| /* RSA asymmetric public-key algorithm [RFC3447] |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) "RSA: "fmt |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <crypto/algapi.h> |
| #include "public_key.h" |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("RSA Public Key Algorithm"); |
| |
| #define kenter(FMT, ...) \ |
| pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
| #define kleave(FMT, ...) \ |
| pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__) |
| |
| /* |
| * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. |
| */ |
| static const u8 RSA_digest_info_MD5[] = { |
| 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, |
| 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */ |
| 0x05, 0x00, 0x04, 0x10 |
| }; |
| |
| static const u8 RSA_digest_info_SHA1[] = { |
| 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, |
| 0x2B, 0x0E, 0x03, 0x02, 0x1A, |
| 0x05, 0x00, 0x04, 0x14 |
| }; |
| |
| static const u8 RSA_digest_info_RIPE_MD_160[] = { |
| 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, |
| 0x2B, 0x24, 0x03, 0x02, 0x01, |
| 0x05, 0x00, 0x04, 0x14 |
| }; |
| |
| static const u8 RSA_digest_info_SHA224[] = { |
| 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, |
| 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, |
| 0x05, 0x00, 0x04, 0x1C |
| }; |
| |
| static const u8 RSA_digest_info_SHA256[] = { |
| 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, |
| 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, |
| 0x05, 0x00, 0x04, 0x20 |
| }; |
| |
| static const u8 RSA_digest_info_SHA384[] = { |
| 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, |
| 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, |
| 0x05, 0x00, 0x04, 0x30 |
| }; |
| |
| static const u8 RSA_digest_info_SHA512[] = { |
| 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, |
| 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, |
| 0x05, 0x00, 0x04, 0x40 |
| }; |
| |
| static const struct { |
| const u8 *data; |
| size_t size; |
| } RSA_ASN1_templates[PKEY_HASH__LAST] = { |
| #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) } |
| [PKEY_HASH_MD5] = _(MD5), |
| [PKEY_HASH_SHA1] = _(SHA1), |
| [PKEY_HASH_RIPE_MD_160] = _(RIPE_MD_160), |
| [PKEY_HASH_SHA256] = _(SHA256), |
| [PKEY_HASH_SHA384] = _(SHA384), |
| [PKEY_HASH_SHA512] = _(SHA512), |
| [PKEY_HASH_SHA224] = _(SHA224), |
| #undef _ |
| }; |
| |
| /* |
| * RSAVP1() function [RFC3447 sec 5.2.2] |
| */ |
| static int RSAVP1(const struct public_key *key, MPI s, MPI *_m) |
| { |
| MPI m; |
| int ret; |
| |
| /* (1) Validate 0 <= s < n */ |
| if (mpi_cmp_ui(s, 0) < 0) { |
| kleave(" = -EBADMSG [s < 0]"); |
| return -EBADMSG; |
| } |
| if (mpi_cmp(s, key->rsa.n) >= 0) { |
| kleave(" = -EBADMSG [s >= n]"); |
| return -EBADMSG; |
| } |
| |
| m = mpi_alloc(0); |
| if (!m) |
| return -ENOMEM; |
| |
| /* (2) m = s^e mod n */ |
| ret = mpi_powm(m, s, key->rsa.e, key->rsa.n); |
| if (ret < 0) { |
| mpi_free(m); |
| return ret; |
| } |
| |
| *_m = m; |
| return 0; |
| } |
| |
| /* |
| * Integer to Octet String conversion [RFC3447 sec 4.1] |
| */ |
| static int RSA_I2OSP(MPI x, size_t xLen, u8 **_X) |
| { |
| unsigned X_size, x_size; |
| int X_sign; |
| u8 *X; |
| |
| /* Make sure the string is the right length. The number should begin |
| * with { 0x00, 0x01, ... } so we have to account for 15 leading zero |
| * bits not being reported by MPI. |
| */ |
| x_size = mpi_get_nbits(x); |
| pr_devel("size(x)=%u xLen*8=%zu\n", x_size, xLen * 8); |
| if (x_size != xLen * 8 - 15) |
| return -ERANGE; |
| |
| X = mpi_get_buffer(x, &X_size, &X_sign); |
| if (!X) |
| return -ENOMEM; |
| if (X_sign < 0) { |
| kfree(X); |
