blob: 7a9296ab88340991436dfb91d6db70e7a17a529e [file] [log] [blame]
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/acpi_pmtmr.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
#include <linux/timex.h>
#include <linux/static_key.h>
#include <asm/hpet.h>
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
#include <asm/hypervisor.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>
unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int __read_mostly tsc_khz;
EXPORT_SYMBOL(tsc_khz);
/*
* TSC can be unstable due to cpufreq or due to unsynced TSCs
*/
static int __read_mostly tsc_unstable;
/* native_sched_clock() is called before tsc_init(), so
we must start with the TSC soft disabled to prevent
erroneous rdtsc usage on !cpu_has_tsc processors */
static int __read_mostly tsc_disabled = -1;
static struct static_key __use_tsc = STATIC_KEY_INIT;
int tsc_clocksource_reliable;
/*
* Use a ring-buffer like data structure, where a writer advances the head by
* writing a new data entry and a reader advances the tail when it observes a
* new entry.
*
* Writers are made to wait on readers until there's space to write a new
* entry.
*
* This means that we can always use an {offset, mul} pair to compute a ns
* value that is 'roughly' in the right direction, even if we're writing a new
* {offset, mul} pair during the clock read.
*
* The down-side is that we can no longer guarantee strict monotonicity anymore
* (assuming the TSC was that to begin with), because while we compute the
* intersection point of the two clock slopes and make sure the time is
* continuous at the point of switching; we can no longer guarantee a reader is
* strictly before or after the switch point.
*
* It does mean a reader no longer needs to disable IRQs in order to avoid
* CPU-Freq updates messing with his times, and similarly an NMI reader will
* no longer run the risk of hitting half-written state.
*/
struct cyc2ns {
struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
struct cyc2ns_data *head; /* 48 + 8 = 56 */
struct cyc2ns_data *tail; /* 56 + 8 = 64 */
}; /* exactly fits one cacheline */
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
struct cyc2ns_data *cyc2ns_read_begin(void)
{
struct cyc2ns_data *head;
preempt_disable();
head = this_cpu_read(cyc2ns.head);
/*
* Ensure we observe the entry when we observe the pointer to it.
* matches the wmb from cyc2ns_write_end().
*/
smp_read_barrier_depends();
head->__count++;
barrier();
return head;
}
void cyc2ns_read_end(struct cyc2ns_data *head)
{
barrier();
/*
* If we're the outer most nested read; update the tail pointer
* when we're done. This notifies possible pending writers
* that we've observed the head pointer and that the other
* entry is now free.
*/
if (!--head->__count) {
/*
* x86-TSO does not reorder writes with older reads;
* therefore once this write becomes visible to another
* cpu, we must be finished reading the cyc2ns_data.
*
* matches with cyc2ns_write_begin().
*/
this_cpu_write(cyc2ns.tail, head);
}
preempt_enable();
}
/*
* Begin writing a new @data entry for @cpu.
*
* Assumes some sort of write side lock; currently 'provided' by the assumption
* that cpufreq will call its notifiers sequentially.
*/
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
{
struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
struct cyc2ns_data *data = c2n->data;
if (data == c2n->head)
data++;
/* XXX send an IPI to @cpu in order to guarantee a read? */
/*
* When we observe the tail write from cyc2ns_read_end(),
* the cpu must be done with that entry and its safe
* to start writing to it.
*/
while (c2n->tail == data)
cpu_relax();
return data;
}
static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
{
struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
/*
* Ensure the @data writes are visible before we publish the
* entry. Matches the data-depencency in cyc2ns_read_begin().
*/
smp_wmb();
ACCESS_ONCE(c2n->head) = data;
}
/*
* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
data->cyc2ns_mul = 0;
data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
data->cyc2ns_offset = 0;
data->__count = 0;
}
static void cyc2ns_init(int cpu)
{
struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
cyc2ns_data_init(&c2n->data[0]);
cyc2ns_data_init(&c2n->data[1]);
c2n->head = c2n->data;
c2n->tail = c2n->data;
}
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
struct cyc2ns_data *data, *tail;
unsigned long long ns;
/*
* See cyc2ns_read_*() for details; replicated in order to avoid
* an extra few instructions that came with the abstraction.
