| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <asm/idle.h> |
| #include <linux/smp.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/module.h> |
| #include <linux/pm.h> |
| #include <linux/clockchips.h> |
| #include <asm/system.h> |
| #include <asm/apic.h> |
| |
| unsigned long idle_halt; |
| EXPORT_SYMBOL(idle_halt); |
| unsigned long idle_nomwait; |
| EXPORT_SYMBOL(idle_nomwait); |
| |
| struct kmem_cache *task_xstate_cachep; |
| |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| *dst = *src; |
| if (src->thread.xstate) { |
| dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, |
| GFP_KERNEL); |
| if (!dst->thread.xstate) |
| return -ENOMEM; |
| WARN_ON((unsigned long)dst->thread.xstate & 15); |
| memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); |
| } |
| return 0; |
| } |
| |
| void free_thread_xstate(struct task_struct *tsk) |
| { |
| if (tsk->thread.xstate) { |
| kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); |
| tsk->thread.xstate = NULL; |
| } |
| } |
| |
| void free_thread_info(struct thread_info *ti) |
| { |
| free_thread_xstate(ti->task); |
| free_pages((unsigned long)ti, get_order(THREAD_SIZE)); |
| } |
| |
| void arch_task_cache_init(void) |
| { |
| task_xstate_cachep = |
| kmem_cache_create("task_xstate", xstate_size, |
| __alignof__(union thread_xstate), |
| SLAB_PANIC, NULL); |
| } |
| |
| /* |
| * Idle related variables and functions |
| */ |
| unsigned long boot_option_idle_override = 0; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| /* |
| * Powermanagement idle function, if any.. |
| */ |
| void (*pm_idle)(void); |
| EXPORT_SYMBOL(pm_idle); |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * This halt magic was a workaround for ancient floppy DMA |
| * wreckage. It should be safe to remove. |
| */ |
| static int hlt_counter; |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| EXPORT_SYMBOL(disable_hlt); |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| EXPORT_SYMBOL(enable_hlt); |
| |
| static inline int hlt_use_halt(void) |
| { |
| return (!hlt_counter && boot_cpu_data.hlt_works_ok); |
| } |
| #else |
| static inline int hlt_use_halt(void) |
| { |
| return 1; |
| } |
| #endif |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| void default_idle(void) |
| { |
| if (hlt_use_halt()) { |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we |
| * test NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| if (!need_resched()) |
| safe_halt(); /* enables interrupts racelessly */ |
| else |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| } else { |
| local_irq_enable(); |
| /* loop is done by the caller */ |
| cpu_relax(); |
| } |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| void stop_this_cpu(void *dummy) |
| { |
| local_irq_disable(); |
| /* |
| * Remove this CPU: |
| */ |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| disable_local_APIC(); |
| |
| for (;;) { |
| if (hlt_works(smp_processor_id())) |
| halt(); |
| } |
| } |
| |
| static void do_nothing(void *unused) |
| { |
| } |
| |
| /* |
| * cpu_idle_wait - Used to ensure that all the CPUs discard old value of |
| * pm_idle and update to new pm_idle value. Required while changing pm_idle |
| * handler on SMP systems. |
| * |
| * Caller must have changed pm_idle to the new value before the call. Old |
| * pm_idle value will not be used by any CPU after the return of this function. |
| */ |
| void cpu_idle_wait(void) |
| { |
| smp_mb(); |
| /* kick all the CPUs so that they exit out of pm_idle */ |
| smp_call_function(do_nothing, NULL, 1); |
| } |
| EXPORT_SYMBOL_GPL(cpu_idle_wait); |
| |
| /* |
| * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, |
| * which can obviate IPI to trigger checking of need_resched. |
| * We execute MONITOR against need_resched and enter optimized wait state |
| * through MWAIT. Whenever someone changes need_resched, we would be woken |
| * up from MWAIT (without an IPI). |
| * |
| * New with Core Duo processors, MWAIT can take some hints based on CPU |
| * capability. |
| */ |
| void mwait_idle_with_hints(unsigned long ax, unsigned long cx) |
| { |
| if (!need_resched()) { |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (!need_resched()) |
| __mwait(ax, cx); |
| } |
| } |
| |
| /* Default MONITOR/MWAIT with no hints, used for default C1 state */ |
| static void mwait_idle(void) |
| { |
| if (!need_resched()) { |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (!need_resched()) |
| __sti_mwait(0, 0); |
| else |
| local_irq_enable(); |
| } else |
| local_irq_enable(); |
| } |
| |
| /* |
| * On SMP it's slightly faster (but much more power-consuming!) |
| * to poll the ->work.need_resched flag instead of waiting for the |
| * cross-CPU IPI to arrive. Use this option with caution. |
| */ |
| static void poll_idle(void) |
| { |
| local_irq_enable(); |
| while (!need_resched()) |
| cpu_relax(); |
