| /* |
| * arch/arm/kernel/kprobes.c |
| * |
| * Kprobes on ARM |
| * |
| * Abhishek Sagar <sagar.abhishek@gmail.com> |
| * Copyright (C) 2006, 2007 Motorola Inc. |
| * |
| * Nicolas Pitre <nico@marvell.com> |
| * Copyright (C) 2007 Marvell Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/stop_machine.h> |
| #include <linux/stringify.h> |
| #include <asm/traps.h> |
| #include <asm/cacheflush.h> |
| |
| #define MIN_STACK_SIZE(addr) \ |
| min((unsigned long)MAX_STACK_SIZE, \ |
| (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) |
| |
| #define flush_insns(addr, cnt) \ |
| flush_icache_range((unsigned long)(addr), \ |
| (unsigned long)(addr) + \ |
| sizeof(kprobe_opcode_t) * (cnt)) |
| |
| /* Used as a marker in ARM_pc to note when we're in a jprobe. */ |
| #define JPROBE_MAGIC_ADDR 0xffffffff |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| kprobe_opcode_t insn; |
| kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; |
| unsigned long addr = (unsigned long)p->addr; |
| int is; |
| |
| if (addr & 0x3 || in_exception_text(addr)) |
| return -EINVAL; |
| |
| insn = *p->addr; |
| p->opcode = insn; |
| p->ainsn.insn = tmp_insn; |
| |
| switch (arm_kprobe_decode_insn(insn, &p->ainsn)) { |
| case INSN_REJECTED: /* not supported */ |
| return -EINVAL; |
| |
| case INSN_GOOD: /* instruction uses slot */ |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| for (is = 0; is < MAX_INSN_SIZE; ++is) |
| p->ainsn.insn[is] = tmp_insn[is]; |
| flush_insns(p->ainsn.insn, MAX_INSN_SIZE); |
| break; |
| |
| case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */ |
| p->ainsn.insn = NULL; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = KPROBE_BREAKPOINT_INSTRUCTION; |
| flush_insns(p->addr, 1); |
| } |
| |
| /* |
| * The actual disarming is done here on each CPU and synchronized using |
| * stop_machine. This synchronization is necessary on SMP to avoid removing |
| * a probe between the moment the 'Undefined Instruction' exception is raised |
| * and the moment the exception handler reads the faulting instruction from |
| * memory. |
| */ |
| int __kprobes __arch_disarm_kprobe(void *p) |
| { |
| struct kprobe *kp = p; |
| *kp->addr = kp->opcode; |
| flush_insns(kp->addr, 1); |
| return 0; |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| stop_machine(__arch_disarm_kprobe, p, &cpu_online_map); |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| |
| static void __kprobes set_current_kprobe(struct kprobe *p) |
| { |
| __get_cpu_var(current_kprobe) = p; |
| } |
| |
| static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| regs->ARM_pc += 4; |
| p->ainsn.insn_handler(p, regs); |
| } |
| |
| /* |
| * Called with IRQs disabled. IRQs must remain disabled from that point |
| * all the way until processing this kprobe is complete. The current |
| * kprobes implementation cannot process more than one nested level of |
| * kprobe, and that level is reserved for user kprobe handlers, so we can't |
| * risk encountering a new kprobe in an interrupt handler. |
| */ |
| void __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p, *cur; |
| struct kprobe_ctlblk *kcb; |
| kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc; |
| |
| kcb = get_kprobe_ctlblk(); |
| cur = kprobe_running(); |
| p = get_kprobe(addr); |
| |
| if (p) { |
| if (cur) { |
| /* Kprobe is pending, so we're recursing. */ |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* A pre- or post-handler probe got us here. */ |
| kprobes_inc_nmissed_count(p); |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_REENTER; |
| singlestep(p, regs, kcb); |
| restore_previous_kprobe(kcb); |
| break; |
| default: |
| /* impossible cases */ |
| BUG(); |
| } |
| } else { |
| set_current_kprobe(p); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* |
| * If we have no pre-handler or it returned 0, we |
| * continue with normal processing. If we have a |
| * pre-handler and it returned non-zero, it prepped |
| * for calling the break_handler below on re-entry, |
| * so get out doing nothing more here. |
| */ |
| if (!p->pre_handler || !p->pre_handler(p, regs)) { |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| singlestep(p, regs, kcb); |
| if (p->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| p->post_handler(p, regs, 0); |
| } |
| reset_current_kprobe(); |
| } |
| } |
| } else if (cur) { |
| /* We probably hit a jprobe. Call its break handler. */ |
| if (cur->break_handler && cur->break_handler(cur, regs)) { |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| singlestep(cur, regs, kcb); |
| if (cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| } |
| reset_current_kprobe(); |
| } else { |
| /* |
| * The probe was removed and a race is in progress. |
| * There is nothing we can do about it. Let's restart |
| * the instruction. By the time we can restart, the |
| * real instruction will be there. |
| */ |
| } |
| } |
| |
| static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) |
| { |
| unsigned long flags; |
| local_irq_save(flags); |
| kprobe_handler(regs); |
| local_irq_restore(flags); |
| return 0; |
| } |
| |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the PC to point back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->ARM_pc = (long)cur->addr; |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| } else { |
| reset_current_kprobe(); |
| } |
| break; |
| |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accounting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) |
| return 1; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| /* |
| * notify_die() is currently never called on ARM, |
| * so this callback is currently empty. |
| */ |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * When a retprobed function returns, trampoline_handler() is called, |
| * calling the kretprobe's handler. We construct a struct pt_regs to |
| * give a view of registers r0-r11 to the user return-handler. This is |
| * not a complete pt_regs structure, but that should be plenty sufficient |
| * for kretprobe handlers which should normally be interested in r0 only |
| * anyway. |
| */ |
| void __naked __kprobes kretprobe_trampoline(void) |
| { |
| __asm__ __volatile__ ( |
| "stmdb sp!, {r0 - r11} \n\t" |
| "mov r0, sp \n\t" |
| "bl trampoline_handler \n\t" |
| "mov lr, r0 \n\t" |
| "ldmia sp!, {r0 - r11} \n\t" |
| "mov pc, lr \n\t" |
| : : : "memory"); |
| } |
| |
| /* Called from kretprobe_trampoline */ |
| static __used __kprobes void *trampoline_handler(struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because multiple functions in the call path have |
| * a return probe installed on them, and/or more than one return |
| * probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) { |
| __get_cpu_var(current_kprobe) = &ri->rp->kp; |
| get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; |
| ri->rp->handler(ri, regs); |
| __get_cpu_var(current_kprobe) = NULL; |
| } |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| kretprobe_hash_unlock(current, &flags); |
| |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| |
| return (void *)orig_ret_address; |
| } |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; |
| |
| /* Replace the return addr with trampoline addr. */ |
| regs->ARM_lr = (unsigned long)&kretprobe_trampoline; |
| } |
| |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| long sp_addr = regs->ARM_sp; |
| |
| kcb->jprobe_saved_regs = *regs; |
| memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); |
| regs->ARM_pc = (long)jp->entry; |
| regs->ARM_cpsr |= PSR_I_BIT; |
| preempt_disable(); |
| return 1; |
| } |
| |
| void __kprobes jprobe_return(void) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| __asm__ __volatile__ ( |
| /* |
| * Setup an empty pt_regs. Fill SP and PC fields as |
| * they're needed by longjmp_break_handler. |
| * |
| * We allocate some slack between the original SP and start of |
| * our fabricated regs. To be precise we want to have worst case |
| * covered which is STMFD with all 16 regs so we allocate 2 * |
| * sizeof(struct_pt_regs)). |
| * |
| * This is to prevent any simulated instruction from writing |
| * over the regs when they are accessing the stack. |
| */ |
| "sub sp, %0, %1 \n\t" |
| "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" |
| "str %0, [sp, %2] \n\t" |
| "str r0, [sp, %3] \n\t" |
| "mov r0, sp \n\t" |
| "bl kprobe_handler \n\t" |
| |
| /* |
| * Return to the context saved by setjmp_pre_handler |
| * and restored by longjmp_break_handler. |
| */ |
| "ldr r0, [sp, %4] \n\t" |
| "msr cpsr_cxsf, r0 \n\t" |
| "ldmia sp, {r0 - pc} \n\t" |
| : |
| : "r" (kcb->jprobe_saved_regs.ARM_sp), |
| "I" (sizeof(struct pt_regs) * 2), |
| "J" (offsetof(struct pt_regs, ARM_sp)), |
| "J" (offsetof(struct pt_regs, ARM_pc)), |
| "J" (offsetof(struct pt_regs, ARM_cpsr)) |
| : "memory", "cc"); |
| } |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| long stack_addr = kcb->jprobe_saved_regs.ARM_sp; |
| long orig_sp = regs->ARM_sp; |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| |
| if (regs->ARM_pc == JPROBE_MAGIC_ADDR) { |
| if (orig_sp != stack_addr) { |
| struct pt_regs *saved_regs = |
| (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp; |
| printk("current sp %lx does not match saved sp %lx\n", |
| orig_sp, stack_addr); |
| printk("Saved registers for jprobe %p\n", jp); |
| show_regs(saved_regs); |
| printk("Current registers\n"); |
| show_regs(regs); |
| BUG(); |
| } |
| *regs = kcb->jprobe_saved_regs; |
| memcpy((void *)stack_addr, kcb->jprobes_stack, |
| MIN_STACK_SIZE(stack_addr)); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |
| |
| static struct undef_hook kprobes_break_hook = { |
| .instr_mask = 0xffffffff, |
| .instr_val = KPROBE_BREAKPOINT_INSTRUCTION, |
| .cpsr_mask = MODE_MASK, |
| .cpsr_val = SVC_MODE, |
| .fn = kprobe_trap_handler, |
| }; |
| |
| int __init arch_init_kprobes() |
| { |
| arm_kprobe_decode_init(); |
| register_undef_hook(&kprobes_break_hook); |
| return 0; |
| } |