| |
| Linux kernel coding style |
| |
| This is a short document describing the preferred coding style for the |
| linux kernel. Coding style is very personal, and I won't _force_ my |
| views on anybody, but this is what goes for anything that I have to be |
| able to maintain, and I'd prefer it for most other things too. Please |
| at least consider the points made here. |
| |
| First off, I'd suggest printing out a copy of the GNU coding standards, |
| and NOT read it. Burn them, it's a great symbolic gesture. |
| |
| Anyway, here goes: |
| |
| |
| Chapter 1: Indentation |
| |
| Tabs are 8 characters, and thus indentations are also 8 characters. |
| There are heretic movements that try to make indentations 4 (or even 2!) |
| characters deep, and that is akin to trying to define the value of PI to |
| be 3. |
| |
| Rationale: The whole idea behind indentation is to clearly define where |
| a block of control starts and ends. Especially when you've been looking |
| at your screen for 20 straight hours, you'll find it a lot easier to see |
| how the indentation works if you have large indentations. |
| |
| Now, some people will claim that having 8-character indentations makes |
| the code move too far to the right, and makes it hard to read on a |
| 80-character terminal screen. The answer to that is that if you need |
| more than 3 levels of indentation, you're screwed anyway, and should fix |
| your program. |
| |
| In short, 8-char indents make things easier to read, and have the added |
| benefit of warning you when you're nesting your functions too deep. |
| Heed that warning. |
| |
| Don't put multiple statements on a single line unless you have |
| something to hide: |
| |
| if (condition) do_this; |
| do_something_everytime; |
| |
| Outside of comments, documentation and except in Kconfig, spaces are never |
| used for indentation, and the above example is deliberately broken. |
| |
| Get a decent editor and don't leave whitespace at the end of lines. |
| |
| |
| Chapter 2: Breaking long lines and strings |
| |
| Coding style is all about readability and maintainability using commonly |
| available tools. |
| |
| The limit on the length of lines is 80 columns and this is a hard limit. |
| |
| Statements longer than 80 columns will be broken into sensible chunks. |
| Descendants are always substantially shorter than the parent and are placed |
| substantially to the right. The same applies to function headers with a long |
| argument list. Long strings are as well broken into shorter strings. |
| |
| void fun(int a, int b, int c) |
| { |
| if (condition) |
| printk(KERN_WARNING "Warning this is a long printk with " |
| "3 parameters a: %u b: %u " |
| "c: %u \n", a, b, c); |
| else |
| next_statement; |
| } |
| |
| Chapter 3: Placing Braces |
| |
| The other issue that always comes up in C styling is the placement of |
| braces. Unlike the indent size, there are few technical reasons to |
| choose one placement strategy over the other, but the preferred way, as |
| shown to us by the prophets Kernighan and Ritchie, is to put the opening |
| brace last on the line, and put the closing brace first, thusly: |
| |
| if (x is true) { |
| we do y |
| } |
| |
| However, there is one special case, namely functions: they have the |
| opening brace at the beginning of the next line, thus: |
| |
| int function(int x) |
| { |
| body of function |
| } |
| |
| Heretic people all over the world have claimed that this inconsistency |
| is ... well ... inconsistent, but all right-thinking people know that |
| (a) K&R are _right_ and (b) K&R are right. Besides, functions are |
| special anyway (you can't nest them in C). |
| |
| Note that the closing brace is empty on a line of its own, _except_ in |
| the cases where it is followed by a continuation of the same statement, |
| ie a "while" in a do-statement or an "else" in an if-statement, like |
| this: |
| |
| do { |
| body of do-loop |
| } while (condition); |
| |
| and |
| |
| if (x == y) { |
| .. |
| } else if (x > y) { |
| ... |
| } else { |
| .... |
| } |
| |
| Rationale: K&R. |
| |
| Also, note that this brace-placement also minimizes the number of empty |
| (or almost empty) lines, without any loss of readability. Thus, as the |
| supply of new-lines on your screen is not a renewable resource (think |
| 25-line terminal screens here), you have more empty lines to put |
| comments on. |
| |
| |
| Chapter 4: Naming |
| |
| C is a Spartan language, and so should your naming be. Unlike Modula-2 |
| and Pascal programmers, C programmers do not use cute names like |
| ThisVariableIsATemporaryCounter. A C programmer would call that |
| variable "tmp", which is much easier to write, and not the least more |
| difficult to understand. |
| |
| HOWEVER, while mixed-case names are frowned upon, descriptive names for |
| global variables are a must. To call a global function "foo" is a |
| shooting offense. |
| |
| GLOBAL variables (to be used only if you _really_ need them) need to |
| have descriptive names, as do global functions. If you have a function |
| that counts the number of active users, you should call that |
| "count_active_users()" or similar, you should _not_ call it "cntusr()". |
| |
| Encoding the type of a function into the name (so-called Hungarian |
| notation) is brain damaged - the compiler knows the types anyway and can |
| check those, and it only confuses the programmer. No wonder MicroSoft |
| makes buggy programs. |
| |
| LOCAL variable names should be short, and to the point. If you have |
| some random integer loop counter, it should probably be called "i". |
| Calling it "loop_counter" is non-productive, if there is no chance of it |
| being mis-understood. Similarly, "tmp" can be just about any type of |
| variable that is used to hold a temporary value. |
| |
| If you are afraid to mix up your local variable names, you have another |
| problem, which is called the function-growth-hormone-imbalance syndrome. |
| See next chapter. |
| |
| |
| Chapter 5: Typedefs |
| |
| Please don't use things like "vps_t". |
| |
| It's a _mistake_ to use typedef for structures and pointers. When you see a |
| |
| vps_t a; |
| |
| in the source, what does it mean? |
| |
| In contrast, if it says |
| |
| struct virtual_container *a; |
| |
| you can actually tell what "a" is. |
| |
| Lots of people think that typedefs "help readability". Not so. They are |
| useful only for: |
| |
| (a) totally opaque objects (where the typedef is actively used to _hide_ |
| what the object is). |
| |
| Example: "pte_t" etc. opaque objects that you can only access using |
| the proper accessor functions. |
| |
| NOTE! Opaqueness and "accessor functions" are not good in themselves. |
| The reason we have them for things like pte_t etc. is that there |
| really is absolutely _zero_ portably accessible information there. |
| |
| (b) Clear integer types, where the abstraction _helps_ avoid confusion |
| whether it is "int" or "long". |
| |
| u8/u16/u32 are perfectly fine typedefs, although they fit into |
| category (d) better than here. |
| |
| NOTE! Again - there needs to be a _reason_ for this. If something is |
| "unsigned long", then there's no reason to do |
| |
| typedef unsigned long myflags_t; |
| |
| but if there is a clear reason for why it under certain circumstances |
| might be an "unsigned int" and under other configurations might be |
| "unsigned long", then by all means go ahead and use a typedef. |
| |
| (c) when you use sparse to literally create a _new_ type for |
| type-checking. |
| |
| (d) New types which are identical to standard C99 types, in certain |
| exceptional circumstances. |
| |
| Although it would only take a short amount of time for the eyes and |
| brain to become accustomed to the standard types like 'uint32_t', |
| some people object to their use anyway. |
| |
| Therefore, the Linux-specific 'u8/u16/u32/u64' types and their |
| signed equivalents which are identical to standard types are |
| permitted -- although they are not mandatory in new code of your |
| own. |
| |
| When editing existing code which already uses one or the other set |
| of types, you should conform to the existing choices in that code. |
| |
| (e) Types safe for use in userspace. |
| |
| In certain structures which are visible to userspace, we cannot |
| require C99 types and cannot use the 'u32' form above. Thus, we |
| use __u32 and similar types in all structures which are shared |
| with userspace. |
| |
| Maybe there are other cases too, but the rule should basically be to NEVER |
| EVER use a typedef unless you can clearly match one of those rules. |
| |
| In general, a pointer, or a struct that has elements that can reasonably |
| be directly accessed should _never_ be a typedef. |
| |
| |
| Chapter 6: Functions |
| |
| Functions should be short and sweet, and do just one thing. They should |
| fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24, |
| as we all know), and do one thing and do that well. |
| |
| The maximum length of a function is inversely proportional to the |
| complexity and indentation level of that function. So, if you have a |
| conceptually simple function that is just one long (but simple) |
| case-statement, where you have to do lots of small things for a lot of |
| different cases, it's OK to have a longer function. |
| |
| However, if you have a complex function, and you suspect that a |
| less-than-gifted first-year high-school student might not even |
| understand what the function is all about, you should adhere to the |
| maximum limits all the more closely. Use helper functions with |
| descriptive names (you can ask the compiler to in-line them if you think |
| it's performance-critical, and it will probably do a better job of it |
| than you would have done). |
| |
| Another measure of the function is the number of local variables. They |
| shouldn't exceed 5-10, or you're doing something wrong. Re-think the |
| function, and split it into smaller pieces. A human brain can |
| generally easily keep track of about 7 different things, anything more |
| and it gets confused. You know you're brilliant, but maybe you'd like |
| to understand what you did 2 weeks from now. |
| |
| |
| Chapter 7: Centralized exiting of functions |
| |
| Albeit deprecated by some people, the equivalent of the goto statement is |
| used frequently by compilers in form of the unconditional jump instruction. |
| |
| The goto statement comes in handy when a function exits from multiple |
| locations and some common work such as cleanup has to be done. |
| |
| The rationale is: |
| |
| - unconditional statements are easier to understand and follow |
| - nesting is reduced |
| - errors by not updating individual exit points when making |
| modifications are prevented |
| - saves the compiler work to optimize redundant code away ;) |
| |
| int fun(int a) |
| { |
| int result = 0; |
| char *buffer = kmalloc(SIZE); |
| |
| if (buffer == NULL) |
| return -ENOMEM; |
| |
| if (condition1) { |
| while (loop1) { |
| ... |
| } |
| result = 1; |
| goto out; |
| } |
| ... |
| out: |
| kfree(buffer); |
| return result; |
| } |
| |
| Chapter 8: Commenting |
| |
| Comments are good, but there is also a danger of over-commenting. NEVER |
| try to explain HOW your code works in a comment: it's much better to |
| write the code so that the _working_ is obvious, and it's a waste of |
| time to explain badly written code. |
| |
| Generally, you want your comments to tell WHAT your code does, not HOW. |
| Also, try to avoid putting comments inside a function body: if the |
| function is so complex that you need to separately comment parts of it, |
| you should probably go back to chapter 5 for a while. You can make |
| small comments to note or warn about something particularly clever (or |
| ugly), but try to avoid excess. Instead, put the comments at the head |
| of the function, telling people what it does, and possibly WHY it does |
| it. |
| |
| When commenting the kernel API functions, please use the kerneldoc format. |
| See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc |
| for details. |
| |
| Chapter 9: You've made a mess of it |
| |
| That's OK, we all do. You've probably been told by your long-time Unix |
| user helper that "GNU emacs" automatically formats the C sources for |
| you, and you've noticed that yes, it does do that, but the defaults it |
| uses are less than desirable (in fact, they are worse than random |
| typing - an infinite number of monkeys typing into GNU emacs would never |
| make a good program). |
| |
| So, you can either get rid of GNU emacs, or change it to use saner |
| values. To do the latter, you can stick the following in your .emacs file: |
| |
| (defun linux-c-mode () |
| "C mode with adjusted defaults for use with the Linux kernel." |
| (interactive) |
| (c-mode) |
| (c-set-style "K&R") |
| (setq tab-width 8) |
| (setq indent-tabs-mode t) |
| (setq c-basic-offset 8)) |
| |
| This will define the M-x linux-c-mode command. When hacking on a |
| module, if you put the string -*- linux-c -*- somewhere on the first |
| two lines, this mode will be automatically invoked. Also, you may want |
| to add |
| |
| (setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode) |
| auto-mode-alist)) |
| |
| to your .emacs file if you want to have linux-c-mode switched on |
| automagically when you edit source files under /usr/src/linux. |
| |
| But even if you fail in getting emacs to do sane formatting, not |
| everything is lost: use "indent". |
| |
| Now, again, GNU indent has the same brain-dead settings that GNU emacs |
| has, which is why you need to give it a few command line options. |
| However, that's not too bad, because even the makers of GNU indent |
| recognize the authority of K&R (the GNU people aren't evil, they are |
| just severely misguided in this matter), so you just give indent the |
| options "-kr -i8" (stands for "K&R, 8 character indents"), or use |
| "scripts/Lindent", which indents in the latest style. |
| |
| "indent" has a lot of options, and especially when it comes to comment |
| re-formatting you may want to take a look at the man page. But |
| remember: "indent" is not a fix for bad programming. |
| |
| |
| Chapter 10: Configuration-files |
| |
| For configuration options (arch/xxx/Kconfig, and all the Kconfig files), |
| somewhat different indentation is used. |
| |
| Help text is indented with 2 spaces. |
| |
| if CONFIG_EXPERIMENTAL |
| tristate CONFIG_BOOM |
| default n |
| help |
| Apply nitroglycerine inside the keyboard (DANGEROUS) |
| bool CONFIG_CHEER |
| depends on CONFIG_BOOM |
| default y |
| help |
| Output nice messages when you explode |
| endif |
| |
| Generally, CONFIG_EXPERIMENTAL should surround all options not considered |
| stable. All options that are known to trash data (experimental write- |
| support for file-systems, for instance) should be denoted (DANGEROUS), other |
| experimental options should be denoted (EXPERIMENTAL). |
| |
| |
| Chapter 11: Data structures |
| |
| Data structures that have visibility outside the single-threaded |
| environment they are created and destroyed in should always have |
| reference counts. In the kernel, garbage collection doesn't exist (and |
| outside the kernel garbage collection is slow and inefficient), which |
| means that you absolutely _have_ to reference count all your uses. |
| |
| Reference counting means that you can avoid locking, and allows multiple |
| users to have access to the data structure in parallel - and not having |
| to worry about the structure suddenly going away from under them just |
| because they slept or did something else for a while. |
| |
| Note that locking is _not_ a replacement for reference counting. |
| Locking is used to keep data structures coherent, while reference |
| counting is a memory management technique. Usually both are needed, and |
| they are not to be confused with each other. |
| |
| Many data structures can indeed have two levels of reference counting, |
| when there are users of different "classes". The subclass count counts |
| the number of subclass users, and decrements the global count just once |
| when the subclass count goes to zero. |
| |
| Examples of this kind of "multi-level-reference-counting" can be found in |
| memory management ("struct mm_struct": mm_users and mm_count), and in |
| filesystem code ("struct super_block": s_count and s_active). |
| |
| Remember: if another thread can find your data structure, and you don't |
| have a reference count on it, you almost certainly have a bug. |
| |
| |
| Chapter 12: Macros, Enums and RTL |
| |
| Names of macros defining constants and labels in enums are capitalized. |
| |
| #define CONSTANT 0x12345 |
| |
| Enums are preferred when defining several related constants. |
| |
| CAPITALIZED macro names are appreciated but macros resembling functions |
| may be named in lower case. |
| |
| Generally, inline functions are preferable to macros resembling functions. |
| |
| Macros with multiple statements should be enclosed in a do - while block: |
| |
| #define macrofun(a, b, c) \ |
| do { \ |
| if (a == 5) \ |
| do_this(b, c); \ |
| } while (0) |
| |
| Things to avoid when using macros: |
| |
| 1) macros that affect control flow: |
| |
| #define FOO(x) \ |
| do { \ |
| if (blah(x) < 0) \ |
| return -EBUGGERED; \ |
| } while(0) |
| |
| is a _very_ bad idea. It looks like a function call but exits the "calling" |
| function; don't break the internal parsers of those who will read the code. |
| |
| 2) macros that depend on having a local variable with a magic name: |
| |
| #define FOO(val) bar(index, val) |