| } |
| |
| /* |
| * mwait selection logic: |
| * |
| * It depends on the CPU. For AMD CPUs that support MWAIT this is |
| * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings |
| * then depend on a clock divisor and current Pstate of the core. If |
| * all cores of a processor are in halt state (C1) the processor can |
| * enter the C1E (C1 enhanced) state. If mwait is used this will never |
| * happen. |
| * |
| * idle=mwait overrides this decision and forces the usage of mwait. |
| */ |
| static int __cpuinitdata force_mwait; |
| |
| #define MWAIT_INFO 0x05 |
| #define MWAIT_ECX_EXTENDED_INFO 0x01 |
| #define MWAIT_EDX_C1 0xf0 |
| |
| static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) |
| { |
| u32 eax, ebx, ecx, edx; |
| |
| if (force_mwait) |
| return 1; |
| |
| if (c->cpuid_level < MWAIT_INFO) |
| return 0; |
| |
| cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); |
| /* Check, whether EDX has extended info about MWAIT */ |
| if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) |
| return 1; |
| |
| /* |
| * edx enumeratios MONITOR/MWAIT extensions. Check, whether |
| * C1 supports MWAIT |
| */ |
| return (edx & MWAIT_EDX_C1); |
| } |
| |
| /* |
| * Check for AMD CPUs, which have potentially C1E support |
| */ |
| static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) |
| { |
| if (c->x86_vendor != X86_VENDOR_AMD) |
| return 0; |
| |
| if (c->x86 < 0x0F) |
| return 0; |
| |
| /* Family 0x0f models < rev F do not have C1E */ |
| if (c->x86 == 0x0f && c->x86_model < 0x40) |
| return 0; |
| |
| return 1; |
| } |
| |
| static cpumask_t c1e_mask = CPU_MASK_NONE; |
| static int c1e_detected; |
| |
| void c1e_remove_cpu(int cpu) |
| { |
| cpu_clear(cpu, c1e_mask); |
| } |
| |
| /* |
| * C1E aware idle routine. We check for C1E active in the interrupt |
| * pending message MSR. If we detect C1E, then we handle it the same |
| * way as C3 power states (local apic timer and TSC stop) |
| */ |
| static void c1e_idle(void) |
| { |
| if (need_resched()) |
| return; |
| |
| if (!c1e_detected) { |
| u32 lo, hi; |
| |
| rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
| if (lo & K8_INTP_C1E_ACTIVE_MASK) { |
| c1e_detected = 1; |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| mark_tsc_unstable("TSC halt in AMD C1E"); |
| printk(KERN_INFO "System has AMD C1E enabled\n"); |
| set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); |
| } |
| } |
| |
| if (c1e_detected) { |
| int cpu = smp_processor_id(); |
| |
| if (!cpu_isset(cpu, c1e_mask)) { |
| cpu_set(cpu, c1e_mask); |
| /* |
| * Force broadcast so ACPI can not interfere. Needs |
| * to run with interrupts enabled as it uses |
| * smp_function_call. |
| */ |
| local_irq_enable(); |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, |
| &cpu); |
| printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", |
| cpu); |
| local_irq_disable(); |
| } |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); |
| |
| default_idle(); |
| |
| /* |
| * The switch back from broadcast mode needs to be |
| * called with interrupts disabled. |
| */ |
| local_irq_disable(); |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); |
| local_irq_enable(); |
| } else |
| default_idle(); |
| } |
| |
| void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_SMP |
| if (pm_idle == poll_idle && smp_num_siblings > 1) { |
| printk(KERN_WARNING "WARNING: polling idle and HT enabled," |
| " performance may degrade.\n"); |
| } |
| #endif |
| if (pm_idle) |
| return; |
| |
| if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { |
| /* |
| * One CPU supports mwait => All CPUs supports mwait |
| */ |
| printk(KERN_INFO "using mwait in idle threads.\n"); |
| pm_idle = mwait_idle; |
| } else if (check_c1e_idle(c)) { |
| printk(KERN_INFO "using C1E aware idle routine\n"); |
| pm_idle = c1e_idle; |
| } else |
| pm_idle = default_idle; |
| } |
| |
| static int __init idle_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "poll")) { |
| printk("using polling idle threads.\n"); |
| pm_idle = poll_idle; |
| } else if (!strcmp(str, "mwait")) |
| force_mwait = 1; |
| else if (!strcmp(str, "halt")) { |
| /* |
| * When the boot option of idle=halt is added, halt is |
| * forced to be used for CPU idle. In such case CPU C2/C3 |
| * won't be used again. |
| * To continue to load the CPU idle driver, don't touch |
| * the boot_option_idle_override. |
| */ |
| pm_idle = default_idle; |
| idle_halt = 1; |
| return 0; |
| } else if (!strcmp(str, "nomwait")) { |
| /* |
| * If the boot option of "idle=nomwait" is added, |
| * it means that mwait will be disabled for CPU C2/C3 |
| * states. In such case it won't touch the variable |
| * of boot_option_idle_override. |
| */ |
| idle_nomwait = 1; |
| return 0; |
| } else |
| return -1; |
| |
| boot_option_idle_override = 1; |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |