| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86 |
| * stack - Manfred Spraul <manfred@colorfullife.com> |
| * |
| * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle |
| * them correctly. Now the emulation will be in a |
| * consistent state after stackfaults - Kasper Dupont |
| * <kasperd@daimi.au.dk> |
| * |
| * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont |
| * <kasperd@daimi.au.dk> |
| * |
| * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault |
| * caused by Kasper Dupont's changes - Stas Sergeev |
| * |
| * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes. |
| * Kasper Dupont <kasperd@daimi.au.dk> |
| * |
| * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault. |
| * Kasper Dupont <kasperd@daimi.au.dk> |
| * |
| * 9 apr 2002 - Changed stack access macros to jump to a label |
| * instead of returning to userspace. This simplifies |
| * do_int, and is needed by handle_vm6_fault. Kasper |
| * Dupont <kasperd@daimi.au.dk> |
| * |
| */ |
| |
| #include <linux/capability.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/highmem.h> |
| #include <linux/ptrace.h> |
| #include <linux/audit.h> |
| #include <linux/stddef.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/tlbflush.h> |
| #include <asm/irq.h> |
| #include <asm/syscalls.h> |
| |
| /* |
| * Known problems: |
| * |
| * Interrupt handling is not guaranteed: |
| * - a real x86 will disable all interrupts for one instruction |
| * after a "mov ss,xx" to make stack handling atomic even without |
| * the 'lss' instruction. We can't guarantee this in v86 mode, |
| * as the next instruction might result in a page fault or similar. |
| * - a real x86 will have interrupts disabled for one instruction |
| * past the 'sti' that enables them. We don't bother with all the |
| * details yet. |
| * |
| * Let's hope these problems do not actually matter for anything. |
| */ |
| |
| |
| #define KVM86 ((struct kernel_vm86_struct *)regs) |
| #define VMPI KVM86->vm86plus |
| |
| |
| /* |
| * 8- and 16-bit register defines.. |
| */ |
| #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0]) |
| #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1]) |
| #define IP(regs) (*(unsigned short *)&((regs)->pt.ip)) |
| #define SP(regs) (*(unsigned short *)&((regs)->pt.sp)) |
| |
| /* |
| * virtual flags (16 and 32-bit versions) |
| */ |
| #define VFLAGS (*(unsigned short *)&(current->thread.v86flags)) |
| #define VEFLAGS (current->thread.v86flags) |
| |
| #define set_flags(X, new, mask) \ |
| ((X) = ((X) & ~(mask)) | ((new) & (mask))) |
| |
| #define SAFE_MASK (0xDD5) |
| #define RETURN_MASK (0xDFF) |
| |
| /* convert kernel_vm86_regs to vm86_regs */ |
| static int copy_vm86_regs_to_user(struct vm86_regs __user *user, |
| const struct kernel_vm86_regs *regs) |
| { |
| int ret = 0; |
| |
| /* |
| * kernel_vm86_regs is missing gs, so copy everything up to |
| * (but not including) orig_eax, and then rest including orig_eax. |
| */ |
| ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax)); |
| ret += copy_to_user(&user->orig_eax, ®s->pt.orig_ax, |
| sizeof(struct kernel_vm86_regs) - |
| offsetof(struct kernel_vm86_regs, pt.orig_ax)); |
| |
| return ret; |
| } |
| |
| /* convert vm86_regs to kernel_vm86_regs */ |
| static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs, |
| const struct vm86_regs __user *user, |
| unsigned extra) |
| { |
| int ret = 0; |
| |
| /* copy ax-fs inclusive */ |
| ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax)); |
| /* copy orig_ax-__gsh+extra */ |
| ret += copy_from_user(®s->pt.orig_ax, &user->orig_eax, |
| sizeof(struct kernel_vm86_regs) - |
| offsetof(struct kernel_vm86_regs, pt.orig_ax) + |
| extra); |
| return ret; |
| } |
| |
| struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs) |
| { |
| struct tss_struct *tss; |
| struct pt_regs *ret; |
| unsigned long tmp; |
| |
| /* |
| * This gets called from entry.S with interrupts disabled, but |
| * from process context. Enable interrupts here, before trying |
| * to access user space. |
| */ |
| local_irq_enable(); |
| |
| if (!current->thread.vm86_info) { |
| printk("no vm86_info: BAD\n"); |
| do_exit(SIGSEGV); |
| } |
| set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask); |
| tmp = copy_vm86_regs_to_user(¤t->thread.vm86_info->regs, regs); |
| tmp += put_user(current->thread.screen_bitmap, ¤t->thread.vm86_info->screen_bitmap); |
| if (tmp) { |
| printk("vm86: could not access userspace vm86_info\n"); |
| do_exit(SIGSEGV); |
| } |
| |
| tss = &per_cpu(init_tss, get_cpu()); |
| current->thread.sp0 = current->thread.saved_sp0; |
| current->thread.sysenter_cs = __KERNEL_CS; |
| load_sp0(tss, ¤t->thread); |
| current->thread.saved_sp0 = 0; |
| put_cpu(); |
| |
| ret = KVM86->regs32; |
| |
| ret->fs = current->thread.saved_fs; |
| set_user_gs(ret, current->thread.saved_gs); |
| |
| return ret; |
| } |
| |
| static void mark_screen_rdonly(struct mm_struct *mm) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| spinlock_t *ptl; |
| int i; |
| |
| pgd = pgd_offset(mm, 0xA0000); |
| if (pgd_none_or_clear_bad(pgd)) |
| goto out; |
| pud = pud_offset(pgd, 0xA0000); |
| if (pud_none_or_clear_bad(pud)) |
| goto out; |
| pmd = pmd_offset(pud, 0xA0000); |
| if (pmd_none_or_clear_bad(pmd)) |
| goto out; |
| pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl); |
| for (i = 0; i < 32; i++) { |
| if (pte_present(*pte)) |
| set_pte(pte, pte_wrprotect(*pte)); |
| pte++; |
| } |
| pte_unmap_unlock(pte, ptl); |
| out: |
| flush_tlb(); |
| } |
| |
| |
| |
| static int do_vm86_irq_handling(int subfunction, int irqnumber); |
| static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk); |
| |
| int sys_vm86old(struct pt_regs *regs) |
| { |
| struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs->bx; |
| struct kernel_vm86_struct info; /* declare this _on top_, |
| * this avoids wasting of stack space. |
| * This remains on the stack until we |
| * return to 32 bit user space. |
| */ |
| struct task_struct *tsk; |
| int tmp, ret = -EPERM; |
| |
| tsk = current; |
| if (tsk->thread.saved_sp0) |
| goto out; |
| tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, |
| offsetof(struct kernel_vm86_struct, vm86plus) - |
| sizeof(info.regs)); |
| ret = -EFAULT; |
| if (tmp) |
| goto out; |
| memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus); |
| info.regs32 = regs; |
| tsk->thread.vm86_info = v86; |
| do_sys_vm86(&info, tsk); |
| ret = 0; /* we never return here */ |
| out: |
| return ret; |
| } |
| |
| |
| int sys_vm86(struct pt_regs *regs) |
| { |
| struct kernel_vm86_struct info; /* declare this _on top_, |
| * this avoids wasting of stack space. |
| * This remains on the stack until we |
| * return to 32 bit user space. |
| */ |
| struct task_struct *tsk; |
| int tmp, ret; |
| struct vm86plus_struct __user *v86; |
| |
| tsk = current; |
| switch (regs->bx) { |
| case VM86_REQUEST_IRQ: |
| case VM86_FREE_IRQ: |
| case VM86_GET_IRQ_BITS: |
| case VM86_GET_AND_RESET_IRQ: |
| ret = do_vm86_irq_handling(regs->bx, (int)regs->cx); |
| goto out; |
| case VM86_PLUS_INSTALL_CHECK: |
| /* |
| * NOTE: on old vm86 stuff this will return the error |
| * from access_ok(), because the subfunction is |
| * interpreted as (invalid) address to vm86_struct. |
| * So the installation check works. |
| */ |
| ret = 0; |
| goto out; |
| } |
| |
| /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */ |
| ret = -EPERM; |
| if (tsk->thread.saved_sp0) |
| goto out; |
| v86 = (struct vm86plus_struct __user *)regs->cx; |
| tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs, |
| offsetof(struct kernel_vm86_struct, regs32) - |
| sizeof(info.regs)); |
| ret = -EFAULT; |
| if (tmp) |
| goto out; |
| info.regs32 = regs; |
| info.vm86plus.is_vm86pus = 1; |
| tsk->thread.vm86_info = (struct vm86_struct __user *)v86; |
| do_sys_vm86(&info, tsk); |
| ret = 0; /* we never return here */ |
| out: |
| return ret; |
| } |
| |
| |
| static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk) |
| { |
| struct tss_struct *tss; |
| /* |
| * make sure the vm86() system call doesn't try to do anything silly |
| */ |
| info->regs.pt.ds = 0; |
| info->regs.pt.es = 0; |
| info->regs.pt.fs = 0; |
| #ifndef CONFIG_X86_32_LAZY_GS |
| info->regs.pt.gs = 0; |
| #endif |
| |
| /* |
| * The flags register is also special: we cannot trust that the user |
| * has set it up safely, so this makes sure interrupt etc flags are |
| * inherited from protected mode. |
| */ |
| VEFLAGS = info->regs.pt.flags; |
| info->regs.pt.flags &= SAFE_MASK; |
| info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK; |
| info->regs.pt.flags |= X86_VM_MASK; |
| |
| switch (info->cpu_type) { |
| case CPU_286: |
| tsk->thread.v86mask = 0; |
| break; |
| case CPU_386: |
| tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| case CPU_486: |
| tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| default: |
| tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL; |
| break; |
| } |
| |
| /* |
| * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL) |
| */ |
| info->regs32->ax = VM86_SIGNAL; |
| tsk->thread.saved_sp0 = tsk->thread.sp0; |
| tsk->thread.saved_fs = info->regs32->fs; |
| tsk->thread.saved_gs = get_user_gs(info->regs32); |
| |
| tss = &per_cpu(init_tss, get_cpu()); |
| tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0; |
| if (cpu_has_sep) |
| tsk->thread.sysenter_cs = 0; |
| load_sp0(tss, &tsk->thread); |
| put_cpu(); |
| |
| tsk->thread.screen_bitmap = info->screen_bitmap; |
| if (info->flags & VM86_SCREEN_BITMAP) |
| mark_screen_rdonly(tsk->mm); |
| |
| /*call audit_syscall_exit since we do not exit via the normal paths */ |
| if (unlikely(current->audit_context)) |
| audit_syscall_exit(AUDITSC_RESULT(0), 0); |
| |
| __asm__ __volatile__( |
| "movl %0,%%esp\n\t" |
| "movl %1,%%ebp\n\t" |
| #ifdef CONFIG_X86_32_LAZY_GS |
| "mov %2, %%gs\n\t" |
| #endif |
| "jmp resume_userspace" |
| : /* no outputs */ |
| :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0)); |
| /* we never return here */ |
| } |
| |
| static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval) |
| { |
| struct pt_regs *regs32; |
| |
| regs32 = save_v86_state(regs16); |
| regs32->ax = retval; |
| __asm__ __volatile__("movl %0,%%esp\n\t" |
| "movl %1,%%ebp\n\t" |
| "jmp resume_userspace" |
| : : "r" (regs32), "r" (current_thread_info())); |
| } |
| |
| static inline void set_IF(struct kernel_vm86_regs *regs) |
| { |
| VEFLAGS |= X86_EFLAGS_VIF; |
| if (VEFLAGS & X86_EFLAGS_VIP) |
| return_to_32bit(regs, VM86_STI); |
| } |
| |
| static inline void clear_IF(struct kernel_vm86_regs *regs) |
| { |
| VEFLAGS &= ~X86_EFLAGS_VIF; |
| } |
| |
| static inline void clear_TF(struct kernel_vm86_regs *regs) |
| { |
| regs->pt.flags &= ~X86_EFLAGS_TF; |
| } |
| |
| static inline void clear_AC(struct kernel_vm86_regs *regs) |
| { |
| regs->pt.flags &= ~X86_EFLAGS_AC; |
| } |
| |
| /* |
| * It is correct to call set_IF(regs) from the set_vflags_* |
| * functions. However someone forgot to call clear_IF(regs) |
| * in the opposite case. |
| * After the command sequence CLI PUSHF STI POPF you should |
| * end up with interrupts disabled, but you ended up with |
| * interrupts enabled. |
| * ( I was testing my own changes, but the only bug I |
| * could find was in a function I had not changed. ) |
| * [KD] |
| */ |
| |
| static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs) |
| { |
| set_flags(VEFLAGS, flags, current->thread.v86mask); |
| set_flags(regs->pt.flags, flags, SAFE_MASK); |
| if (flags & X86_EFLAGS_IF) |
| set_IF(regs); |
| else |
| clear_IF(regs); |
| } |
| |
| static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs) |
| { |
| set_flags(VFLAGS, flags, current->thread.v86mask); |
| set_flags(regs->pt.flags, flags, SAFE_MASK); |
| if (flags & X86_EFLAGS_IF) |
| set_IF(regs); |
| else |
| clear_IF(regs); |
| } |
| |
| static inline unsigned long get_vflags(struct kernel_vm86_regs *regs) |
| { |
| unsigned long flags = regs->pt.flags & RETURN_MASK; |
| |
| if (VEFLAGS & X86_EFLAGS_VIF) |
| flags |= X86_EFLAGS_IF; |
| flags |= X86_EFLAGS_IOPL; |
| return flags | (VEFLAGS & current->thread.v86mask); |
| } |
| |
| static inline int is_revectored(int nr, struct revectored_struct *bitmap) |
| { |
| __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0" |
| :"=r" (nr) |
| :"m" (*bitmap), "r" (nr)); |
| return nr; |
| } |
| |
| #define val_byte(val, n) (((__u8 *)&val)[n]) |
| |
| #define pushb(base, ptr, val, err_label) \ |
| do { \ |
| __u8 __val = val; \ |
| ptr--; \ |
| if (put_user(__val, base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define pushw(base, ptr, val, err_label) \ |
| do { \ |
| __u16 __val = val; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define pushl(base, ptr, val, err_label) \ |
| do { \ |
| __u32 __val = val; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 3), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 2), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr--; \ |
| if (put_user(val_byte(__val, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| } while (0) |
| |
| #define popb(base, ptr, err_label) \ |
| ({ \ |
| __u8 __res; \ |
| if (get_user(__res, base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| #define popw(base, ptr, err_label) \ |
| ({ \ |
| __u16 __res; \ |
| if (get_user(val_byte(__res, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| #define popl(base, ptr, err_label) \ |
| ({ \ |
| __u32 __res; \ |
| if (get_user(val_byte(__res, 0), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 1), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 2), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| if (get_user(val_byte(__res, 3), base + ptr) < 0) \ |
| goto err_label; \ |
| ptr++; \ |
| __res; \ |
| }) |
| |
| /* There are so many possible reasons for this function to return |
| * VM86_INTx, so adding another doesn't bother me. We can expect |
| * userspace programs to be able to handle it. (Getting a problem |
| * in userspace is always better than an Oops anyway.) [KD] |
| */ |
| static void do_int(struct kernel_vm86_regs *regs, int i, |
| unsigned char __user *ssp, unsigned short sp) |
| { |
| unsigned long __user *intr_ptr; |
| unsigned long segoffs; |
| |
| if (regs->pt.cs == BIOSSEG) |
| goto cannot_handle; |
| if (is_revectored(i, &KVM86->int_revectored)) |
| goto cannot_handle; |
| if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored)) |
| goto cannot_handle; |
| intr_ptr = (unsigned long __user *) (i << 2); |
| if (get_user(segoffs, intr_ptr)) |
| goto cannot_handle; |
| if ((segoffs >> 16) == BIOSSEG) |
| goto cannot_handle; |
| pushw(ssp, sp, get_vflags(regs), cannot_handle); |
| pushw(ssp, sp, regs->pt.cs, cannot_handle); |
| pushw(ssp, sp, IP(regs), cannot_handle); |
| regs->pt.cs = segoffs >> 16; |
| SP(regs) -= 6; |
| IP(regs) = segoffs & 0xffff; |
| clear_TF(regs); |
| clear_IF(regs); |
| clear_AC(regs); |
| return; |
| |
| cannot_handle: |
| return_to_32bit(regs, VM86_INTx + (i << 8)); |
| } |
| |
| int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno) |
| { |
