blob: 8c865e43f609ac1dfe2f5464ac7fd6e1edce8d43 [file] [log] [blame]
#ifndef _ASM_IA64_SN_SN_SAL_H
#define _ASM_IA64_SN_SN_SAL_H
/*
* System Abstraction Layer definitions for IA64
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved.
*/
#include <asm/sal.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/arch.h>
#include <asm/sn/geo.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/shub_mmr.h>
// SGI Specific Calls
#define SN_SAL_POD_MODE 0x02000001
#define SN_SAL_SYSTEM_RESET 0x02000002
#define SN_SAL_PROBE 0x02000003
#define SN_SAL_GET_MASTER_NASID 0x02000004
#define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
#define SN_SAL_LOG_CE 0x02000006
#define SN_SAL_REGISTER_CE 0x02000007
#define SN_SAL_GET_PARTITION_ADDR 0x02000009
#define SN_SAL_XP_ADDR_REGION 0x0200000f
#define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
#define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
#define SN_SAL_PRINT_ERROR 0x02000012
#define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
#define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
#define SN_SAL_GET_SAPIC_INFO 0x0200001d
#define SN_SAL_GET_SN_INFO 0x0200001e
#define SN_SAL_CONSOLE_PUTC 0x02000021
#define SN_SAL_CONSOLE_GETC 0x02000022
#define SN_SAL_CONSOLE_PUTS 0x02000023
#define SN_SAL_CONSOLE_GETS 0x02000024
#define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
#define SN_SAL_CONSOLE_POLL 0x02000026
#define SN_SAL_CONSOLE_INTR 0x02000027
#define SN_SAL_CONSOLE_PUTB 0x02000028
#define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
#define SN_SAL_CONSOLE_READC 0x0200002b
#define SN_SAL_SYSCTL_OP 0x02000030
#define SN_SAL_SYSCTL_MODID_GET 0x02000031
#define SN_SAL_SYSCTL_GET 0x02000032
#define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
#define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
#define SN_SAL_SYSCTL_SLAB_GET 0x02000036
#define SN_SAL_BUS_CONFIG 0x02000037
#define SN_SAL_SYS_SERIAL_GET 0x02000038
#define SN_SAL_PARTITION_SERIAL_GET 0x02000039
#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
#define SN_SAL_COHERENCE 0x0200003d
#define SN_SAL_MEMPROTECT 0x0200003e
#define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
#define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
#define SN_SAL_IROUTER_OP 0x02000043
#define SN_SAL_SYSCTL_EVENT 0x02000044
#define SN_SAL_IOIF_INTERRUPT 0x0200004a
#define SN_SAL_HWPERF_OP 0x02000050 // lock
#define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
#define SN_SAL_IOIF_PCI_SAFE 0x02000052
#define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
#define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
#define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
#define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
#define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
#define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
#define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
#define SN_SAL_BTE_RECOVER 0x02000061
#define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
#define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
#define SN_SAL_SET_OS_FEATURE_SET 0x02000066
#define SN_SAL_INJECT_ERROR 0x02000067
/*
* Service-specific constants
*/
/* Console interrupt manipulation */
/* action codes */
#define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
#define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
#define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
/* interrupt specification & status return codes */
#define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
#define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
/* interrupt handling */
#define SAL_INTR_ALLOC 1
#define SAL_INTR_FREE 2
/*
* operations available on the generic SN_SAL_SYSCTL_OP
* runtime service
*/
#define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
#define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
/*
* IRouter (i.e. generalized system controller) operations
*/
#define SAL_IROUTER_OPEN 0 /* open a subchannel */
#define SAL_IROUTER_CLOSE 1 /* close a subchannel */
#define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
#define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
#define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
* an open subchannel
*/
#define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
#define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
#define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
/* IRouter interrupt mask bits */
#define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
#define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
/*
* Error Handling Features
*/
#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
#define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
#define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
#define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
/*
* SAL Error Codes
*/
#define SALRET_MORE_PASSES 1
#define SALRET_OK 0
#define SALRET_NOT_IMPLEMENTED (-1)
#define SALRET_INVALID_ARG (-2)
#define SALRET_ERROR (-3)
#define SN_SAL_FAKE_PROM 0x02009999
/**
* sn_sal_revision - get the SGI SAL revision number
*
* The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
* This routine simply extracts the major and minor values and
* presents them in a u32 format.
*
* For example, version 4.05 would be represented at 0x0405.
*/
static inline u32
sn_sal_rev(void)
{
struct ia64_sal_systab *systab = __va(efi.sal_systab);
return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
}
/*
* Returns the master console nasid, if the call fails, return an illegal
* value.