| return -EBADMSG; |
| } |
| if (X_size != xLen - 1) { |
| kfree(X); |
| return -EBADMSG; |
| } |
| |
| *_X = X; |
| return 0; |
| } |
| |
| /* |
| * Perform the RSA signature verification. |
| * @H: Value of hash of data and metadata |
| * @EM: The computed signature value |
| * @k: The size of EM (EM[0] is an invalid location but should hold 0x00) |
| * @hash_size: The size of H |
| * @asn1_template: The DigestInfo ASN.1 template |
| * @asn1_size: Size of asm1_template[] |
| */ |
| static int RSA_verify(const u8 *H, const u8 *EM, size_t k, size_t hash_size, |
| const u8 *asn1_template, size_t asn1_size) |
| { |
| unsigned PS_end, T_offset, i; |
| |
| kenter(",,%zu,%zu,%zu", k, hash_size, asn1_size); |
| |
| if (k < 2 + 1 + asn1_size + hash_size) |
| return -EBADMSG; |
| |
| /* Decode the EMSA-PKCS1-v1_5 */ |
| if (EM[1] != 0x01) { |
| kleave(" = -EBADMSG [EM[1] == %02u]", EM[1]); |
| return -EBADMSG; |
| } |
| |
| T_offset = k - (asn1_size + hash_size); |
| PS_end = T_offset - 1; |
| if (EM[PS_end] != 0x00) { |
| kleave(" = -EBADMSG [EM[T-1] == %02u]", EM[PS_end]); |
| return -EBADMSG; |
| } |
| |
| for (i = 2; i < PS_end; i++) { |
| if (EM[i] != 0xff) { |
| kleave(" = -EBADMSG [EM[PS%x] == %02u]", i - 2, EM[i]); |
| return -EBADMSG; |
| } |
| } |
| |
| if (crypto_memneq(asn1_template, EM + T_offset, asn1_size) != 0) { |
| kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]"); |
| return -EBADMSG; |
| } |
| |
| if (crypto_memneq(H, EM + T_offset + asn1_size, hash_size) != 0) { |
| kleave(" = -EKEYREJECTED [EM[T] hash mismatch]"); |
| return -EKEYREJECTED; |
| } |
| |
| kleave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * Perform the verification step [RFC3447 sec 8.2.2]. |
| */ |
| static int RSA_verify_signature(const struct public_key *key, |
| const struct public_key_signature *sig) |
| { |
| size_t tsize; |
| int ret; |
| |
| /* Variables as per RFC3447 sec 8.2.2 */ |
| const u8 *H = sig->digest; |
| u8 *EM = NULL; |
| MPI m = NULL; |
| size_t k; |
| |
| kenter(""); |
| |
| if (!RSA_ASN1_templates[sig->pkey_hash_algo].data) |
| return -ENOTSUPP; |
| |
| /* (1) Check the signature size against the public key modulus size */ |
| k = mpi_get_nbits(key->rsa.n); |
| tsize = mpi_get_nbits(sig->rsa.s); |
| |
| /* According to RFC 4880 sec 3.2, length of MPI is computed starting |
| * from most significant bit. So the RFC 3447 sec 8.2.2 size check |
| * must be relaxed to conform with shorter signatures - so we fail here |
| * only if signature length is longer than modulus size. |
| */ |
| pr_devel("step 1: k=%zu size(S)=%zu\n", k, tsize); |
| if (k < tsize) { |
| ret = -EBADMSG; |
| goto error; |
| } |
| |
| /* Round up and convert to octets */ |
| k = (k + 7) / 8; |
| |
| /* (2b) Apply the RSAVP1 verification primitive to the public key */ |
| ret = RSAVP1(key, sig->rsa.s, &m); |
| if (ret < 0) |
| goto error; |
| |
| /* (2c) Convert the message representative (m) to an encoded message |
| * (EM) of length k octets. |
| * |
| * NOTE! The leading zero byte is suppressed by MPI, so we pass a |
| * pointer to the _preceding_ byte to RSA_verify()! |
| */ |
| ret = RSA_I2OSP(m, k, &EM); |
| if (ret < 0) |
| goto error; |
| |
| ret = RSA_verify(H, EM - 1, k, sig->digest_size, |
| RSA_ASN1_templates[sig->pkey_hash_algo].data, |
| RSA_ASN1_templates[sig->pkey_hash_algo].size); |
| |
| error: |
| kfree(EM); |
| mpi_free(m); |
| kleave(" = %d", ret); |
| return ret; |
| } |
| |
| const struct public_key_algorithm RSA_public_key_algorithm = { |
| .name = "RSA", |
| .n_pub_mpi = 2, |
| .n_sec_mpi = 3, |
| .n_sig_mpi = 1, |
| .verify_signature = RSA_verify_signature, |
| }; |
| EXPORT_SYMBOL_GPL(RSA_public_key_algorithm); |