err(info->dev, "host_wakeup_gpio not low\n");
return -EPROTO;
}
init_completion(&info->test_completion);
gpio_set_value(info->reset_gpio, 1);
if (!wait_for_completion_interruptible_timeout(&info->test_completion,
msecs_to_jiffies(100))) {
dev_err(info->dev, "wakeup test timed out\n");
complete_all(&info->test_completion);
return -EPROTO;
}
err = hci_h4p_wait_for_cts(info, 1, 100);
if (err < 0) {
dev_err(info->dev, "No cts from bt chip\n");
return err;
}
hci_h4p_set_rts(info, 1);
return 0;
}
/* hci callback functions */
static int hci_h4p_hci_flush(struct hci_dev *hdev)
{
struct hci_h4p_info *info = hci_get_drvdata(hdev);
skb_queue_purge(&info->txq);
return 0;
}
static int hci_h4p_bt_wakeup_test(struct hci_h4p_info *info)
{
/*
* Test Sequence:
* Host de-asserts the BT_WAKE_UP line.
* Host polls the UART_CTS line, waiting for it to be de-asserted.
* Host asserts the BT_WAKE_UP line.
* Host polls the UART_CTS line, waiting for it to be asserted.
* Host de-asserts the BT_WAKE_UP line (allow the Bluetooth device to
* sleep).
* Host polls the UART_CTS line, waiting for it to be de-asserted.
*/
int err;
int ret = -ECOMM;
if (!info)
return -EINVAL;
/* Disable wakeup interrupts */
disable_irq(gpio_to_irq(info->host_wakeup_gpio));
gpio_set_value(info->bt_wakeup_gpio, 0);
err = hci_h4p_wait_for_cts(info, 0, 100);
if (err) {
dev_warn(info->dev,
"bt_wakeup_test: fail: CTS low timed out: %d\n",
err);
goto out;
}
gpio_set_value(info->bt_wakeup_gpio, 1);
err = hci_h4p_wait_for_cts(info, 1, 100);
if (err) {
dev_warn(info->dev,
"bt_wakeup_test: fail: CTS high timed out: %d\n",
err);
goto out;
}
gpio_set_value(info->bt_wakeup_gpio, 0);
err = hci_h4p_wait_for_cts(info, 0, 100);
if (err) {
dev_warn(info->dev,
"bt_wakeup_test: fail: CTS re-low timed out: %d\n",
err);
goto out;
}
ret = 0;
out:
/* Re-enable wakeup interrupts */
enable_irq(gpio_to_irq(info->host_wakeup_gpio));
return ret;
}
static int hci_h4p_hci_open(struct hci_dev *hdev)
{
struct hci_h4p_info *info;
int err, retries = 0;
struct sk_buff_head fw_queue;
unsigned long flags;
info = hci_get_drvdata(hdev);
if (test_bit(HCI_RUNNING, &hdev->flags))
return 0;
/* TI1271 has HW bug and boot up might fail. Retry up to three times */
again:
info->rx_enabled = 1;
info->rx_state = WAIT_FOR_PKT_TYPE;
info->rx_count = 0;
info->garbage_bytes = 0;
info->rx_skb = NULL;
info->pm_enabled = 0;
init_completion(&info->fw_completion);
hci_h4p_set_clk(info, &info->tx_clocks_en, 1);
hci_h4p_set_clk(info, &info->rx_clocks_en, 1);
skb_queue_head_init(&fw_queue);
err = hci_h4p_reset(info);
if (err < 0)
goto err_clean;
hci_h4p_set_auto_ctsrts(info, 1, UART_EFR_CTS | UART_EFR_RTS);
info->autorts = 1;
err = hci_h4p_send_negotiation(info);
err = hci_h4p_read_fw(info, &fw_queue);
if (err < 0) {
dev_err(info->dev, "Cannot read firmware\n");
goto err_clean;
}
err = hci_h4p_send_fw(info, &fw_queue);
if (err < 0) {
dev_err(info->dev, "Sending firmware failed.\n");
goto err_clean;
}
info->pm_enabled = 1;
err = hci_h4p_bt_wakeup_test(info);
if (err < 0) {
dev_err(info->dev, "BT wakeup test failed.\n");
goto err_clean;
}
spin_lock_irqsave(&info->lock, flags);
info->rx_enabled = gpio_get_value(info->host_wakeup_gpio);
hci_h4p_set_clk(info, &info->rx_clocks_en, info->rx_enabled);
spin_unlock_irqrestore(&info->lock, flags);
hci_h4p_set_clk(info, &info->tx_clocks_en, 0);
kfree_skb(info->alive_cmd_skb);
info->alive_cmd_skb = NULL;
set_bit(HCI_RUNNING, &hdev->flags);
BT_DBG("hci up and running");
return 0;
err_clean:
hci_h4p_hci_flush(hdev);
hci_h4p_reset_uart(info);
del_timer_sync(&info->lazy_release);
hci_h4p_set_clk(info, &info->tx_clocks_en, 0);