*/
static inline u64
ia64_sn_get_console_nasid(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
if (ret_stuff.status < 0)
return ret_stuff.status;
/* Master console nasid is in 'v0' */
return ret_stuff.v0;
}
/*
* Returns the master baseio nasid, if the call fails, return an illegal
* value.
*/
static inline u64
ia64_sn_get_master_baseio_nasid(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
if (ret_stuff.status < 0)
return ret_stuff.status;
/* Master baseio nasid is in 'v0' */
return ret_stuff.v0;
}
static inline void *
ia64_sn_get_klconfig_addr(nasid_t nasid)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
}
/*
* Returns the next console character.
*/
static inline u64
ia64_sn_console_getc(int *ch)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
/* character is in 'v0' */
*ch = (int)ret_stuff.v0;
return ret_stuff.status;
}
/*
* Read a character from the SAL console device, after a previous interrupt
* or poll operation has given us to know that a character is available
* to be read.
*/
static inline u64
ia64_sn_console_readc(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
/* character is in 'v0' */
return ret_stuff.v0;
}
/*
* Sends the given character to the console.
*/
static inline u64
ia64_sn_console_putc(char ch)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Sends the given buffer to the console.
*/
static inline u64
ia64_sn_console_putb(const char *buf, int len)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
if ( ret_stuff.status == 0 ) {
return ret_stuff.v0;
}
return (u64)0;
}
/*
* Print a platform error record
*/
static inline u64
ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Check for Platform errors
*/
static inline u64
ia64_sn_plat_cpei_handler(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Set Error Handling Features (Obsolete)
*/
static inline u64
ia64_sn_plat_set_error_handling_features(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
(SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
0, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Checks for console input.
*/
static inline u64
ia64_sn_console_check(int *result)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
/* result is in 'v0' */
*result = (int)ret_stuff.v0;
return ret_stuff.status;
}
/*
* Checks console interrupt status
*/
static inline u64
ia64_sn_console_intr_status(void)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
0, SAL_CONSOLE_INTR_STATUS,
0, 0, 0, 0, 0);
if (ret_stuff.status == 0) {
return ret_stuff.v0;
}
return 0;
}
/*
* Enable an interrupt on the SAL console device.
*/
static inline void
ia64_sn_console_intr_enable(u64 intr)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
intr, SAL_CONSOLE_INTR_ON,
0, 0, 0, 0, 0);
}
/*
* Disable an interrupt on the SAL console device.
*/
static inline void
ia64_sn_console_intr_disable(u64 intr)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
intr, SAL_CONSOLE_INTR_OFF,
0, 0, 0, 0, 0);
}
/*
* Sends a character buffer to the console asynchronously.
*/
static inline u64
ia64_sn_console_xmit_chars(char *buf, int len)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
(u64)buf, (u64)len,
0, 0, 0, 0, 0);
if (ret_stuff.status == 0) {
return ret_stuff.v0;
}
return 0;
}
/*
* Returns the iobrick module Id
*/
static inline u64
ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
/* result is in 'v0' */
*result = (int)ret_stuff.v0;
return ret_stuff.status;
}
/**
* ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
*
* SN_SAL_POD_MODE actually takes an argument, but it's always
* 0 when we call it from the kernel, so we don't have to expose
* it to the caller.
*/
static inline u64
ia64_sn_pod_mode(void)
{
struct ia64_sal_retval isrv;
SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
if (isrv.status)
return 0;
return isrv.v0;
}
/**
* ia64_sn_probe_mem - read from memory safely
* @addr: address to probe
* @size: number bytes to read (1,2,4,8)
* @data_ptr: address to store value read by probe (-1 returned if probe fails)
*
* Call into the SAL to do a memory read. If the read generates a machine
* check, this routine will recover gracefully and return -1 to the caller.
* @addr is usually a kernel virtual address in uncached space (i.e. the
* address starts with 0xc), but if called in physical mode, @addr should
* be a physical address.
*
* Return values:
* 0 - probe successful
* 1 - probe failed (generated MCA)
* 2 - Bad arg
* <0 - PAL error
*/
static inline u64
ia64_sn_probe_mem(long addr, long size, void *data_ptr)
{
struct ia64_sal_retval isrv;
SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
if (data_ptr) {
switch (size) {
case 1:
*((u8*)data_ptr) = (u8)isrv.v0;
break;
case 2:
*((u16*)data_ptr) = (u16)isrv.v0;
break;
case 4:
*((u32*)data_ptr) = (u32)isrv.v0;
break;
case 8:
*((u64*)data_ptr) = (u64)isrv.v0;
break;
default:
isrv.status = 2;
}
}
return isrv.status;
}
/*
* Retrieve the system serial number as an ASCII string.
*/
static inline u64
ia64_sn_sys_serial_get(char *buf)
{
struct ia64_sal_retval ret_stuff;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
extern char sn_system_serial_number_string[];
extern u64 sn_partition_serial_number;
static inline char *
sn_system_serial_number(void) {
if (sn_system_serial_number_string[0]) {
return(sn_system_serial_number_string);
} else {
ia64_sn_sys_serial_get(sn_system_serial_number_string);
return(sn_system_serial_number_string);
}
}
/*
* Returns a unique id number for this system and partition (suitable for
* use with license managers), based in part on the system serial number.
*/
static inline u64
ia64_sn_partition_serial_get(void)
{
struct ia64_sal_retval ret_stuff;
ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
0, 0, 0, 0, 0, 0);
if (ret_stuff.status != 0)
return 0;
return ret_stuff.v0;
}
static inline u64
sn_partition_serial_number_val(void) {
if (unlikely(sn_partition_serial_number == 0)) {
sn_partition_serial_number = ia64_sn_partition_serial_get();
}
return sn_partition_serial_number;
}
/*
* Returns the partition id of the nasid passed in as an argument,
* or INVALID_PARTID if the partition id cannot be retrieved.
*/
static inline partid_t
ia64_sn_sysctl_partition_get(nasid_t nasid)
{
struct ia64_sal_retval ret_stuff;
SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
0, 0, 0, 0, 0, 0);
if (ret_stuff.status != 0)
return -1;
return ((partid_t)ret_stuff.v0);
}
/*
* Returns the physical address of the partition's reserved page through
* an iterative number of calls.
*
* On first call, 'cookie' and 'len' should be set to 0, and 'addr'
* set to the nasid of the partition whose reserved page's address is
* being sought.
* On subsequent calls, pass the values, that were passed back on the
* previous call.
*
* While the return status equals SALRET_MORE_PASSES, keep calling
* this function after first copying 'len' bytes starting at 'addr'
* into 'buf'. Once the return status equals SALRET_OK, 'addr' will
* be the physical address of the partition's reserved page. If the
* return status equals neither of these, an error as occurred.
*/
static inline s64
sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
{
struct ia64_sal_retval rv;
ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
*addr, buf, *len, 0, 0, 0);
*cookie = rv.v0;
*addr = rv.v1;
*len = rv.v2;
return rv.status;
}
/*
* Register or unregister a physical address range being referenced across
* a partition boundary for which certain SAL errors should be scanned for,
* cleaned up and ignored. This is of value for kernel partitioning code only.
* Values for the operation argument:
* 1 = register this address range with SAL
* 0 = unregister this address range with SAL
*
* SAL maintains a reference count on an address range in case it is registered
* multiple times.
*
* On success, returns the reference count of the address range after the SAL
* call has performed the current registration/unregistration. Returns a
* negative value if an error occurred.
*/
static inline int
sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
{
struct ia64_sal_retval ret_stuff;
ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
(u64)operation, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Register or unregister an instruction range for which SAL errors should
* be ignored. If an error occurs while in the registered range, SAL jumps
* to return_addr after ignoring the error. Values for the operation argument:
* 1 = register this instruction range with SAL
* 0 = unregister this instruction range with SAL
*
* Returns 0 on success, or a negative value if an error occurred.
*/
static inline int
sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
int virtual, int operation)
{
struct ia64_sal_retval ret_stuff;
u64 call;
if (virtual) {
call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
} else {
call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
}
ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
(u64)1, 0, 0, 0);
return ret_stuff.status;
}
/*
* Change or query the coherence domain for this partition. Each cpu-based
* nasid is represented by a bit in an array of 64-bit words:
* 0 = not in this partition's coherency domain
* 1 = in this partition's coherency domain
*
* It is not possible for the local system's nasids to be removed from
* the coherency domain. Purpose of the domain arguments:
* new_domain = set the coherence domain to the given nasids
* old_domain = return the current coherence domain
*
* Returns 0 on success, or a negative value if an error occurred.
*/
static inline int
sn_change_coherence(u64 *new_domain, u64 *old_domain)
{
struct ia64_sal_retval ret_stuff;
ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
(u64)old_domain, 0, 0, 0, 0, 0);
return ret_stuff.status;
}
/*
* Change memory access protections for a physical address range.
* nasid_array is not used on Altix, but may be in future architectures.
* Available memory protection access classes are defined after the function.