| if (VMPI.is_vm86pus) { |
| if ((trapno == 3) || (trapno == 1)) |
| return_to_32bit(regs, VM86_TRAP + (trapno << 8)); |
| do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs)); |
| return 0; |
| } |
| if (trapno != 1) |
| return 1; /* we let this handle by the calling routine */ |
| current->thread.trap_no = trapno; |
| current->thread.error_code = error_code; |
| force_sig(SIGTRAP, current); |
| return 0; |
| } |
| |
| void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code) |
| { |
| unsigned char opcode; |
| unsigned char __user *csp; |
| unsigned char __user *ssp; |
| unsigned short ip, sp, orig_flags; |
| int data32, pref_done; |
| |
| #define CHECK_IF_IN_TRAP \ |
| if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \ |
| newflags |= X86_EFLAGS_TF |
| #define VM86_FAULT_RETURN do { \ |
| if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \ |
| return_to_32bit(regs, VM86_PICRETURN); \ |
| if (orig_flags & X86_EFLAGS_TF) \ |
| handle_vm86_trap(regs, 0, 1); \ |
| return; } while (0) |
| |
| orig_flags = *(unsigned short *)®s->pt.flags; |
| |
| csp = (unsigned char __user *) (regs->pt.cs << 4); |
| ssp = (unsigned char __user *) (regs->pt.ss << 4); |
| sp = SP(regs); |
| ip = IP(regs); |
| |
| data32 = 0; |
| pref_done = 0; |
| do { |
| switch (opcode = popb(csp, ip, simulate_sigsegv)) { |
| case 0x66: /* 32-bit data */ data32 = 1; break; |
| case 0x67: /* 32-bit address */ break; |
| case 0x2e: /* CS */ break; |
| case 0x3e: /* DS */ break; |
| case 0x26: /* ES */ break; |
| case 0x36: /* SS */ break; |
| case 0x65: /* GS */ break; |
| case 0x64: /* FS */ break; |
| case 0xf2: /* repnz */ break; |
| case 0xf3: /* rep */ break; |
| default: pref_done = 1; |
| } |
| } while (!pref_done); |
| |
| switch (opcode) { |
| |
| /* pushf */ |
| case 0x9c: |
| if (data32) { |
| pushl(ssp, sp, get_vflags(regs), simulate_sigsegv); |
| SP(regs) -= 4; |
| } else { |
| pushw(ssp, sp, get_vflags(regs), simulate_sigsegv); |
| SP(regs) -= 2; |
| } |
| IP(regs) = ip; |
| VM86_FAULT_RETURN; |
| |
| /* popf */ |
| case 0x9d: |
| { |
| unsigned long newflags; |
| if (data32) { |
| newflags = popl(ssp, sp, simulate_sigsegv); |
| SP(regs) += 4; |
| } else { |
| newflags = popw(ssp, sp, simulate_sigsegv); |
| SP(regs) += 2; |
| } |
| IP(regs) = ip; |
| CHECK_IF_IN_TRAP; |
| if (data32) |
| set_vflags_long(newflags, regs); |
| else |
| set_vflags_short(newflags, regs); |
| |
| VM86_FAULT_RETURN; |
| } |
| |
| /* int xx */ |
| case 0xcd: { |
| int intno = popb(csp, ip, simulate_sigsegv); |
| IP(regs) = ip; |
| if (VMPI.vm86dbg_active) { |
| if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3]) |
| return_to_32bit(regs, VM86_INTx + (intno << 8)); |
| } |
| do_int(regs, intno, ssp, sp); |
| return; |
| } |
| |
| /* iret */ |
| case 0xcf: |
| { |
| unsigned long newip; |
| unsigned long newcs; |
| unsigned long newflags; |
| if (data32) { |
| newip = popl(ssp, sp, simulate_sigsegv); |
| newcs = popl(ssp, sp, simulate_sigsegv); |
| newflags = popl(ssp, sp, simulate_sigsegv); |
| SP(regs) += 12; |
| } else { |
| newip = popw(ssp, sp, simulate_sigsegv); |
| newcs = popw(ssp, sp, simulate_sigsegv); |
| newflags = popw(ssp, sp, simulate_sigsegv); |
| SP(regs) += 6; |
| } |
| IP(regs) = newip; |
| regs->pt.cs = newcs; |
| CHECK_IF_IN_TRAP; |
| if (data32) { |
| set_vflags_long(newflags, regs); |
| } else { |
| set_vflags_short(newflags, regs); |
| } |
| VM86_FAULT_RETURN; |
| } |
| |
| /* cli */ |
| case 0xfa: |
| IP(regs) = ip; |
| clear_IF(regs); |
| VM86_FAULT_RETURN; |
| |
| /* sti */ |
| /* |
| * Damn. This is incorrect: the 'sti' instruction should actually |
| * enable interrupts after the /next/ instruction. Not good. |
| * |
| * Probably needs some horsing around with the TF flag. Aiee.. |
| */ |