hci_h4p_set_clk(info, &info->rx_clocks_en, 0);
gpio_set_value(info->reset_gpio, 0);
gpio_set_value(info->bt_wakeup_gpio, 0);
skb_queue_purge(&fw_queue);
kfree_skb(info->alive_cmd_skb);
info->alive_cmd_skb = NULL;
kfree_skb(info->rx_skb);
info->rx_skb = NULL;
if (retries++ < 3) {
dev_err(info->dev, "FW loading try %d fail. Retry.\n", retries);
goto again;
}
return err;
}
static int hci_h4p_hci_close(struct hci_dev *hdev)
{
struct hci_h4p_info *info = hci_get_drvdata(hdev);
if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags))
return 0;
hci_h4p_hci_flush(hdev);
hci_h4p_set_clk(info, &info->tx_clocks_en, 1);
hci_h4p_set_clk(info, &info->rx_clocks_en, 1);
hci_h4p_reset_uart(info);
del_timer_sync(&info->lazy_release);
hci_h4p_set_clk(info, &info->tx_clocks_en, 0);
hci_h4p_set_clk(info, &info->rx_clocks_en, 0);
gpio_set_value(info->reset_gpio, 0);
gpio_set_value(info->bt_wakeup_gpio, 0);
kfree_skb(info->rx_skb);
return 0;
}
static int hci_h4p_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_h4p_info *info;
int err = 0;
BT_DBG("dev %p, skb %p", hdev, skb);
info = hci_get_drvdata(hdev);
if (!test_bit(HCI_RUNNING, &hdev->flags)) {
dev_warn(info->dev, "Frame for non-running device\n");
return -EIO;
}
switch (bt_cb(skb)->pkt_type) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
break;
}
/* Push frame type to skb */
*skb_push(skb, 1) = (bt_cb(skb)->pkt_type);
/* We should allways send word aligned data to h4+ devices */
if (skb->len % 2) {
err = skb_pad(skb, 1);
if (!err)
*skb_put(skb, 1) = 0x00;
}
if (err)
return err;
skb_queue_tail(&info->txq, skb);
hci_h4p_enable_tx(info);
return 0;
}
static ssize_t hci_h4p_store_bdaddr(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct hci_h4p_info *info = dev_get_drvdata(dev);
unsigned int bdaddr[6];
int ret, i;
ret = sscanf(buf, "%2x:%2x:%2x:%2x:%2x:%2x\n",
&bdaddr[0], &bdaddr[1], &bdaddr[2],
&bdaddr[3], &bdaddr[4], &bdaddr[5]);
if (ret != 6)
return -EINVAL;
for (i = 0; i < 6; i++) {
if (bdaddr[i] > 0xff)
return -EINVAL;
info->bd_addr[i] = bdaddr[i] & 0xff;
}
return count;
}
static ssize_t hci_h4p_show_bdaddr(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct hci_h4p_info *info = dev_get_drvdata(dev);
return sprintf(buf, "%pMR\n", info->bd_addr);
}
static DEVICE_ATTR(bdaddr, S_IRUGO | S_IWUSR, hci_h4p_show_bdaddr,
hci_h4p_store_bdaddr);
static int hci_h4p_sysfs_create_files(struct device *dev)
{
return device_create_file(dev, &dev_attr_bdaddr);
}
static void hci_h4p_sysfs_remove_files(struct device *dev)
{
device_remove_file(dev, &dev_attr_bdaddr);
}
static int hci_h4p_register_hdev(struct hci_h4p_info *info)
{
struct hci_dev *hdev;
/* Initialize and register HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
dev_err(info->dev, "Can't allocate memory for device\n");
return -ENOMEM;
}
info->hdev = hdev;
hdev->bus = HCI_UART;
hci_set_drvdata(hdev, info);
hdev->open = hci_h4p_hci_open;
hdev->close = hci_h4p_hci_close;
hdev->flush = hci_h4p_hci_flush;
hdev->send = hci_h4p_hci_send_frame;
set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
SET_HCIDEV_DEV(hdev, info->dev);
if (hci_h4p_sysfs_create_files(info->dev) < 0) {
dev_err(info->dev, "failed to create sysfs files\n");
goto free;
}
if (hci_register_dev(hdev) >= 0)
return 0;
dev_err(info->dev, "hci_register failed %s.\n", hdev->name);
hci_h4p_sysfs_remove_files(info->dev);
free:
hci_free_dev(info->hdev);
return -ENODEV;
}
static int hci_h4p_probe(struct platform_device *pdev)
{
struct hci_h4p_platform_data *bt_plat_data;
struct hci_h4p_info *info;
int err;
dev_info(&pdev->dev, "Registering HCI H4P device\n");
info = devm_kzalloc(&pdev->dev, sizeof(struct hci_h4p_info),