* Notable, it allows us to only do the __count and tail update
* dance when its actually needed.
*/
preempt_disable_notrace();
data = this_cpu_read(cyc2ns.head);
tail = this_cpu_read(cyc2ns.tail);
if (likely(data == tail)) {
ns = data->cyc2ns_offset;
ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
} else {
data->__count++;
barrier();
ns = data->cyc2ns_offset;
ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
barrier();
if (!--data->__count)
this_cpu_write(cyc2ns.tail, data);
}
preempt_enable_notrace();
return ns;
}
/* XXX surely we already have this someplace in the kernel?! */
#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
unsigned long long tsc_now, ns_now;
struct cyc2ns_data *data;
unsigned long flags;
local_irq_save(flags);
sched_clock_idle_sleep_event();
if (!cpu_khz)
goto done;
data = cyc2ns_write_begin(cpu);
rdtscll(tsc_now);
ns_now = cycles_2_ns(tsc_now);
/*
* Compute a new multiplier as per the above comment and ensure our
* time function is continuous; see the comment near struct
* cyc2ns_data.
*/
data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
data->cyc2ns_offset = ns_now -
mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
cyc2ns_write_end(cpu, data);
done:
sched_clock_idle_wakeup_event(0);
local_irq_restore(flags);
}
/*
* Scheduler clock - returns current time in nanosec units.
*/
u64 native_sched_clock(void)
{
u64 tsc_now;
/*
* Fall back to jiffies if there's no TSC available:
* ( But note that we still use it if the TSC is marked
* unstable. We do this because unlike Time Of Day,
* the scheduler clock tolerates small errors and it's
* very important for it to be as fast as the platform
* can achieve it. )
*/
if (!static_key_false(&__use_tsc)) {
/* No locking but a rare wrong value is not a big deal: */
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
}
/* read the Time Stamp Counter: */
rdtscll(tsc_now);
/* return the value in ns */
return cycles_2_ns(tsc_now);
}
/* We need to define a real function for sched_clock, to override the
weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif
unsigned long long native_read_tsc(void)
{
return __native_read_tsc();
}
EXPORT_SYMBOL(native_read_tsc);
int check_tsc_unstable(void)
{
return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);
int check_tsc_disabled(void)
{
return tsc_disabled;
}
EXPORT_SYMBOL_GPL(check_tsc_disabled);
#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
tsc_disabled = 1;
return 1;
}
#else
/*
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
* in cpu/common.c
*/
int __init notsc_setup(char *str)
{
setup_clear_cpu_cap(X86_FEATURE_TSC);
return 1;
}
#endif
__setup("notsc", notsc_setup);
static int no_sched_irq_time;
static int __init tsc_setup(char *str)
{
if (!strcmp(str, "reliable"))
tsc_clocksource_reliable = 1;
if (!strncmp(str, "noirqtime", 9))
no_sched_irq_time = 1;
return 1;
}
__setup("tsc=", tsc_setup);
#define MAX_RETRIES 5
#define SMI_TRESHOLD 50000
/*
* Read TSC and the reference counters. Take care of SMI disturbance
*/
static u64 tsc_read_refs(u64 *p, int hpet)
{
u64 t1, t2;
int i;
for (i = 0; i < MAX_RETRIES; i++) {
t1 = get_cycles();
if (hpet)
*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
else
*p = acpi_pm_read_early();
t2 = get_cycles();
if ((t2 - t1) < SMI_TRESHOLD)
return t2;
}
return ULLONG_MAX;
}
/*
* Calculate the TSC frequency from HPET reference
*/
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
{
u64 tmp;
if (hpet2 < hpet1)
hpet2 += 0x100000000ULL;
hpet2 -= hpet1;
tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
do_div(tmp, 1000000);
do_div(deltatsc, tmp);
return (unsigned long) deltatsc;
}
/*
* Calculate the TSC frequency from PMTimer reference
*/
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
u64 tmp;
if (!pm1 && !pm2)
return ULONG_MAX;
if (pm2 < pm1)
pm2 += (u64)ACPI_PM_OVRRUN;
pm2 -= pm1;
tmp = pm2 * 1000000000LL;
do_div(tmp, PMTMR_TICKS_PER_SEC);
do_div(deltatsc, tmp);
return (unsigned long) deltatsc;
}
#define CAL_MS 10
#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
#define CAL_PIT_LOOPS 1000
#define CAL2_MS 50
#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
#define CAL2_PIT_LOOPS 5000
/*
* Try to calibrate the TSC against the Programmable
* Interrupt Timer and return the frequency of the TSC
* in kHz.
*
* Return ULONG_MAX on failure to calibrate.
*/
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
{
u64 tsc, t1, t2, delta;
unsigned long tscmin, tscmax;
int pitcnt;
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Setup CTC channel 2* for mode 0, (interrupt on terminal
* count mode), binary count. Set the latch register to 50ms
* (LSB then MSB) to begin countdown.
*/
outb(0xb0, 0x43);
outb(latch & 0xff, 0x42);
outb(latch >> 8, 0x42);
tsc = t1 = t2 = get_cycles();
pitcnt = 0;
tscmax = 0;
tscmin = ULONG_MAX;
while ((inb(0x61) & 0x20) == 0) {
t2 = get_cycles();
delta = t2 - tsc;
tsc = t2;
if ((unsigned long) delta < tscmin)
tscmin = (unsigned int) delta;
if ((unsigned long) delta > tscmax)
tscmax = (unsigned int) delta;
pitcnt++;
}
/*
* Sanity checks:
*
* If we were not able to read the PIT more than loopmin
* times, then we have been hit by a massive SMI
*
* If the maximum is 10 times larger than the minimum,
* then we got hit by an SMI as well.
*/
if (pitcnt < loopmin || tscmax > 10 * tscmin)
return ULONG_MAX;
/* Calculate the PIT value */
delta = t2 - t1;
do_div(delta, ms);
return delta;
}
/*
* This reads the current MSB of the PIT counter, and
* checks if we are running on sufficiently fast and
* non-virtualized hardware.
*
* Our expectations are:
*
* - the PIT is running at roughly 1.19MHz
*
* - each IO is going to take about 1us on real hardware,
* but we allow it to be much faster (by a factor of 10) or
* _slightly_ slower (ie we allow up to a 2us read+counter
* update - anything else implies a unacceptably slow CPU
* or PIT for the fast calibration to work.
*
* - with 256 PIT ticks to read the value, we have 214us to
* see the same MSB (and overhead like doing a single TSC
* read per MSB value etc).
*
* - We're doing 2 reads per loop (LSB, MSB), and we expect
* them each to take about a microsecond on real hardware.
* So we expect a count value of around 100. But we'll be
* generous, and accept anything over 50.
*
* - if the PIT is stuck, and we see *many* more reads, we
* return early (and the next caller of pit_expect_msb()
* then consider it a failure when they don't see the
* next expected value).
*
* These expectations mean that we know that we have seen the
* transition from one expected value to another with a fairly
* high accuracy, and we didn't miss any events. We can thus
* use the TSC value at the transitions to calculate a pretty
* good value for the TSC frequencty.
*/
static inline int pit_verify_msb(unsigned char val)
{
/* Ignore LSB */
inb(0x42);
return inb(0x42) == val;
}
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
{
int count;
u64 tsc = 0, prev_tsc = 0;
for (count = 0; count < 50000; count++) {
if (!pit_verify_msb(val))
break;
prev_tsc = tsc;
tsc = get_cycles();
}
*deltap = get_cycles() - prev_tsc;
*tscp = tsc;
/*
* We require _some_ success, but the quality control
* will be based on the error terms on the TSC values.
*/
return count > 5;
}
/*
* How many MSB values do we want to see? We aim for
* a maximum error rate of 500ppm (in practice the
* real error is much smaller), but refuse to spend
* more than 50ms on it.
