blob: 424712577307d07e0cab4a2e92b07e8cc58b45fe [file] [log] [blame]
/* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/sbus.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <asm/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#ifdef CONFIG_SMP
static void distribute_irqs(void);
#endif
/* UPA nodes send interrupt packet to UltraSparc with first data reg
* value low 5 (7 on Starfire) bits holding the IRQ identifier being
* delivered. We must translate this into a non-vector IRQ so we can
* set the softint on this cpu.
*
* To make processing these packets efficient and race free we use
* an array of irq buckets below. The interrupt vector handler in
* entry.S feeds incoming packets into per-cpu pil-indexed lists.
* The IVEC handler does not need to act atomically, the PIL dispatch
* code uses CAS to get an atomic snapshot of the list and clear it
* at the same time.
*/
struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
/* This has to be in the main kernel image, it cannot be
* turned into per-cpu data. The reason is that the main
* kernel image is locked into the TLB and this structure
* is accessed from the vectored interrupt trap handler. If
* access to this structure takes a TLB miss it could cause
* the 5-level sparc v9 trap stack to overflow.
*/
struct irq_work_struct {
unsigned int irq_worklists[16];
};
struct irq_work_struct __irq_work[NR_CPUS];
#define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
#ifdef CONFIG_PCI
/* This is a table of physical addresses used to deal with IBF_DMA_SYNC.
* It is used for PCI only to synchronize DMA transfers with IRQ delivery
* for devices behind busses other than APB on Sabre systems.
*
* Currently these physical addresses are just config space accesses
* to the command register for that device.
*/
unsigned long pci_dma_wsync;
unsigned long dma_sync_reg_table[256];
unsigned char dma_sync_reg_table_entry = 0;
#endif
/* This is based upon code in the 32-bit Sparc kernel written mostly by
* David Redman (djhr@tadpole.co.uk).
*/
#define MAX_STATIC_ALLOC 4
static struct irqaction static_irqaction[MAX_STATIC_ALLOC];
static int static_irq_count;
/* This is exported so that fast IRQ handlers can get at it... -DaveM */
struct irqaction *irq_action[NR_IRQS+1] = {
NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL
};
/* This only synchronizes entities which modify IRQ handler
* state and some selected user-level spots that want to
* read things in the table. IRQ handler processing orders
* its' accesses such that no locking is needed.
*/
static DEFINE_SPINLOCK(irq_action_lock);
static void register_irq_proc (unsigned int irq);
/*
* Upper 2b of irqaction->flags holds the ino.
* irqaction->mask holds the smp affinity information.
*/
#define put_ino_in_irqaction(action, irq) \
action->flags &= 0xffffffffffffUL; \
if (__bucket(irq) == &pil0_dummy_bucket) \
action->flags |= 0xdeadUL << 48; \
else \
action->flags |= __irq_ino(irq) << 48;
#define get_ino_in_irqaction(action) (action->flags >> 48)
#define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
#define get_smpaff_in_irqaction(action) ((action)->mask)
int show_interrupts(struct seq_file *p, void *v)
{
unsigned long flags;
int i = *(loff_t *) v;
struct irqaction *action;
#ifdef CONFIG_SMP
int j;
#endif
spin_lock_irqsave(&irq_action_lock, flags);
if (i <= NR_IRQS) {
if (!(action = *(i + irq_action)))
goto out_unlock;
seq_printf(p, "%3d: ", i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for (j = 0; j < NR_CPUS; j++) {
if (!cpu_online(j))
continue;
seq_printf(p, "%10u ",
kstat_cpu(j).irqs[i]);
}
#endif
seq_printf(p, " %s:%lx", action->name,
get_ino_in_irqaction(action));
for (action = action->next; action; action = action->next) {
seq_printf(p, ", %s:%lx", action->name,
get_ino_in_irqaction(action));
}
seq_putc(p, '\n');
}
out_unlock:
spin_unlock_irqrestore(&irq_action_lock, flags);
return 0;
}
/* Now these are always passed a true fully specified sun4u INO. */
void enable_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
unsigned long imap;
unsigned long tid;
imap = bucket->imap;
if (imap == 0UL)
return;
preempt_disable();
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32) == 0x003e0016) {
/* We set it to our JBUS ID. */
__asm__ __volatile__("ldxa [%%g0] %1, %0"
: "=r" (tid)
: "i" (ASI_JBUS_CONFIG));
tid = ((tid & (0x1fUL<<17)) << 9);
tid &= IMAP_TID_JBUS;
} else {
/* We set it to our Safari AID. */
__asm__ __volatile__("ldxa [%%g0] %1, %0"
: "=r" (tid)
: "i" (ASI_SAFARI_CONFIG));
tid = ((tid & (0x3ffUL<<17)) << 9);
tid &= IMAP_AID_SAFARI;
}
} else if (this_is_starfire == 0) {
/* We set it to our UPA MID. */
__asm__ __volatile__("ldxa [%%g0] %1, %0"
: "=r" (tid)
: "i" (ASI_UPA_CONFIG));
tid = ((tid & UPA_CONFIG_MID) << 9);
tid &= IMAP_TID_UPA;
} else {
tid = (starfire_translate(imap, smp_processor_id()) << 26);
tid &= IMAP_TID_UPA;
}
/* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
* of this SYSIO's preconfigured IGN in the SYSIO Control
* Register, the hardware just mirrors that value here.
