| /* |
| * handle transition of Linux booting another kernel |
| * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> |
| * |
| * This source code is licensed under the GNU General Public License, |
| * Version 2. See the file COPYING for more details. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/kexec.h> |
| #include <linux/string.h> |
| #include <linux/reboot.h> |
| #include <linux/numa.h> |
| #include <linux/ftrace.h> |
| #include <linux/io.h> |
| #include <linux/suspend.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| |
| static int init_one_level2_page(struct kimage *image, pgd_t *pgd, |
| unsigned long addr) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| struct page *page; |
| int result = -ENOMEM; |
| |
| addr &= PMD_MASK; |
| pgd += pgd_index(addr); |
| if (!pgd_present(*pgd)) { |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) |
| goto out; |
| pud = (pud_t *)page_address(page); |
| memset(pud, 0, PAGE_SIZE); |
| set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); |
| } |
| pud = pud_offset(pgd, addr); |
| if (!pud_present(*pud)) { |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) |
| goto out; |
| pmd = (pmd_t *)page_address(page); |
| memset(pmd, 0, PAGE_SIZE); |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); |
| } |
| pmd = pmd_offset(pud, addr); |
| if (!pmd_present(*pmd)) |
| set_pmd(pmd, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); |
| result = 0; |
| out: |
| return result; |
| } |
| |
| static void init_level2_page(pmd_t *level2p, unsigned long addr) |
| { |
| unsigned long end_addr; |
| |
| addr &= PAGE_MASK; |
| end_addr = addr + PUD_SIZE; |
| while (addr < end_addr) { |
| set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); |
| addr += PMD_SIZE; |
| } |
| } |
| |
| static int init_level3_page(struct kimage *image, pud_t *level3p, |
| unsigned long addr, unsigned long last_addr) |
| { |
| unsigned long end_addr; |
| int result; |
| |
| result = 0; |
| addr &= PAGE_MASK; |
| end_addr = addr + PGDIR_SIZE; |
| while ((addr < last_addr) && (addr < end_addr)) { |
| struct page *page; |
| pmd_t *level2p; |
| |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) { |
| result = -ENOMEM; |
| goto out; |
| } |
| level2p = (pmd_t *)page_address(page); |
| init_level2_page(level2p, addr); |
| set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE)); |
| addr += PUD_SIZE; |
| } |
| /* clear the unused entries */ |
| while (addr < end_addr) { |
| pud_clear(level3p++); |
| addr += PUD_SIZE; |
| } |
| out: |
| return result; |
| } |
| |
| |
| static int init_level4_page(struct kimage *image, pgd_t *level4p, |
| unsigned long addr, unsigned long last_addr) |
| { |
| unsigned long end_addr; |
| int result; |
| |
| result = 0; |
| addr &= PAGE_MASK; |
| end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE); |
| while ((addr < last_addr) && (addr < end_addr)) { |
| struct page *page; |
| pud_t *level3p; |
| |
| page = kimage_alloc_control_pages(image, 0); |
| if (!page) { |
| result = -ENOMEM; |
| goto out; |
| } |
| level3p = (pud_t *)page_address(page); |
| result = init_level3_page(image, level3p, addr, last_addr); |
| if (result) |
| goto out; |
| set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE)); |
| addr += PGDIR_SIZE; |
| } |
| /* clear the unused entries */ |
| while (addr < end_addr) { |
| pgd_clear(level4p++); |
| addr += PGDIR_SIZE; |
| } |
| out: |
| return result; |
| } |
| |
| static void free_transition_pgtable(struct kimage *image) |
| { |
| free_page((unsigned long)image->arch.pud); |
| free_page((unsigned long)image->arch.pmd); |
| free_page((unsigned long)image->arch.pte); |
| } |
| |
| static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long vaddr, paddr; |
| int result = -ENOMEM; |
| |
| vaddr = (unsigned long)relocate_kernel; |
| paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); |
| pgd += pgd_index(vaddr); |
| if (!pgd_present(*pgd)) { |
| pud = (pud_t *)get_zeroed_page(GFP_KERNEL); |
| if (!pud) |
| goto err; |
| image->arch.pud = pud; |
| set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); |
| } |
| pud = pud_offset(pgd, vaddr); |
| if (!pud_present(*pud)) { |
| pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); |
| if (!pmd) |
| goto err; |
| image->arch.pmd = pmd; |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (!pmd_present(*pmd)) { |
| pte = (pte_t *)get_zeroed_page(GFP_KERNEL); |
| if (!pte) |
| goto err; |
| image->arch.pte = pte; |
| set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); |
| } |
| pte = pte_offset_kernel(pmd, vaddr); |
| set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); |