*/
#define MAX_QUICK_PIT_MS 50
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
static unsigned long quick_pit_calibrate(void)
{
int i;
u64 tsc, delta;
unsigned long d1, d2;
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Counter 2, mode 0 (one-shot), binary count
*
* NOTE! Mode 2 decrements by two (and then the
* output is flipped each time, giving the same
* final output frequency as a decrement-by-one),
* so mode 0 is much better when looking at the
* individual counts.
*/
outb(0xb0, 0x43);
/* Start at 0xffff */
outb(0xff, 0x42);
outb(0xff, 0x42);
/*
* The PIT starts counting at the next edge, so we
* need to delay for a microsecond. The easiest way
* to do that is to just read back the 16-bit counter
* once from the PIT.
*/
pit_verify_msb(0);
if (pit_expect_msb(0xff, &tsc, &d1)) {
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
if (!pit_expect_msb(0xff-i, &delta, &d2))
break;
/*
* Iterate until the error is less than 500 ppm
*/
delta -= tsc;
if (d1+d2 >= delta >> 11)
continue;
/*
* Check the PIT one more time to verify that
* all TSC reads were stable wrt the PIT.
*
* This also guarantees serialization of the
* last cycle read ('d2') in pit_expect_msb.
*/
if (!pit_verify_msb(0xfe - i))
break;
goto success;
}
}
pr_err("Fast TSC calibration failed\n");
return 0;
success:
/*
* Ok, if we get here, then we've seen the
* MSB of the PIT decrement 'i' times, and the
* error has shrunk to less than 500 ppm.
*
* As a result, we can depend on there not being
* any odd delays anywhere, and the TSC reads are
* reliable (within the error).
*
* kHz = ticks / time-in-seconds / 1000;
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
*/
delta *= PIT_TICK_RATE;
do_div(delta, i*256*1000);
pr_info("Fast TSC calibration using PIT\n");
return delta;
}
/**
* native_calibrate_tsc - calibrate the tsc on boot
*/
unsigned long native_calibrate_tsc(void)
{
u64 tsc1, tsc2, delta, ref1, ref2;
unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
unsigned long flags, latch, ms, fast_calibrate;
int hpet = is_hpet_enabled(), i, loopmin;
/* Calibrate TSC using MSR for Intel Atom SoCs */
local_irq_save(flags);
fast_calibrate = try_msr_calibrate_tsc();
local_irq_restore(flags);
if (fast_calibrate)
return fast_calibrate;
local_irq_save(flags);
fast_calibrate = quick_pit_calibrate();
local_irq_restore(flags);
if (fast_calibrate)
return fast_calibrate;
/*
* Run 5 calibration loops to get the lowest frequency value
* (the best estimate). We use two different calibration modes
* here:
*
* 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
* load a timeout of 50ms. We read the time right after we
* started the timer and wait until the PIT count down reaches
* zero. In each wait loop iteration we read the TSC and check
* the delta to the previous read. We keep track of the min
* and max values of that delta. The delta is mostly defined
* by the IO time of the PIT access, so we can detect when a
* SMI/SMM disturbance happened between the two reads. If the
* maximum time is significantly larger than the minimum time,
* then we discard the result and have another try.
*
* 2) Reference counter. If available we use the HPET or the
* PMTIMER as a reference to check the sanity of that value.
* We use separate TSC readouts and check inside of the
* reference read for a SMI/SMM disturbance. We dicard
* disturbed values here as well. We do that around the PIT
* calibration delay loop as we have to wait for a certain
* amount of time anyway.
*/
/* Preset PIT loop values */
latch = CAL_LATCH;
ms = CAL_MS;
loopmin = CAL_PIT_LOOPS;
for (i = 0; i < 3; i++) {
unsigned long tsc_pit_khz;
/*
* Read the start value and the reference count of
* hpet/pmtimer when available. Then do the PIT
* calibration, which will take at least 50ms, and
* read the end value.
*/
local_irq_save(flags);
tsc1 = tsc_read_refs(&ref1, hpet);
tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
tsc2 = tsc_read_refs(&ref2, hpet);
local_irq_restore(flags);
/* Pick the lowest PIT TSC calibration so far */
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
/* hpet or pmtimer available ? */
if (ref1 == ref2)
continue;
/* Check, whether the sampling was disturbed by an SMI */
if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
continue;
tsc2 = (tsc2 - tsc1) * 1000000LL;
if (hpet)
tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
else
tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
/* Check the reference deviation */
delta = ((u64) tsc_pit_min) * 100;
do_div(delta, tsc_ref_min);
/*
* If both calibration results are inside a 10% window
* then we can be sure, that the calibration
* succeeded. We break out of the loop right away. We
* use the reference value, as it is more precise.
*/
if (delta >= 90 && delta <= 110) {
pr_info("PIT calibration matches %s. %d loops\n",
hpet ? "HPET" : "PMTIMER", i + 1);
return tsc_ref_min;
}
/*
* Check whether PIT failed more than once. This
* happens in virtualized environments. We need to
* give the virtual PC a slightly longer timeframe for
* the HPET/PMTIMER to make the result precise.
*/
if (i == 1 && tsc_pit_min == ULONG_MAX) {
latch = CAL2_LATCH;
ms = CAL2_MS;
loopmin = CAL2_PIT_LOOPS;
}
}
/*
* Now check the results.
*/
if (tsc_pit_min == ULONG_MAX) {
/* PIT gave no useful value */
pr_warn("Unable to calibrate against PIT\n");
/* We don't have an alternative source, disable TSC */
if (!hpet && !ref1 && !ref2) {
pr_notice("No reference (HPET/PMTIMER) available\n");
return 0;
}
/* The alternative source failed as well, disable TSC */
if (tsc_ref_min == ULONG_MAX) {
pr_warn("HPET/PMTIMER calibration failed\n");
return 0;
}
/* Use the alternative source */
pr_info("using %s reference calibration\n",
hpet ? "HPET" : "PMTIMER");
return tsc_ref_min;
}
/* We don't have an alternative source, use the PIT calibration value */
if (!hpet && !ref1 && !ref2) {
pr_info("Using PIT calibration value\n");
return tsc_pit_min;
}
/* The alternative source failed, use the PIT calibration value */
if (tsc_ref_min == ULONG_MAX) {
pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
return tsc_pit_min;
}
/*
* The calibration values differ too much. In doubt, we use
* the PIT value as we know that there are PMTIMERs around
* running at double speed. At least we let the user know:
*/
pr_warn("PIT calibration deviates from %s: %lu %lu\n",
hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
pr_info("Using PIT calibration value\n");
return tsc_pit_min;
}
int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
unsigned long cpu_khz_old = cpu_khz;
if (cpu_has_tsc) {
tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;
cpu_data(0).loops_per_jiffy =
cpufreq_scale(cpu_data(0).loops_per_jiffy,
cpu_khz_old, cpu_khz);
return 0;
} else
return -ENODEV;
#else
return -ENODEV;
#endif
}
EXPORT_SYMBOL(recalibrate_cpu_khz);
static unsigned long long cyc2ns_suspend;
void tsc_save_sched_clock_state(void)
{
if (!sched_clock_stable())
return;
cyc2ns_suspend = sched_clock();
}
/*
* Even on processors with invariant TSC, TSC gets reset in some the
* ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
* arbitrary value (still sync'd across cpu's) during resume from such sleep
* states. To cope up with this, recompute the cyc2ns_offset for each cpu so
* that sched_clock() continues from the point where it was left off during
* suspend.
*/
void tsc_restore_sched_clock_state(void)
{
unsigned long long offset;
unsigned long flags;
int cpu;
if (!sched_clock_stable())
return;
local_irq_save(flags);
/*
* We're comming out of suspend, there's no concurrency yet; don't
* bother being nice about the RCU stuff, just write to both
* data fields.