* However for Graphics and UPA Slave devices the full
* IMAP_INR field can be set by the programmer here.
*
* Things like FFB can now be handled via the new IRQ mechanism.
*/
upa_writel(tid | IMAP_VALID, imap);
preempt_enable();
}
/* This now gets passed true ino's as well. */
void disable_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
unsigned long imap;
imap = bucket->imap;
if (imap != 0UL) {
u32 tmp;
/* NOTE: We do not want to futz with the IRQ clear registers
* and move the state to IDLE, the SCSI code does call
* disable_irq() to assure atomicity in the queue cmd
* SCSI adapter driver code. Thus we'd lose interrupts.
*/
tmp = upa_readl(imap);
tmp &= ~IMAP_VALID;
upa_writel(tmp, imap);
}
}
/* The timer is the one "weird" interrupt which is generated by
* the CPU %tick register and not by some normal vectored interrupt
* source. To handle this special case, we use this dummy INO bucket.
*/
static struct ino_bucket pil0_dummy_bucket = {
0, /* irq_chain */
0, /* pil */
0, /* pending */
0, /* flags */
0, /* __unused */
NULL, /* irq_info */
0UL, /* iclr */
0UL, /* imap */
};
unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
{
struct ino_bucket *bucket;
int ino;
if (pil == 0) {
if (iclr != 0UL || imap != 0UL) {
prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
iclr, imap);
prom_halt();
}
return __irq(&pil0_dummy_bucket);
}
/* RULE: Both must be specified in all other cases. */
if (iclr == 0UL || imap == 0UL) {
prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
pil, inofixup, iclr, imap);
prom_halt();
}
ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
if (ino > NUM_IVECS) {
prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
ino, pil, inofixup, iclr, imap);
prom_halt();
}
/* Ok, looks good, set it up. Don't touch the irq_chain or
* the pending flag.
*/
bucket = &ivector_table[ino];
if ((bucket->flags & IBF_ACTIVE) ||
(bucket->irq_info != NULL)) {
/* This is a gross fatal error if it happens here. */
prom_printf("IRQ: Trying to reinit INO bucket, fatal error.\n");
prom_printf("IRQ: Request INO %04x (%d:%d:%016lx:%016lx)\n",
ino, pil, inofixup, iclr, imap);
prom_printf("IRQ: Existing (%d:%016lx:%016lx)\n",
bucket->pil, bucket->iclr, bucket->imap);
prom_printf("IRQ: Cannot continue, halting...\n");
prom_halt();
}
bucket->imap = imap;
bucket->iclr = iclr;
bucket->pil = pil;
bucket->flags = 0;
bucket->irq_info = NULL;
return __irq(bucket);
}
static void atomic_bucket_insert(struct ino_bucket *bucket)
{
unsigned long pstate;
unsigned int *ent;
__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
__asm__ __volatile__("wrpr %0, %1, %%pstate"
: : "r" (pstate), "i" (PSTATE_IE));
ent = irq_work(smp_processor_id(), bucket->pil);
bucket->irq_chain = *ent;
*ent = __irq(bucket);
__asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
}
int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags, const char *name, void *dev_id)
{
struct irqaction *action, *tmp = NULL;
struct ino_bucket *bucket = __bucket(irq);
unsigned long flags;
int pending = 0;
if ((bucket != &pil0_dummy_bucket) &&
(bucket < &ivector_table[0] ||
bucket >= &ivector_table[NUM_IVECS])) {
unsigned int *caller;
__asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
printk(KERN_CRIT "request_irq: Old style IRQ registry attempt "
"from %p, irq %08x.\n", caller, irq);
return -EINVAL;
}
if (!handler)
return -EINVAL;
if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block. In SA_STATIC_ALLOC case,
* random driver's kmalloc will fail, but it is safe.