| return 0; |
| err: |
| free_transition_pgtable(image); |
| return result; |
| } |
| |
| |
| static int init_pgtable(struct kimage *image, unsigned long start_pgtable) |
| { |
| pgd_t *level4p; |
| int result; |
| level4p = (pgd_t *)__va(start_pgtable); |
| result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT); |
| if (result) |
| return result; |
| /* |
| * image->start may be outside 0 ~ max_pfn, for example when |
| * jump back to original kernel from kexeced kernel |
| */ |
| result = init_one_level2_page(image, level4p, image->start); |
| if (result) |
| return result; |
| return init_transition_pgtable(image, level4p); |
| } |
| |
| static void set_idt(void *newidt, u16 limit) |
| { |
| struct desc_ptr curidt; |
| |
| /* x86-64 supports unaliged loads & stores */ |
| curidt.size = limit; |
| curidt.address = (unsigned long)newidt; |
| |
| __asm__ __volatile__ ( |
| "lidtq %0\n" |
| : : "m" (curidt) |
| ); |
| }; |
| |
| |
| static void set_gdt(void *newgdt, u16 limit) |
| { |
| struct desc_ptr curgdt; |
| |
| /* x86-64 supports unaligned loads & stores */ |
| curgdt.size = limit; |
| curgdt.address = (unsigned long)newgdt; |
| |
| __asm__ __volatile__ ( |
| "lgdtq %0\n" |
| : : "m" (curgdt) |
| ); |
| }; |
| |
| static void load_segments(void) |
| { |
| __asm__ __volatile__ ( |
| "\tmovl %0,%%ds\n" |
| "\tmovl %0,%%es\n" |
| "\tmovl %0,%%ss\n" |
| "\tmovl %0,%%fs\n" |
| "\tmovl %0,%%gs\n" |
| : : "a" (__KERNEL_DS) : "memory" |
| ); |
| } |
| |
| int machine_kexec_prepare(struct kimage *image) |
| { |
| unsigned long start_pgtable; |
| int result; |
| |
| /* Calculate the offsets */ |
| start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; |
| |
| /* Setup the identity mapped 64bit page table */ |
| result = init_pgtable(image, start_pgtable); |
| if (result) |
| return result; |
| |
| return 0; |
| } |
| |
| void machine_kexec_cleanup(struct kimage *image) |
| { |
| free_transition_pgtable(image); |
| } |
| |
| /* |
| * Do not allocate memory (or fail in any way) in machine_kexec(). |
| * We are past the point of no return, committed to rebooting now. |
| */ |
| void machine_kexec(struct kimage *image) |
| { |
| unsigned long page_list[PAGES_NR]; |
| void *control_page; |
| int save_ftrace_enabled; |
| |
| #ifdef CONFIG_KEXEC_JUMP |
| if (image->preserve_context) |
| save_processor_state(); |
| #endif |
| |
| save_ftrace_enabled = __ftrace_enabled_save(); |
| |
| /* Interrupts aren't acceptable while we reboot */ |
| local_irq_disable(); |
| |
| if (image->preserve_context) { |
| #ifdef CONFIG_X86_IO_APIC |
| /* |
| * We need to put APICs in legacy mode so that we can |
| * get timer interrupts in second kernel. kexec/kdump |
| * paths already have calls to disable_IO_APIC() in |
| * one form or other. kexec jump path also need |
| * one. |
| */ |
| disable_IO_APIC(); |
| #endif |
| } |
| |
| control_page = page_address(image->control_code_page) + PAGE_SIZE; |
| memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); |
| |
| page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); |
| page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; |
| page_list[PA_TABLE_PAGE] = |
| (unsigned long)__pa(page_address(image->control_code_page)); |
| |
| if (image->type == KEXEC_TYPE_DEFAULT) |
| page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) |
| << PAGE_SHIFT); |
| |
| /* |
| * The segment registers are funny things, they have both a |
| * visible and an invisible part. Whenever the visible part is |
| * set to a specific selector, the invisible part is loaded |
| * with from a table in memory. At no other time is the |
| * descriptor table in memory accessed. |
| * |
| * I take advantage of this here by force loading the |
| * segments, before I zap the gdt with an invalid value. |
| */ |
| load_segments(); |
| /* |
| * The gdt & idt are now invalid. |
| * If you want to load them you must set up your own idt & gdt. |
| */ |
| set_gdt(phys_to_virt(0), 0); |
| set_idt(phys_to_virt(0), 0); |
| |
| /* now call it */ |
| image->start = relocate_kernel((unsigned long)image->head, |
| (unsigned long)page_list, |
| image->start, |
| image->preserve_context); |
| |
| #ifdef CONFIG_KEXEC_JUMP |
| if (image->preserve_context) |
| restore_processor_state(); |
| #endif |
| |
| __ftrace_enabled_restore(save_ftrace_enabled); |
| } |
| |
| void arch_crash_save_vmcoreinfo(void) |
| { |
| VMCOREINFO_SYMBOL(phys_base); |
| VMCOREINFO_SYMBOL(init_level4_pgt); |
| |
| #ifdef CONFIG_NUMA |
| VMCOREINFO_SYMBOL(node_data); |
| VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); |
| #endif |
| } |
| |