GFP_KERNEL);
if (!info)
return -ENOMEM;
info->dev = &pdev->dev;
info->tx_enabled = 1;
info->rx_enabled = 1;
spin_lock_init(&info->lock);
spin_lock_init(&info->clocks_lock);
skb_queue_head_init(&info->txq);
if (pdev->dev.platform_data == NULL) {
dev_err(&pdev->dev, "Could not get Bluetooth config data\n");
return -ENODATA;
}
bt_plat_data = pdev->dev.platform_data;
info->chip_type = bt_plat_data->chip_type;
info->bt_wakeup_gpio = bt_plat_data->bt_wakeup_gpio;
info->host_wakeup_gpio = bt_plat_data->host_wakeup_gpio;
info->reset_gpio = bt_plat_data->reset_gpio;
info->reset_gpio_shared = bt_plat_data->reset_gpio_shared;
info->bt_sysclk = bt_plat_data->bt_sysclk;
BT_DBG("RESET gpio: %d", info->reset_gpio);
BT_DBG("BTWU gpio: %d", info->bt_wakeup_gpio);
BT_DBG("HOSTWU gpio: %d", info->host_wakeup_gpio);
BT_DBG("sysclk: %d", info->bt_sysclk);
init_completion(&info->test_completion);
complete_all(&info->test_completion);
if (!info->reset_gpio_shared) {
err = devm_gpio_request_one(&pdev->dev, info->reset_gpio,
GPIOF_OUT_INIT_LOW, "bt_reset");
if (err < 0) {
dev_err(&pdev->dev, "Cannot get GPIO line %d\n",
info->reset_gpio);
return err;
}
}
err = devm_gpio_request_one(&pdev->dev, info->bt_wakeup_gpio,
GPIOF_OUT_INIT_LOW, "bt_wakeup");
if (err < 0) {
dev_err(info->dev, "Cannot get GPIO line 0x%d",
info->bt_wakeup_gpio);
return err;
}
err = devm_gpio_request_one(&pdev->dev, info->host_wakeup_gpio,
GPIOF_DIR_IN, "host_wakeup");
if (err < 0) {
dev_err(info->dev, "Cannot get GPIO line %d",
info->host_wakeup_gpio);
return err;
}
info->irq = bt_plat_data->uart_irq;
info->uart_base = devm_ioremap(&pdev->dev, bt_plat_data->uart_base,
SZ_2K);
info->uart_iclk = devm_clk_get(&pdev->dev, bt_plat_data->uart_iclk);
info->uart_fclk = devm_clk_get(&pdev->dev, bt_plat_data->uart_fclk);
err = devm_request_irq(&pdev->dev, info->irq, hci_h4p_interrupt,
IRQF_DISABLED, "hci_h4p", info);
if (err < 0) {
dev_err(info->dev, "hci_h4p: unable to get IRQ %d\n",
info->irq);
return err;
}
err = devm_request_irq(&pdev->dev, gpio_to_irq(info->host_wakeup_gpio),
hci_h4p_wakeup_interrupt, IRQF_TRIGGER_FALLING |
IRQF_TRIGGER_RISING | IRQF_DISABLED,
"hci_h4p_wkup", info);
if (err < 0) {
dev_err(info->dev, "hci_h4p: unable to get wakeup IRQ %d\n",
gpio_to_irq(info->host_wakeup_gpio));
return err;
}
err = irq_set_irq_wake(gpio_to_irq(info->host_wakeup_gpio), 1);
if (err < 0) {
dev_err(info->dev, "hci_h4p: unable to set wakeup for IRQ %d\n",
gpio_to_irq(info->host_wakeup_gpio));
return err;
}
init_timer_deferrable(&info->lazy_release);
info->lazy_release.function = hci_h4p_lazy_clock_release;
info->lazy_release.data = (unsigned long)info;
hci_h4p_set_clk(info, &info->tx_clocks_en, 1);
err = hci_h4p_reset_uart(info);
if (err < 0)
return err;
gpio_set_value(info->reset_gpio, 0);
hci_h4p_set_clk(info, &info->tx_clocks_en, 0);
platform_set_drvdata(pdev, info);
if (hci_h4p_register_hdev(info) < 0) {
dev_err(info->dev, "failed to register hci_h4p hci device\n");
return -EINVAL;
}
return 0;
}
static int hci_h4p_remove(struct platform_device *pdev)
{
struct hci_h4p_info *info;
info = platform_get_drvdata(pdev);
hci_h4p_sysfs_remove_files(info->dev);
hci_h4p_hci_close(info->hdev);
hci_unregister_dev(info->hdev);
hci_free_dev(info->hdev);
return 0;
}
static struct platform_driver hci_h4p_driver = {
.probe = hci_h4p_probe,
.remove = hci_h4p_remove,
.driver = {
.name = "hci_h4p",
},
};
module_platform_driver(hci_h4p_driver);
MODULE_ALIAS("platform:hci_h4p");
MODULE_DESCRIPTION("Bluetooth h4 driver with nokia extensions");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ville Tervo");