| |
| might look like a good thing, but it's confusing as hell when one reads the |
| code and it's prone to breakage from seemingly innocent changes. |
| |
| 3) macros with arguments that are used as l-values: FOO(x) = y; will |
| bite you if somebody e.g. turns FOO into an inline function. |
| |
| 4) forgetting about precedence: macros defining constants using expressions |
| must enclose the expression in parentheses. Beware of similar issues with |
| macros using parameters. |
| |
| #define CONSTANT 0x4000 |
| #define CONSTEXP (CONSTANT | 3) |
| |
| The cpp manual deals with macros exhaustively. The gcc internals manual also |
| covers RTL which is used frequently with assembly language in the kernel. |
| |
| |
| Chapter 13: Printing kernel messages |
| |
| Kernel developers like to be seen as literate. Do mind the spelling |
| of kernel messages to make a good impression. Do not use crippled |
| words like "dont" and use "do not" or "don't" instead. |
| |
| Kernel messages do not have to be terminated with a period. |
| |
| Printing numbers in parentheses (%d) adds no value and should be avoided. |
| |
| |
| Chapter 14: Allocating memory |
| |
| The kernel provides the following general purpose memory allocators: |
| kmalloc(), kzalloc(), kcalloc(), and vmalloc(). Please refer to the API |
| documentation for further information about them. |
| |
| The preferred form for passing a size of a struct is the following: |
| |
| p = kmalloc(sizeof(*p), ...); |
| |
| The alternative form where struct name is spelled out hurts readability and |
| introduces an opportunity for a bug when the pointer variable type is changed |
| but the corresponding sizeof that is passed to a memory allocator is not. |
| |
| Casting the return value which is a void pointer is redundant. The conversion |
| from void pointer to any other pointer type is guaranteed by the C programming |
| language. |
| |
| |
| Chapter 15: The inline disease |
| |
| There appears to be a common misperception that gcc has a magic "make me |
| faster" speedup option called "inline". While the use of inlines can be |
| appropriate (for example as a means of replacing macros, see Chapter 11), it |
| very often is not. Abundant use of the inline keyword leads to a much bigger |
| kernel, which in turn slows the system as a whole down, due to a bigger |
| icache footprint for the CPU and simply because there is less memory |
| available for the pagecache. Just think about it; a pagecache miss causes a |
| disk seek, which easily takes 5 miliseconds. There are a LOT of cpu cycles |
| that can go into these 5 miliseconds. |
| |
| A reasonable rule of thumb is to not put inline at functions that have more |
| than 3 lines of code in them. An exception to this rule are the cases where |
| a parameter is known to be a compiletime constant, and as a result of this |
| constantness you *know* the compiler will be able to optimize most of your |
| function away at compile time. For a good example of this later case, see |
| the kmalloc() inline function. |
| |
| Often people argue that adding inline to functions that are static and used |
| only once is always a win since there is no space tradeoff. While this is |
| technically correct, gcc is capable of inlining these automatically without |
| help, and the maintenance issue of removing the inline when a second user |
| appears outweighs the potential value of the hint that tells gcc to do |
| something it would have done anyway. |
| |
| |
| |
| Appendix I: References |
| |
| The C Programming Language, Second Edition |
| by Brian W. Kernighan and Dennis M. Ritchie. |
| Prentice Hall, Inc., 1988. |
| ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback). |
| URL: http://cm.bell-labs.com/cm/cs/cbook/ |
| |
| The Practice of Programming |
| by Brian W. Kernighan and Rob Pike. |
| Addison-Wesley, Inc., 1999. |
| ISBN 0-201-61586-X. |
| URL: http://cm.bell-labs.com/cm/cs/tpop/ |
| |
| GNU manuals - where in compliance with K&R and this text - for cpp, gcc, |
| gcc internals and indent, all available from http://www.gnu.org/manual/ |
| |
| WG14 is the international standardization working group for the programming |
| language C, URL: http://www.open-std.org/JTC1/SC22/WG14/ |
| |
| Kernel CodingStyle, by greg@kroah.com at OLS 2002: |
| http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/ |
| |
| -- |
| Last updated on 30 April 2006. |