| /* |
| * SuperH KGDB support |
| * |
| * Copyright (C) 2008 Paul Mundt |
| * |
| * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/kgdb.h> |
| #include <linux/kdebug.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <asm/cacheflush.h> |
| |
| /* Macros for single step instruction identification */ |
| #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900) |
| #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00) |
| #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \ |
| (((op) & 0x7f ) << 1)) |
| #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00) |
| #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00) |
| #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000) |
| #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023) |
| #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8) |
| #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000) |
| #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003) |
| #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b) |
| #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b) |
| #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_RTS(op) ((op) == 0xb) |
| #define OPCODE_RTE(op) ((op) == 0x2b) |
| |
| #define SR_T_BIT_MASK 0x1 |
| #define STEP_OPCODE 0xc33d |
| |
| /* Calculate the new address for after a step */ |
| static short *get_step_address(struct pt_regs *linux_regs) |
| { |
| insn_size_t op = __raw_readw(linux_regs->pc); |
| long addr; |
| |
| /* BT */ |
| if (OPCODE_BT(op)) { |
| if (linux_regs->sr & SR_T_BIT_MASK) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 2; |
| } |
| |
| /* BTS */ |
| else if (OPCODE_BTS(op)) { |
| if (linux_regs->sr & SR_T_BIT_MASK) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BF */ |
| else if (OPCODE_BF(op)) { |
| if (!(linux_regs->sr & SR_T_BIT_MASK)) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 2; |
| } |
| |
| /* BFS */ |
| else if (OPCODE_BFS(op)) { |
| if (!(linux_regs->sr & SR_T_BIT_MASK)) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BRA */ |
| else if (OPCODE_BRA(op)) |
| addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op); |
| |
| /* BRAF */ |
| else if (OPCODE_BRAF(op)) |
| addr = linux_regs->pc + 4 |
| + linux_regs->regs[OPCODE_BRAF_REG(op)]; |
| |
| /* BSR */ |
| else if (OPCODE_BSR(op)) |
| addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op); |
| |
| /* BSRF */ |
| else if (OPCODE_BSRF(op)) |
| addr = linux_regs->pc + 4 |
| + linux_regs->regs[OPCODE_BSRF_REG(op)]; |
| |
| /* JMP */ |
| else if (OPCODE_JMP(op)) |
| addr = linux_regs->regs[OPCODE_JMP_REG(op)]; |
| |
| /* JSR */ |
| else if (OPCODE_JSR(op)) |
| addr = linux_regs->regs[OPCODE_JSR_REG(op)]; |
| |
| /* RTS */ |
| else if (OPCODE_RTS(op)) |
| addr = linux_regs->pr; |
| |
| /* RTE */ |
| else if (OPCODE_RTE(op)) |
| addr = linux_regs->regs[15]; |
| |
| /* Other */ |
| else |
| addr = linux_regs->pc + instruction_size(op); |
| |
| flush_icache_range(addr, addr + instruction_size(op)); |
| return (short *)addr; |
| } |
| |
| /* |
| * Replace the instruction immediately after the current instruction |
| * (i.e. next in the expected flow of control) with a trap instruction, |
| * so that returning will cause only a single instruction to be executed. |
| * Note that this model is slightly broken for instructions with delay |
| * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the |
| * instruction in the delay slot will be executed. |
| */ |
| |
| static unsigned long stepped_address; |
| static insn_size_t stepped_opcode; |