* If already initialized, random driver will not reinit.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
spin_lock_irqsave(&irq_action_lock, flags);
action = *(bucket->pil + irq_action);
if (action) {
if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ))
for (tmp = action; tmp->next; tmp = tmp->next)
;
else {
spin_unlock_irqrestore(&irq_action_lock, flags);
return -EBUSY;
}
action = NULL; /* Or else! */
}
/* If this is flagged as statically allocated then we use our
* private struct which is never freed.
*/
if (irqflags & SA_STATIC_ALLOC) {
if (static_irq_count < MAX_STATIC_ALLOC)
action = &static_irqaction[static_irq_count++];
else
printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed "
"using kmalloc\n", irq, name);
}
if (action == NULL)
action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
GFP_ATOMIC);
if (!action) {
spin_unlock_irqrestore(&irq_action_lock, flags);
return -ENOMEM;
}
if (bucket == &pil0_dummy_bucket) {
bucket->irq_info = action;
bucket->flags |= IBF_ACTIVE;
} else {
if ((bucket->flags & IBF_ACTIVE) != 0) {
void *orig = bucket->irq_info;
void **vector = NULL;
if ((bucket->flags & IBF_PCI) == 0) {
printk("IRQ: Trying to share non-PCI bucket.\n");
goto free_and_ebusy;
}
if ((bucket->flags & IBF_MULTI) == 0) {
vector = kmalloc(sizeof(void *) * 4, GFP_ATOMIC);
if (vector == NULL)
goto free_and_enomem;
/* We might have slept. */
if ((bucket->flags & IBF_MULTI) != 0) {
int ent;
kfree(vector);
vector = (void **)bucket->irq_info;
for(ent = 0; ent < 4; ent++) {
if (vector[ent] == NULL) {
vector[ent] = action;
break;
}
}
if (ent == 4)
goto free_and_ebusy;
} else {
vector[0] = orig;
vector[1] = action;
vector[2] = NULL;
vector[3] = NULL;
bucket->irq_info = vector;
bucket->flags |= IBF_MULTI;
}
} else {
int ent;
vector = (void **)orig;
for (ent = 0; ent < 4; ent++) {
if (vector[ent] == NULL) {
vector[ent] = action;
break;
}
}
if (ent == 4)
goto free_and_ebusy;
}
} else {
bucket->irq_info = action;
bucket->flags |= IBF_ACTIVE;
}
pending = bucket->pending;
if (pending)
bucket->pending = 0;
}
action->handler = handler;
action->flags = irqflags;
action->name = name;
action->next = NULL;
action->dev_id = dev_id;
put_ino_in_irqaction(action, irq);
put_smpaff_in_irqaction(action, CPU_MASK_NONE);
if (tmp)
tmp->next = action;
else
*(bucket->pil + irq_action) = action;
enable_irq(irq);
/* We ate the IVEC already, this makes sure it does not get lost. */
if (pending) {
atomic_bucket_insert(bucket);
set_softint(1 << bucket->pil);
}
spin_unlock_irqrestore(&irq_action_lock, flags);
if ((bucket != &pil0_dummy_bucket) && (!(irqflags & SA_STATIC_ALLOC)))
register_irq_proc(__irq_ino(irq));
#ifdef CONFIG_SMP
distribute_irqs();
#endif
return 0;
free_and_ebusy:
kfree(action);
spin_unlock_irqrestore(&irq_action_lock, flags);
return -EBUSY;
free_and_enomem:
kfree(action);
spin_unlock_irqrestore(&irq_action_lock, flags);
return -ENOMEM;
}
EXPORT_SYMBOL(request_irq);
void free_irq(unsigned int irq, void *dev_id)
{
struct irqaction *action;
struct irqaction *tmp = NULL;
unsigned long flags;
struct ino_bucket *bucket = __bucket(irq), *bp;
if ((bucket != &pil0_dummy_bucket) &&
(bucket < &ivector_table[0] ||
bucket >= &ivector_table[NUM_IVECS])) {
unsigned int *caller;
__asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
printk(KERN_CRIT "free_irq: Old style IRQ removal attempt "