*/
this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
offset = cyc2ns_suspend - sched_clock();
for_each_possible_cpu(cpu) {
per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
}
local_irq_restore(flags);
}
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
* changes.
*
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
* not that important because current Opteron setups do not support
* scaling on SMP anyroads.
*
* Should fix up last_tsc too. Currently gettimeofday in the
* first tick after the change will be slightly wrong.
*/
static unsigned int ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long *lpj;
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
return 0;
lpj = &boot_cpu_data.loops_per_jiffy;
#ifdef CONFIG_SMP
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif
if (!ref_freq) {
ref_freq = freq->old;
loops_per_jiffy_ref = *lpj;
tsc_khz_ref = tsc_khz;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
}
set_cyc2ns_scale(tsc_khz, freq->cpu);
return 0;
}
static struct notifier_block time_cpufreq_notifier_block = {
.notifier_call = time_cpufreq_notifier
};
static int __init cpufreq_tsc(void)
{
if (!cpu_has_tsc)
return 0;
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
cpufreq_register_notifier(&time_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
core_initcall(cpufreq_tsc);
#endif /* CONFIG_CPU_FREQ */
/* clocksource code */
static struct clocksource clocksource_tsc;
/*
* We compare the TSC to the cycle_last value in the clocksource
* structure to avoid a nasty time-warp. This can be observed in a
* very small window right after one CPU updated cycle_last under
* xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
* is smaller than the cycle_last reference value due to a TSC which
* is slighty behind. This delta is nowhere else observable, but in
* that case it results in a forward time jump in the range of hours
* due to the unsigned delta calculation of the time keeping core
* code, which is necessary to support wrapping clocksources like pm
* timer.
*/
static cycle_t read_tsc(struct clocksource *cs)
{
cycle_t ret = (cycle_t)get_cycles();
return ret >= clocksource_tsc.cycle_last ?
ret : clocksource_tsc.cycle_last;
}
static void resume_tsc(struct clocksource *cs)
{
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
clocksource_tsc.cycle_last = 0;
}
static struct clocksource clocksource_tsc = {
.name = "tsc",
.rating = 300,
.read = read_tsc,
.resume = resume_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
.archdata = { .vclock_mode = VCLOCK_TSC },
#endif
};
void mark_tsc_unstable(char *reason)
{
if (!tsc_unstable) {
tsc_unstable = 1;
clear_sched_clock_stable();
disable_sched_clock_irqtime();
pr_info("Marking TSC unstable due to %s\n", reason);
/* Change only the rating, when not registered */
if (clocksource_tsc.mult)
clocksource_mark_unstable(&clocksource_tsc);
else {
clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
clocksource_tsc.rating = 0;
}
}
}
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
static void __init check_system_tsc_reliable(void)
{
#ifdef CONFIG_MGEODE_LX
/* RTSC counts during suspend */
#define RTSC_SUSP 0x100
unsigned long res_low, res_high;
rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
/* Geode_LX - the OLPC CPU has a very reliable TSC */
if (res_low & RTSC_SUSP)
tsc_clocksource_reliable = 1;
#endif
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
tsc_clocksource_reliable = 1;
}
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
int unsynchronized_tsc(void)
{
if (!cpu_has_tsc || tsc_unstable)
return 1;
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
#endif
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
if (tsc_clocksource_reliable)
return 0;
/*
* Intel systems are normally all synchronized.
* Exceptions must mark TSC as unstable:
*/
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
/* assume multi socket systems are not synchronized: */
if (num_possible_cpus() > 1)
return 1;
}
return 0;
}
static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
* tsc_refine_calibration_work - Further refine tsc freq calibration
* @work - ignored.
*
* This functions uses delayed work over a period of a
* second to further refine the TSC freq value. Since this is
* timer based, instead of loop based, we don't block the boot
* process while this longer calibration is done.
*
* If there are any calibration anomalies (too many SMIs, etc),
* or the refined calibration is off by 1% of the fast early
* calibration, we throw out the new calibration and use the
* early calibration.