| |
| static void do_single_step(struct pt_regs *linux_regs) |
| { |
| /* Determine where the target instruction will send us to */ |
| unsigned short *addr = get_step_address(linux_regs); |
| |
| stepped_address = (int)addr; |
| |
| /* Replace it */ |
| stepped_opcode = __raw_readw((long)addr); |
| *addr = STEP_OPCODE; |
| |
| /* Flush and return */ |
| flush_icache_range((long)addr, (long)addr + |
| instruction_size(stepped_opcode)); |
| } |
| |
| /* Undo a single step */ |
| static void undo_single_step(struct pt_regs *linux_regs) |
| { |
| /* If we have stepped, put back the old instruction */ |
| /* Use stepped_address in case we stopped elsewhere */ |
| if (stepped_opcode != 0) { |
| __raw_writew(stepped_opcode, stepped_address); |
| flush_icache_range(stepped_address, stepped_address + 2); |
| } |
| |
| stepped_opcode = 0; |
| } |
| |
| void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| gdb_regs[GDB_R0 + i] = regs->regs[i]; |
| |
| gdb_regs[GDB_PC] = regs->pc; |
| gdb_regs[GDB_PR] = regs->pr; |
| gdb_regs[GDB_SR] = regs->sr; |
| gdb_regs[GDB_GBR] = regs->gbr; |
| gdb_regs[GDB_MACH] = regs->mach; |
| gdb_regs[GDB_MACL] = regs->macl; |
| |
| __asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR])); |
| } |
| |
| void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i]; |
| |
| regs->pc = gdb_regs[GDB_PC]; |
| regs->pr = gdb_regs[GDB_PR]; |
| regs->sr = gdb_regs[GDB_SR]; |
| regs->gbr = gdb_regs[GDB_GBR]; |
| regs->mach = gdb_regs[GDB_MACH]; |
| regs->macl = gdb_regs[GDB_MACL]; |
| } |
| |
| void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) |
| { |
| gdb_regs[GDB_R15] = p->thread.sp; |
| gdb_regs[GDB_PC] = p->thread.pc; |
| } |
| |
| int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, |
| char *remcomInBuffer, char *remcomOutBuffer, |
| struct pt_regs *linux_regs) |
| { |
| unsigned long addr; |
| char *ptr; |
| |
| /* Undo any stepping we may have done */ |
| undo_single_step(linux_regs); |
| |
| switch (remcomInBuffer[0]) { |
| case 'c': |
| case 's': |
| /* try to read optional parameter, pc unchanged if no parm */ |
| ptr = &remcomInBuffer[1]; |
| if (kgdb_hex2long(&ptr, &addr)) |
| linux_regs->pc = addr; |
| case 'D': |
| case 'k': |
| atomic_set(&kgdb_cpu_doing_single_step, -1); |
| |
| if (remcomInBuffer[0] == 's') { |
| do_single_step(linux_regs); |
| kgdb_single_step = 1; |
| |
| atomic_set(&kgdb_cpu_doing_single_step, |
| raw_smp_processor_id()); |
| } |
| |
| return 0; |
| } |
| |
| /* this means that we do not want to exit from the handler: */ |
| return -1; |
| } |
| |
| /* |
| * The primary entry points for the kgdb debug trap table entries. |
| */ |
| BUILD_TRAP_HANDLER(singlestep) |
| { |
| unsigned long flags; |
| TRAP_HANDLER_DECL; |
| |
| local_irq_save(flags); |
| regs->pc -= instruction_size(__raw_readw(regs->pc - 4)); |
| kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs); |
| local_irq_restore(flags); |
| } |
| |
| |
| BUILD_TRAP_HANDLER(breakpoint) |
| { |
| unsigned long flags; |
| TRAP_HANDLER_DECL; |
| |
| local_irq_save(flags); |
| kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs); |
| local_irq_restore(flags); |
| } |
| |
| int kgdb_arch_init(void) |
| { |
| return 0; |
| } |
| |
| void kgdb_arch_exit(void) |
| { |
| } |
| |
| struct kgdb_arch arch_kgdb_ops = { |
| /* Breakpoint instruction: trapa #0x3c */ |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| .gdb_bpt_instr = { 0x3c, 0xc3 }, |
| #else |
| .gdb_bpt_instr = { 0xc3, 0x3c }, |
| #endif |
| }; |