"from %p, irq %08x.\n", caller, irq);
return;
}
spin_lock_irqsave(&irq_action_lock, flags);
action = *(bucket->pil + irq_action);
if (!action->handler) {
printk("Freeing free IRQ %d\n", bucket->pil);
return;
}
if (dev_id) {
for ( ; action; action = action->next) {
if (action->dev_id == dev_id)
break;
tmp = action;
}
if (!action) {
printk("Trying to free free shared IRQ %d\n", bucket->pil);
spin_unlock_irqrestore(&irq_action_lock, flags);
return;
}
} else if (action->flags & SA_SHIRQ) {
printk("Trying to free shared IRQ %d with NULL device ID\n", bucket->pil);
spin_unlock_irqrestore(&irq_action_lock, flags);
return;
}
if (action->flags & SA_STATIC_ALLOC) {
printk("Attempt to free statically allocated IRQ %d (%s)\n",
bucket->pil, action->name);
spin_unlock_irqrestore(&irq_action_lock, flags);
return;
}
if (action && tmp)
tmp->next = action->next;
else
*(bucket->pil + irq_action) = action->next;
spin_unlock_irqrestore(&irq_action_lock, flags);
synchronize_irq(irq);
spin_lock_irqsave(&irq_action_lock, flags);
if (bucket != &pil0_dummy_bucket) {
unsigned long imap = bucket->imap;
void **vector, *orig;
int ent;
orig = bucket->irq_info;
vector = (void **)orig;
if ((bucket->flags & IBF_MULTI) != 0) {
int other = 0;
void *orphan = NULL;
for (ent = 0; ent < 4; ent++) {
if (vector[ent] == action)
vector[ent] = NULL;
else if (vector[ent] != NULL) {
orphan = vector[ent];
other++;
}
}
/* Only free when no other shared irq
* uses this bucket.
*/
if (other) {
if (other == 1) {
/* Convert back to non-shared bucket. */
bucket->irq_info = orphan;
bucket->flags &= ~(IBF_MULTI);
kfree(vector);
}
goto out;
}
} else {
bucket->irq_info = NULL;
}
/* This unique interrupt source is now inactive. */
bucket->flags &= ~IBF_ACTIVE;
/* See if any other buckets share this bucket's IMAP
* and are still active.
*/
for (ent = 0; ent < NUM_IVECS; ent++) {
bp = &ivector_table[ent];
if (bp != bucket &&
bp->imap == imap &&
(bp->flags & IBF_ACTIVE) != 0)
break;
}
/* Only disable when no other sub-irq levels of
* the same IMAP are active.
*/
if (ent == NUM_IVECS)
disable_irq(irq);
}
out:
kfree(action);
spin_unlock_irqrestore(&irq_action_lock, flags);
}
EXPORT_SYMBOL(free_irq);
#ifdef CONFIG_SMP
void synchronize_irq(unsigned int irq)
{
struct ino_bucket *bucket = __bucket(irq);
#if 0
/* The following is how I wish I could implement this.
* Unfortunately the ICLR registers are read-only, you can
* only write ICLR_foo values to them. To get the current
* IRQ status you would need to get at the IRQ diag registers
* in the PCI/SBUS controller and the layout of those vary
* from one controller to the next, sigh... -DaveM
*/
unsigned long iclr = bucket->iclr;
while (1) {
u32 tmp = upa_readl(iclr);
if (tmp == ICLR_TRANSMIT ||
tmp == ICLR_PENDING) {
cpu_relax();
continue;
}
break;
}
#else
/* So we have to do this with a INPROGRESS bit just like x86. */
while (bucket->flags & IBF_INPROGRESS)
cpu_relax();
#endif
}
#endif /* CONFIG_SMP */
void catch_disabled_ivec(struct pt_regs *regs)
{
int cpu = smp_processor_id();
struct ino_bucket *bucket = __bucket(*irq_work(cpu, 0));
/* We can actually see this on Ultra/PCI PCI cards, which are bridges
* to other devices. Here a single IMAP enabled potentially multiple
* unique interrupt sources (which each do have a unique ICLR register.
*
* So what we do is just register that the IVEC arrived, when registered
* for real the request_irq() code will check the bit and signal
* a local CPU interrupt for it.
*/
#if 0
printk("IVEC: Spurious interrupt vector (%x) received at (%016lx)\n",
bucket - &ivector_table[0], regs->tpc);
#endif
*irq_work(cpu, 0) = 0;
bucket->pending = 1;
}
/* Tune this... */
#define FORWARD_VOLUME 12
#ifdef CONFIG_SMP
static inline void redirect_intr(int cpu, struct ino_bucket *bp)
{
/* Ok, here is what is going on:
* 1) Retargeting IRQs on Starfire is very
* expensive so just forget about it on them.
* 2) Moving around very high priority interrupts
* is a losing game.
* 3) If the current cpu is idle, interrupts are
* useful work, so keep them here. But do not
* pass to our neighbour if he is not very idle.
* 4) If sysadmin explicitly asks for directed intrs,
* Just Do It.
*/
struct irqaction *ap = bp->irq_info;
cpumask_t cpu_mask;
unsigned int buddy, ticks;
cpu_mask = get_smpaff_in_irqaction(ap);
cpus_and(cpu_mask, cpu_mask, cpu_online_map);
if (cpus_empty(cpu_mask))
cpu_mask = cpu_online_map;
if (this_is_starfire != 0 ||
bp->pil >= 10 || current->pid == 0)
goto out;
/* 'cpu' is the MID (ie. UPAID), calculate the MID
* of our buddy.
*/
buddy = cpu + 1;
if (buddy >= NR_CPUS)
buddy = 0;
ticks = 0;
while (!cpu_isset(buddy, cpu_mask)) {
if (++buddy >= NR_CPUS)
buddy = 0;
if (++ticks > NR_CPUS) {
put_smpaff_in_irqaction(ap, CPU_MASK_NONE);
goto out;
}
}
if (buddy == cpu)
goto out;
/* Voo-doo programming. */
if (cpu_data(buddy).idle_volume < FORWARD_VOLUME)
goto out;
/* This just so happens to be correct on Cheetah
* at the moment.
*/
buddy <<= 26;
/* Push it to our buddy. */
upa_writel(buddy | IMAP_VALID, bp->imap);
out:
return;
}
#endif
void handler_irq(int irq, struct pt_regs *regs)
{
struct ino_bucket *bp, *nbp;
int cpu = smp_processor_id();
#ifndef CONFIG_SMP
/*
* Check for TICK_INT on level 14 softint.
*/
{
unsigned long clr_mask = 1 << irq;
unsigned long tick_mask = tick_ops->softint_mask;
if ((irq == 14) && (get_softint() & tick_mask)) {
irq = 0;
clr_mask = tick_mask;
}
clear_softint(clr_mask);
}
#else
int should_forward = 0;
clear_softint(1 << irq);
#endif
irq_enter();
kstat_this_cpu.irqs[irq]++;
/* Sliiiick... */
#ifndef CONFIG_SMP
bp = ((irq != 0) ?
__bucket(xchg32(irq_work(cpu, irq), 0)) :
&pil0_dummy_bucket);
#else
bp = __bucket(xchg32(irq_work(cpu, irq), 0));
#endif
for ( ; bp != NULL; bp = nbp) {
unsigned char flags = bp->flags;
unsigned char random = 0;
nbp = __bucket(bp->irq_chain);
bp->irq_chain = 0;
bp->flags |= IBF_INPROGRESS;
if ((flags & IBF_ACTIVE) != 0) {
#ifdef CONFIG_PCI
if ((flags & IBF_DMA_SYNC) != 0) {
upa_readl(dma_sync_reg_table[bp->synctab_ent]);
upa_readq(pci_dma_wsync);
}
#endif
if ((flags & IBF_MULTI) == 0) {
struct irqaction *ap = bp->irq_info;
int ret;
ret = ap->handler(__irq(bp), ap->dev_id, regs);
if (ret == IRQ_HANDLED)
random |= ap->flags;
} else {
void **vector = (void **)bp->irq_info;
int ent;
for (ent = 0; ent < 4; ent++) {
struct irqaction *ap = vector[ent];
if (ap != NULL) {
int ret;
ret = ap->handler(__irq(bp),
ap->dev_id,
regs);
if (ret == IRQ_HANDLED)
random |= ap->flags;
}
}
}
/* Only the dummy bucket lacks IMAP/ICLR. */
if (bp->pil != 0) {
#ifdef CONFIG_SMP
if (should_forward) {
redirect_intr(cpu, bp);
should_forward = 0;
}
#endif
upa_writel(ICLR_IDLE, bp->iclr);
/* Test and add entropy */
if (random & SA_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
}
} else
bp->pending = 1;
bp->flags &= ~IBF_INPROGRESS;
}
irq_exit();
}
#ifdef CONFIG_BLK_DEV_FD
extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
/* XXX No easy way to include asm/floppy.h XXX */
extern unsigned char *pdma_vaddr;
extern unsigned long pdma_size;
extern volatile int doing_pdma;
extern unsigned long fdc_status;
irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
{
if (likely(doing_pdma)) {
void __iomem *stat = (void __iomem *) fdc_status;
unsigned char *vaddr = pdma_vaddr;
unsigned long size = pdma_size;
u8 val;
while (size) {
val = readb(stat);
if (unlikely(!(val & 0x80))) {
pdma_vaddr = vaddr;
pdma_size = size;
return IRQ_HANDLED;
}
if (unlikely(!(val & 0x20))) {
pdma_vaddr = vaddr;
pdma_size = size;
doing_pdma = 0;
goto main_interrupt;
}
if (val & 0x40) {
/* read */
*vaddr++ = readb(stat + 1);
} else {
unsigned char data = *vaddr++;
/* write */
writeb(data, stat + 1);
}
size--;
}
pdma_vaddr = vaddr;
pdma_size = size;
/* Send Terminal Count pulse to floppy controller. */
val = readb(auxio_register);
val |= AUXIO_AUX1_FTCNT;
writeb(val, auxio_register);
val &= AUXIO_AUX1_FTCNT;
writeb(val, auxio_register);
doing_pdma = 0;
}
main_interrupt:
return floppy_interrupt(irq, dev_cookie, regs);
}
EXPORT_SYMBOL(sparc_floppy_irq);
#endif
/* We really don't need these at all on the Sparc. We only have
* stubs here because they are exported to modules.
*/
unsigned long probe_irq_on(void)
{
return 0;
}
EXPORT_SYMBOL(probe_irq_on);
int probe_irq_off(unsigned long mask)
{
return 0;
}
EXPORT_SYMBOL(probe_irq_off);
#ifdef CONFIG_SMP
static int retarget_one_irq(struct irqaction *p, int goal_cpu)
{
struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
unsigned long imap = bucket->imap;
unsigned int tid;
while (!cpu_online(goal_cpu)) {
if (++goal_cpu >= NR_CPUS)
goal_cpu = 0;
}
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
tid = goal_cpu << 26;
tid &= IMAP_AID_SAFARI;
} else if (this_is_starfire == 0) {
tid = goal_cpu << 26;
tid &= IMAP_TID_UPA;
} else {
tid = (starfire_translate(imap, goal_cpu) << 26);
tid &= IMAP_TID_UPA;
}
upa_writel(tid | IMAP_VALID, imap);
do {
if (++goal_cpu >= NR_CPUS)
goal_cpu = 0;
} while (!cpu_online(goal_cpu));
return goal_cpu;
}
/* Called from request_irq. */
static void distribute_irqs(void)
{
unsigned long flags;
int cpu, level;
spin_lock_irqsave(&irq_action_lock, flags);
cpu = 0;
/*
* Skip the timer at [0], and very rare error/power intrs at [15].
* Also level [12], it causes problems on Ex000 systems.
*/
for (level = 1; level < NR_IRQS; level++) {
struct irqaction *p = irq_action[level];
if (level == 12) continue;
while(p) {
cpu = retarget_one_irq(p, cpu);
p = p->next;
}
}
spin_unlock_irqrestore(&irq_action_lock, flags);
}
#endif
struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
unsigned int addr[3];
int tnode, err;
/* PROM timer node hangs out in the top level of device siblings... */
tnode = prom_finddevice("/counter-timer");
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (tnode == 0 || tnode == -1) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
if (err == -1) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void enable_prom_timer(void)
{
if (!prom_timers)
return;
/* Set it to whatever was there before. */
prom_timers->limit1 = prom_limit1;
prom_timers->count1 = 0;
prom_timers->limit0 = prom_limit0;
prom_timers->count0 = 0;
}
void init_irqwork_curcpu(void)
{
register struct irq_work_struct *workp asm("o2");
register unsigned long tmp asm("o3");
int cpu = hard_smp_processor_id();
memset(__irq_work + cpu, 0, sizeof(*workp));
/* Make sure we are called with PSTATE_IE disabled. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
: "=r" (tmp));
if (tmp & PSTATE_IE) {
prom_printf("BUG: init_irqwork_curcpu() called with "
"PSTATE_IE enabled, bailing.\n");
__asm__ __volatile__("mov %%i7, %0\n\t"
: "=r" (tmp));
prom_printf("BUG: Called from %lx\n", tmp);
prom_halt();
}
/* Set interrupt globals. */
workp = &__irq_work[cpu];
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate\n\t"
"mov %2, %%g6\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (tmp)
: "i" (PSTATE_IG), "r" (workp));
}
/* Only invoked on boot processor. */
void __init init_IRQ(void)
{
map_prom_timers();
kill_prom_timer();
memset(&ivector_table[0], 0, sizeof(ivector_table));
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
}
static struct proc_dir_entry * root_irq_dir;
static struct proc_dir_entry * irq_dir [NUM_IVECS];
#ifdef CONFIG_SMP
static int irq_affinity_read_proc (char *page, char **start, off_t off,
int count, int *eof, void *data)
{
struct ino_bucket *bp = ivector_table + (long)data;
struct irqaction *ap = bp->irq_info;
cpumask_t mask;
int len;
mask = get_smpaff_in_irqaction(ap);
if (cpus_empty(mask))
mask = cpu_online_map;
len = cpumask_scnprintf(page, count, mask);
if (count - len < 2)
return -EINVAL;
len += sprintf(page + len, "\n");
return len;
}
static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
{
struct ino_bucket *bp = ivector_table + irq;
/* Users specify affinity in terms of hw cpu ids.
* As soon as we do this, handler_irq() might see and take action.
*/
put_smpaff_in_irqaction((struct irqaction *)bp->irq_info, hw_aff);
/* Migration is simply done by the next cpu to service this
* interrupt.
*/
}
static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
int irq = (long) data, full_count = count, err;
cpumask_t new_value;
err = cpumask_parse(buffer, count, new_value);
/*
* Do not allow disabling IRQs completely - it's a too easy
* way to make the system unusable accidentally :-) At least
* one online CPU still has to be targeted.
*/
cpus_and(new_value, new_value, cpu_online_map);
if (cpus_empty(new_value))
return -EINVAL;
set_intr_affinity(irq, new_value);
return full_count;
}
#endif
#define MAX_NAMELEN 10
static void register_irq_proc (unsigned int irq)
{
char name [MAX_NAMELEN];
if (!root_irq_dir || irq_dir[irq])
return;
memset(name, 0, MAX_NAMELEN);
sprintf(name, "%x", irq);
/* create /proc/irq/1234 */
irq_dir[irq] = proc_mkdir(name, root_irq_dir);
#ifdef CONFIG_SMP
/* XXX SMP affinity not supported on starfire yet. */
if (this_is_starfire == 0) {
struct proc_dir_entry *entry;
/* create /proc/irq/1234/smp_affinity */
entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
if (entry) {
entry->nlink = 1;
entry->data = (void *)(long)irq;
entry->read_proc = irq_affinity_read_proc;
entry->write_proc = irq_affinity_write_proc;
}
}
#endif
}
void init_irq_proc (void)
{
/* create /proc/irq */
root_irq_dir = proc_mkdir("irq", NULL);
}