*/
static void tsc_refine_calibration_work(struct work_struct *work)
{
static u64 tsc_start = -1, ref_start;
static int hpet;
u64 tsc_stop, ref_stop, delta;
unsigned long freq;
/* Don't bother refining TSC on unstable systems */
if (check_tsc_unstable())
goto out;
/*
* Since the work is started early in boot, we may be
* delayed the first time we expire. So set the workqueue
* again once we know timers are working.
*/
if (tsc_start == -1) {
/*
* Only set hpet once, to avoid mixing hardware
* if the hpet becomes enabled later.
*/
hpet = is_hpet_enabled();
schedule_delayed_work(&tsc_irqwork, HZ);
tsc_start = tsc_read_refs(&ref_start, hpet);
return;
}
tsc_stop = tsc_read_refs(&ref_stop, hpet);
/* hpet or pmtimer available ? */
if (ref_start == ref_stop)
goto out;
/* Check, whether the sampling was disturbed by an SMI */
if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
goto out;
delta = tsc_stop - tsc_start;
delta *= 1000000LL;
if (hpet)
freq = calc_hpet_ref(delta, ref_start, ref_stop);
else
freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
/* Make sure we're within 1% */
if (abs(tsc_khz - freq) > tsc_khz/100)
goto out;
tsc_khz = freq;
pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
(unsigned long)tsc_khz / 1000,
(unsigned long)tsc_khz % 1000);
out:
clocksource_register_khz(&clocksource_tsc, tsc_khz);
}
static int __init init_tsc_clocksource(void)
{
if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
return 0;
if (tsc_clocksource_reliable)
clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
/* lower the rating if we already know its unstable: */
if (check_tsc_unstable()) {
clocksource_tsc.rating = 0;
clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
}
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
/*
* Trust the results of the earlier calibration on systems
* exporting a reliable TSC.
*/
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
clocksource_register_khz(&clocksource_tsc, tsc_khz);
return 0;
}
schedule_delayed_work(&tsc_irqwork, 0);
return 0;
}
/*
* We use device_initcall here, to ensure we run after the hpet
* is fully initialized, which may occur at fs_initcall time.
*/
device_initcall(init_tsc_clocksource);
void __init tsc_init(void)
{
u64 lpj;
int cpu;
x86_init.timers.tsc_pre_init();
if (!cpu_has_tsc)
return;
tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;
if (!tsc_khz) {
mark_tsc_unstable("could not calculate TSC khz");
return;
}
pr_info("Detected %lu.%03lu MHz processor\n",
(unsigned long)cpu_khz / 1000,
(unsigned long)cpu_khz % 1000);
/*
* Secondary CPUs do not run through tsc_init(), so set up
* all the scale factors for all CPUs, assuming the same
* speed as the bootup CPU. (cpufreq notifiers will fix this
* up if their speed diverges)
*/
for_each_possible_cpu(cpu) {
cyc2ns_init(cpu);
set_cyc2ns_scale(cpu_khz, cpu);
}
if (tsc_disabled > 0)
return;
/* now allow native_sched_clock() to use rdtsc */
tsc_disabled = 0;
static_key_slow_inc(&__use_tsc);
if (!no_sched_irq_time)
enable_sched_clock_irqtime();
lpj = ((u64)tsc_khz * 1000);
do_div(lpj, HZ);
lpj_fine = lpj;
use_tsc_delay();
if (unsynchronized_tsc())
mark_tsc_unstable("TSCs unsynchronized");
check_system_tsc_reliable();
}
#ifdef CONFIG_SMP
/*
* If we have a constant TSC and are using the TSC for the delay loop,
* we can skip clock calibration if another cpu in the same socket has already
* been calibrated. This assumes that CONSTANT_TSC applies to all
* cpus in the socket - this should be a safe assumption.
*/
unsigned long calibrate_delay_is_known(void)
{
int i, cpu = smp_processor_id();
if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
return 0;
for_each_online_cpu(i)
if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
return cpu_data(i).loops_per_jiffy;
return 0;
}
#endif