*/
static inline int
sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
{
struct ia64_sal_retval ret_stuff;
unsigned long irq_flags;
local_irq_save(irq_flags);
ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
(u64)nasid_array, perms, 0, 0, 0);
local_irq_restore(irq_flags);
return ret_stuff.status;
}
#define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
#define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
#define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
#define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
#define SN_MEMPROT_ACCESS_CLASS_6 0x084080
#define SN_MEMPROT_ACCESS_CLASS_7 0x021080
/*
* Turns off system power.
*/
static inline void
ia64_sn_power_down(void)
{
struct ia64_sal_retval ret_stuff;
SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
while(1)
cpu_relax();
/* never returns */
}
/**
* ia64_sn_fru_capture - tell the system controller to capture hw state
*
* This routine will call the SAL which will tell the system controller(s)
* to capture hw mmr information from each SHub in the system.
*/
static inline u64
ia64_sn_fru_capture(void)
{
struct ia64_sal_retval isrv;
SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
if (isrv.status)
return 0;
return isrv.v0;
}
/*
* Performs an operation on a PCI bus or slot -- power up, power down
* or reset.
*/
static inline u64
ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
u64 bus, char slot,
u64 action)
{
struct ia64_sal_retval rv = {0, 0, 0, 0};
SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
bus, (u64) slot, 0, 0);
if (rv.status)
return rv.v0;
return 0;
}
/*
* Open a subchannel for sending arbitrary data to the system
* controller network via the system controller device associated with
* 'nasid'. Return the subchannel number or a negative error code.
*/
static inline int
ia64_sn_irtr_open(nasid_t nasid)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
0, 0, 0, 0, 0);
return (int) rv.v0;
}
/*
* Close system controller subchannel 'subch' previously opened on 'nasid'.
*/
static inline int
ia64_sn_irtr_close(nasid_t nasid, int subch)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
(u64) nasid, (u64) subch, 0, 0, 0, 0);
return (int) rv.status;
}
/*
* Read data from system controller associated with 'nasid' on
* subchannel 'subch'. The buffer to be filled is pointed to by
* 'buf', and its capacity is in the integer pointed to by 'len'. The
* referent of 'len' is set to the number of bytes read by the SAL
* call. The return value is either SALRET_OK (for bytes read) or
* SALRET_ERROR (for error or "no data available").
*/
static inline int
ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
(u64) nasid, (u64) subch, (u64) buf, (u64) len,
0, 0);
return (int) rv.status;
}
/*
* Write data to the system controller network via the system
* controller associated with 'nasid' on suchannel 'subch'. The
* buffer to be written out is pointed to by 'buf', and 'len' is the
* number of bytes to be written. The return value is either the
* number of bytes written (which could be zero) or a negative error
* code.
*/
static inline int
ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
(u64) nasid, (u64) subch, (u64) buf, (u64) len,
0, 0);
return (int) rv.v0;
}
/*
* Check whether any interrupts are pending for the system controller
* associated with 'nasid' and its subchannel 'subch'. The return
* value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
* SAL_IROUTER_INTR_RECV).
*/
static inline int
ia64_sn_irtr_intr(nasid_t nasid, int subch)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
(u64) nasid, (u64) subch, 0, 0, 0, 0);
return (int) rv.v0;
}
/*
* Enable the interrupt indicated by the intr parameter (either
* SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
*/
static inline int
ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
(u64) nasid, (u64) subch, intr, 0, 0, 0);
return (int) rv.v0;
}
/*
* Disable the interrupt indicated by the intr parameter (either
* SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
*/
static inline int
ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
(u64) nasid, (u64) subch, intr, 0, 0, 0);
return (int) rv.v0;
}
/*
* Set up a node as the point of contact for system controller
* environmental event delivery.
*/
static inline int
ia64_sn_sysctl_event_init(nasid_t nasid)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
0, 0, 0, 0, 0, 0);
return (int) rv.v0;
}
/*
* Ask the system controller on the specified nasid to reset
* the CX corelet clock. Only valid on TIO nodes.
*/
static inline int
ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
nasid, 0, 0, 0, 0, 0);
if (rv.status != 0)
return (int)rv.status;
if (rv.v0 != 0)
return (int)rv.v0;
return 0;
}
/*
* Get the associated ioboard type for a given nasid.
*/
static inline s64
ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
{
struct ia64_sal_retval isrv;
SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
nasid, 0, 0, 0, 0, 0);
if (isrv.v0 != 0) {
*ioboard = isrv.v0;
return isrv.status;
}
if (isrv.v1 != 0) {
*ioboard = isrv.v1;
return isrv.status;
}
return isrv.status;
}
/**
* ia64_sn_get_fit_compt - read a FIT entry from the PROM header
* @nasid: NASID of node to read
* @index: FIT entry index to be retrieved (0..n)
* @fitentry: 16 byte buffer where FIT entry will be stored.
* @banbuf: optional buffer for retrieving banner
* @banlen: length of banner buffer
*
* Access to the physical PROM chips needs to be serialized since reads and
* writes can't occur at the same time, so we need to call into the SAL when
* we want to look at the FIT entries on the chips.
*
* Returns:
* %SALRET_OK if ok
* %SALRET_INVALID_ARG if index too big
* %SALRET_NOT_IMPLEMENTED if running on older PROM
* ??? if nasid invalid OR banner buffer not large enough
*/
static inline int
ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
u64 banlen)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
banbuf, banlen, 0, 0);
return (int) rv.status;
}
/*
* Initialize the SAL components of the system controller
* communication driver; specifically pass in a sizable buffer that
* can be used for allocation of subchannel queues as new subchannels
* are opened. "buf" points to the buffer, and "len" specifies its
* length.
*/
static inline int
ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
{
struct ia64_sal_retval rv;
SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
(u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
return (int) rv.status;
}
/*
* Returns the nasid, subnode & slice corresponding to a SAPIC ID
*
* In:
* arg0 - SN_SAL_GET_SAPIC_INFO
* arg1 - sapicid (lid >> 16)
* Out:
* v0 - nasid
* v1 - subnode
* v2 - slice
*/
static inline u64
ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
/***** BEGIN HACK - temp til old proms no longer supported ********/
if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
if (nasid) *nasid = sapicid & 0xfff;
if (subnode) *subnode = (sapicid >> 13) & 1;
if (slice) *slice = (sapicid >> 12) & 3;
return 0;
}
/***** END HACK *******/
if (ret_stuff.status < 0)
return ret_stuff.status;
if (nasid) *nasid = (int) ret_stuff.v0;
if (subnode) *subnode = (int) ret_stuff.v1;
if (slice) *slice = (int) ret_stuff.v2;
return 0;
}
/*
* Returns information about the HUB/SHUB.
* In:
* arg0 - SN_SAL_GET_SN_INFO
* arg1 - 0 (other values reserved for future use)
* Out:
* v0
* [7:0] - shub type (0=shub1, 1=shub2)
* [15:8] - Log2 max number of nodes in entire system (includes
* C-bricks, I-bricks, etc)
* [23:16] - Log2 of nodes per sharing domain
* [31:24] - partition ID
* [39:32] - coherency_id
* [47:40] - regionsize
* v1
* [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
* [23:15] - bit position of low nasid bit
*/
static inline u64
ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
/***** BEGIN HACK - temp til old proms no longer supported ********/
if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
int nasid = get_sapicid() & 0xfff;
#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
if (shubtype) *shubtype = 0;
if (nasid_bitmask) *nasid_bitmask = 0x7ff;
if (nasid_shift) *nasid_shift = 38;
if (systemsize) *systemsize = 10;
if (sharing_domain_size) *sharing_domain_size = 8;
if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
if (coher) *coher = nasid >> 9;
if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
SH_SHUB_ID_NODES_PER_BIT_SHFT;
return 0;
}
/***** END HACK *******/
if (ret_stuff.status < 0)
return ret_stuff.status;
if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
return 0;
}
/*
* This is the access point to the Altix PROM hardware performance
* and status monitoring interface. For info on using this, see
* include/asm-ia64/sn/sn2/sn_hwperf.h
*/
static inline int
ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
u64 a3, u64 a4, int *v0)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
opcode, a0, a1, a2, a3, a4);
if (v0)
*v0 = (int) rv.v0;
return (int) rv.status;
}
static inline int
ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
return (int) rv.status;
}
/*
* BTE error recovery is implemented in SAL
*/
static inline int
ia64_sn_bte_recovery(nasid_t nasid)
{
struct ia64_sal_retval rv;
rv.status = 0;
SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
if (rv.status == SALRET_NOT_IMPLEMENTED)
return 0;
return (int) rv.status;
}
static inline int
ia64_sn_is_fake_prom(void)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
return (rv.status == 0);
}
static inline int
ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
if (rv.status != 0)
return rv.status;
*feature_set = rv.v0;
return 0;
}
static inline int
ia64_sn_set_os_feature(int feature)
{
struct ia64_sal_retval rv;
SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
return rv.status;
}
static inline int
sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
{
struct ia64_sal_retval ret_stuff;
unsigned long irq_flags;
local_irq_save(irq_flags);
ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
(u64)ecc, 0, 0, 0, 0);
local_irq_restore(irq_flags);
return ret_stuff.status;
}
#endif /* _ASM_IA64_SN_SN_SAL_H */