| case 0xfb: |
| IP(regs) = ip; |
| set_IF(regs); |
| VM86_FAULT_RETURN; |
| |
| default: |
| return_to_32bit(regs, VM86_UNKNOWN); |
| } |
| |
| return; |
| |
| simulate_sigsegv: |
| /* FIXME: After a long discussion with Stas we finally |
| * agreed, that this is wrong. Here we should |
| * really send a SIGSEGV to the user program. |
| * But how do we create the correct context? We |
| * are inside a general protection fault handler |
| * and has just returned from a page fault handler. |
| * The correct context for the signal handler |
| * should be a mixture of the two, but how do we |
| * get the information? [KD] |
| */ |
| return_to_32bit(regs, VM86_UNKNOWN); |
| } |
| |
| /* ---------------- vm86 special IRQ passing stuff ----------------- */ |
| |
| #define VM86_IRQNAME "vm86irq" |
| |
| static struct vm86_irqs { |
| struct task_struct *tsk; |
| int sig; |
| } vm86_irqs[16]; |
| |
| static DEFINE_SPINLOCK(irqbits_lock); |
| static int irqbits; |
| |
| #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \ |
| | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \ |
| | (1 << SIGUNUSED)) |
| |
| static irqreturn_t irq_handler(int intno, void *dev_id) |
| { |
| int irq_bit; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irqbits_lock, flags); |
| irq_bit = 1 << intno; |
| if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk) |
| goto out; |
| irqbits |= irq_bit; |
| if (vm86_irqs[intno].sig) |
| send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1); |
| /* |
| * IRQ will be re-enabled when user asks for the irq (whether |
| * polling or as a result of the signal) |
| */ |
| disable_irq_nosync(intno); |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return IRQ_HANDLED; |
| |
| out: |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return IRQ_NONE; |
| } |
| |
| static inline void free_vm86_irq(int irqnumber) |
| { |
| unsigned long flags; |
| |
| free_irq(irqnumber, NULL); |
| vm86_irqs[irqnumber].tsk = NULL; |
| |
| spin_lock_irqsave(&irqbits_lock, flags); |
| irqbits &= ~(1 << irqnumber); |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| } |
| |
| void release_vm86_irqs(struct task_struct *task) |
| { |
| int i; |
| for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++) |
| if (vm86_irqs[i].tsk == task) |
| free_vm86_irq(i); |
| } |
| |
| static inline int get_and_reset_irq(int irqnumber) |
| { |
| int bit; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (invalid_vm86_irq(irqnumber)) return 0; |
| if (vm86_irqs[irqnumber].tsk != current) return 0; |
| spin_lock_irqsave(&irqbits_lock, flags); |
| bit = irqbits & (1 << irqnumber); |
| irqbits &= ~bit; |
| if (bit) { |
| enable_irq(irqnumber); |
| ret = 1; |
| } |
| |
| spin_unlock_irqrestore(&irqbits_lock, flags); |
| return ret; |
| } |
| |
| |
| static int do_vm86_irq_handling(int subfunction, int irqnumber) |
| { |
| int ret; |
| switch (subfunction) { |
| case VM86_GET_AND_RESET_IRQ: { |
| return get_and_reset_irq(irqnumber); |
| } |
| case VM86_GET_IRQ_BITS: { |
| return irqbits; |
| } |
| case VM86_REQUEST_IRQ: { |
| int sig = irqnumber >> 8; |
| int irq = irqnumber & 255; |
| if (!capable(CAP_SYS_ADMIN)) return -EPERM; |
| if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM; |
| if (invalid_vm86_irq(irq)) return -EPERM; |
| if (vm86_irqs[irq].tsk) return -EPERM; |
| ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL); |
| if (ret) return ret; |
| vm86_irqs[irq].sig = sig; |
| vm86_irqs[irq].tsk = current; |
| return irq; |
| } |
| case VM86_FREE_IRQ: { |
| if (invalid_vm86_irq(irqnumber)) return -EPERM; |
| if (!vm86_irqs[irqnumber].tsk) return 0; |
| if (vm86_irqs[irqnumber].tsk != current) return -EPERM; |
| free_vm86_irq(irqnumber); |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |