| /* |
| * SMP boot-related support |
| * |
| * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Copyright (C) 2001, 2004-2005 Intel Corp |
| * Rohit Seth <rohit.seth@intel.com> |
| * Suresh Siddha <suresh.b.siddha@intel.com> |
| * Gordon Jin <gordon.jin@intel.com> |
| * Ashok Raj <ashok.raj@intel.com> |
| * |
| * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here. |
| * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code. |
| * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence. |
| * smp_boot_cpus()/smp_commence() is replaced by |
| * smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). |
| * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support |
| * 04/12/26 Jin Gordon <gordon.jin@intel.com> |
| * 04/12/26 Rohit Seth <rohit.seth@intel.com> |
| * Add multi-threading and multi-core detection |
| * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> |
| * Setup cpu_sibling_map and cpu_core_map |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/acpi.h> |
| #include <linux/bootmem.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/mm.h> |
| #include <linux/notifier.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/efi.h> |
| #include <linux/percpu.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/cache.h> |
| #include <asm/current.h> |
| #include <asm/delay.h> |
| #include <asm/ia32.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/machvec.h> |
| #include <asm/mca.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/ptrace.h> |
| #include <asm/sal.h> |
| #include <asm/system.h> |
| #include <asm/tlbflush.h> |
| #include <asm/unistd.h> |
| |
| #define SMP_DEBUG 0 |
| |
| #if SMP_DEBUG |
| #define Dprintk(x...) printk(x) |
| #else |
| #define Dprintk(x...) |
| #endif |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| #ifdef CONFIG_PERMIT_BSP_REMOVE |
| #define bsp_remove_ok 1 |
| #else |
| #define bsp_remove_ok 0 |
| #endif |
| |
| /* |
| * Store all idle threads, this can be reused instead of creating |
| * a new thread. Also avoids complicated thread destroy functionality |
| * for idle threads. |
| */ |
| struct task_struct *idle_thread_array[NR_CPUS]; |
| |
| /* |
| * Global array allocated for NR_CPUS at boot time |
| */ |
| struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; |
| |
| /* |
| * start_ap in head.S uses this to store current booting cpu |
| * info. |
| */ |
| struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; |
| |
| #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); |
| |
| #define get_idle_for_cpu(x) (idle_thread_array[(x)]) |
| #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p)) |
| |
| #else |
| |
| #define get_idle_for_cpu(x) (NULL) |
| #define set_idle_for_cpu(x,p) |
| #define set_brendez_area(x) |
| #endif |
| |
| |
| /* |
| * ITC synchronization related stuff: |
| */ |
| #define MASTER (0) |
| #define SLAVE (SMP_CACHE_BYTES/8) |
| |
| #define NUM_ROUNDS 64 /* magic value */ |
| #define NUM_ITERS 5 /* likewise */ |
| |
| static DEFINE_SPINLOCK(itc_sync_lock); |
| static volatile unsigned long go[SLAVE + 1]; |
| |
| #define DEBUG_ITC_SYNC 0 |
| |
| extern void __devinit calibrate_delay (void); |
| extern void start_ap (void); |
| extern unsigned long ia64_iobase; |
| |
| struct task_struct *task_for_booting_cpu; |
| |
| /* |
| * State for each CPU |
| */ |
| DEFINE_PER_CPU(int, cpu_state); |
| |
| /* Bitmasks of currently online, and possible CPUs */ |
| cpumask_t cpu_online_map; |
| EXPORT_SYMBOL(cpu_online_map); |
| cpumask_t cpu_possible_map = CPU_MASK_NONE; |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; |
| cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned; |
| int smp_num_siblings = 1; |
| int smp_num_cpucores = 1; |
| |
| /* which logical CPU number maps to which CPU (physical APIC ID) */ |
| volatile int ia64_cpu_to_sapicid[NR_CPUS]; |
| EXPORT_SYMBOL(ia64_cpu_to_sapicid); |
| |
| static volatile cpumask_t cpu_callin_map; |
| |
| struct smp_boot_data smp_boot_data __initdata; |
| |
| unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ |
| |
| char __initdata no_int_routing; |
| |
| unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ |
| |
| #ifdef CONFIG_FORCE_CPEI_RETARGET |
| #define CPEI_OVERRIDE_DEFAULT (1) |
| #else |
| #define CPEI_OVERRIDE_DEFAULT (0) |
| #endif |
| |
| unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; |
| |
| static int __init |
| cmdl_force_cpei(char *str) |
| { |
| int value=0; |
| |
| get_option (&str, &value); |
| force_cpei_retarget = value; |
| |
| return 1; |
| } |
| |
| __setup("force_cpei=", cmdl_force_cpei); |
| |
| static int __init |
| nointroute (char *str) |
| { |
| no_int_routing = 1; |
| printk ("no_int_routing on\n"); |
| return 1; |
| } |
| |
| __setup("nointroute", nointroute); |
| |
| static void fix_b0_for_bsp(void) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| int cpuid; |
| static int fix_bsp_b0 = 1; |
| |
| cpuid = smp_processor_id(); |
| |
| /* |
| * Cache the b0 value on the first AP that comes up |
| */ |
| if (!(fix_bsp_b0 && cpuid)) |
| return; |
| |
| sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; |
| printk ("Fixed BSP b0 value from CPU %d\n", cpuid); |
| |
| fix_bsp_b0 = 0; |
| #endif |
| } |
| |
| void |
| sync_master (void *arg) |
| { |
| unsigned long flags, i; |
| |
| go[MASTER] = 0; |
| |
| local_irq_save(flags); |
| { |
| for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { |
| while (!go[MASTER]) |
| cpu_relax(); |
| go[MASTER] = 0; |
| go[SLAVE] = ia64_get_itc(); |
| } |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Return the number of cycles by which our itc differs from the itc on the master |
| * (time-keeper) CPU. A positive number indicates our itc is ahead of the master, |
| * negative that it is behind. |
| */ |
| static inline long |
| get_delta (long *rt, long *master) |
| { |
| unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; |
| unsigned long tcenter, t0, t1, tm; |
| long i; |
| |
| for (i = 0; i < NUM_ITERS; ++i) { |
| t0 = ia64_get_itc(); |
| go[MASTER] = 1; |
| while (!(tm = go[SLAVE])) |
| cpu_relax(); |
| go[SLAVE] = 0; |
| t1 = ia64_get_itc(); |
| |
| if (t1 - t0 < best_t1 - best_t0) |
| best_t0 = t0, best_t1 = t1, best_tm = tm; |
| } |
| |
| *rt = best_t1 - best_t0; |
| *master = best_tm - best_t0; |
| |
| /* average best_t0 and best_t1 without overflow: */ |
| tcenter = (best_t0/2 + best_t1/2); |
| if (best_t0 % 2 + best_t1 % 2 == 2) |
| ++tcenter; |
| return tcenter - best_tm; |
| } |
| |
| /* |
| * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU |
| * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of |
| * unaccounted-for errors (such as getting a machine check in the middle of a calibration |
| * step). The basic idea is for the slave to ask the master what itc value it has and to |
| * read its own itc before and after the master responds. Each iteration gives us three |
| * timestamps: |
| * |
| * slave master |
| * |
| * t0 ---\ |
| * ---\ |
| * ---> |
| * tm |
| * /--- |
| * /--- |
| * t1 <--- |
| * |
| * |
| * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 |
| * and t1. If we achieve this, the clocks are synchronized provided the interconnect |
| * between the slave and the master is symmetric. Even if the interconnect were |
| * asymmetric, we would still know that the synchronization error is smaller than the |
| * roundtrip latency (t0 - t1). |
| * |
| * When the interconnect is quiet and symmetric, this lets us synchronize the itc to |
| * within one or two cycles. However, we can only *guarantee* that the synchronization is |
| * accurate to within a round-trip time, which is typically in the range of several |
| * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually |
| * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better |
| * than half a micro second or so. |
| */ |
| void |
| ia64_sync_itc (unsigned int master) |
| { |
| long i, delta, adj, adjust_latency = 0, done = 0; |
| unsigned long flags, rt, master_time_stamp, bound; |
| #if DEBUG_ITC_SYNC |
| struct { |
| long rt; /* roundtrip time */ |
| long master; /* master's timestamp */ |
| long diff; /* difference between midpoint and master's timestamp */ |
| long lat; /* estimate of itc adjustment latency */ |
| } t[NUM_ROUNDS]; |
| #endif |
| |
| /* |
| * Make sure local timer ticks are disabled while we sync. If |
| * they were enabled, we'd have to worry about nasty issues |
| * like setting the ITC ahead of (or a long time before) the |
| * next scheduled tick. |
| */ |
| BUG_ON((ia64_get_itv() & (1 << 16)) == 0); |
| |
| go[MASTER] = 1; |
| |
| if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) { |
| printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); |
| return; |
| } |
| |
| while (go[MASTER]) |
| cpu_relax(); /* wait for master to be ready */ |
| |
| spin_lock_irqsave(&itc_sync_lock, flags); |
| { |
| for (i = 0; i < NUM_ROUNDS; ++i) { |
| delta = get_delta(&rt, &master_time_stamp); |
| if (delta == 0) { |
| done = 1; /* let's lock on to this... */ |
| bound = rt; |
| } |
| |
| if (!done) { |
| if (i > 0) { |
| adjust_latency += -delta; |
| adj = -delta + adjust_latency/4; |
| } else |
| adj = -delta; |
| |
| ia64_set_itc(ia64_get_itc() + adj); |
| } |
| #if DEBUG_ITC_SYNC |
| t[i].rt = rt; |
| t[i].master = master_time_stamp; |
| t[i].diff = delta; |
| t[i].lat = adjust_latency/4; |
| #endif |
| } |
| } |
| spin_unlock_irqrestore(&itc_sync_lock, flags); |
| |
| #if DEBUG_ITC_SYNC |
| for (i = 0; i < NUM_ROUNDS; ++i) |
| printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", |
| t[i].rt, t[i].master, t[i].diff, t[i].lat); |
| #endif |
| |
| printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " |
| "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); |
| } |
| |
| /* |
| * Ideally sets up per-cpu profiling hooks. Doesn't do much now... |
| */ |
| static inline void __devinit |
| smp_setup_percpu_timer (void) |
| { |
| } |
| |
| static void __cpuinit |
| smp_callin (void) |
| { |
| int cpuid, phys_id, itc_master; |
| struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; |
| extern void ia64_init_itm(void); |
| extern volatile int time_keeper_id; |
| |
| #ifdef CONFIG_PERFMON |
| extern void pfm_init_percpu(void); |
| #endif |
| |
| cpuid = smp_processor_id(); |
| phys_id = hard_smp_processor_id(); |
| itc_master = time_keeper_id; |
| |
| if (cpu_online(cpuid)) { |
| printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", |
| phys_id, cpuid); |
| BUG(); |
| } |
| |
| fix_b0_for_bsp(); |
| |
| lock_ipi_calllock(); |
| spin_lock(&vector_lock); |
| /* Setup the per cpu irq handling data structures */ |
| __setup_vector_irq(cpuid); |
| cpu_set(cpuid, cpu_online_map); |
| unlock_ipi_calllock(); |
| per_cpu(cpu_state, cpuid) = CPU_ONLINE; |
| spin_unlock(&vector_lock); |
| |
| smp_setup_percpu_timer(); |
| |
| ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ |
| |
| #ifdef CONFIG_PERFMON |
| pfm_init_percpu(); |
| #endif |
| |
| local_irq_enable(); |
| |
| if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { |
| /* |
| * Synchronize the ITC with the BP. Need to do this after irqs are |
| * enabled because ia64_sync_itc() calls smp_call_function_single(), which |
| * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls |
| * local_bh_enable(), which bugs out if irqs are not enabled... |
| */ |
| Dprintk("Going to syncup ITC with ITC Master.\n"); |
| ia64_sync_itc(itc_master); |
| } |
| |
| /* |
| * Get our bogomips. |
| */ |
| ia64_init_itm(); |
| |
| /* |
| * Delay calibration can be skipped if new processor is identical to the |
| * previous processor. |
| */ |
| last_cpuinfo = cpu_data(cpuid - 1); |
| this_cpuinfo = local_cpu_data; |
| if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || |
| last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || |
| last_cpuinfo->features != this_cpuinfo->features || |
| last_cpuinfo->revision != this_cpuinfo->revision || |
| last_cpuinfo->family != this_cpuinfo->family || |
| last_cpuinfo->archrev != this_cpuinfo->archrev || |
| last_cpuinfo->model != this_cpuinfo->model) |
| calibrate_delay(); |
| local_cpu_data->loops_per_jiffy = loops_per_jiffy; |
| |
| #ifdef CONFIG_IA32_SUPPORT |
| ia32_gdt_init(); |
| #endif |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpu_set(cpuid, cpu_callin_map); |
| Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); |
| } |
| |
| |
| /* |
| * Activate a secondary processor. head.S calls this. |
| */ |
| int __cpuinit |
| start_secondary (void *unused) |
| { |
| /* Early console may use I/O ports */ |
| ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); |
| Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); |
| efi_map_pal_code(); |
| cpu_init(); |
| preempt_disable(); |
| smp_callin(); |
| |
| cpu_idle(); |
| return 0; |
| } |
| |
| struct pt_regs * __devinit idle_regs(struct pt_regs *regs) |
| { |
| return NULL; |
| } |
| |
| struct create_idle { |
| struct work_struct work; |
| struct task_struct *idle; |
| struct completion done; |
| int cpu; |
| }; |
| |
| void __cpuinit |
| do_fork_idle(struct work_struct *work) |
| { |
| struct create_idle *c_idle = |
| container_of(work, struct create_idle, work); |
| |
| c_idle->idle = fork_idle(c_idle->cpu); |
| complete(&c_idle->done); |
| } |
| |
| static int __cpuinit |
| do_boot_cpu (int sapicid, int cpu) |
| { |
| int timeout; |
| struct create_idle c_idle = { |
| .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle), |
| .cpu = cpu, |
| .done = COMPLETION_INITIALIZER(c_idle.done), |
| }; |
| |
| c_idle.idle = get_idle_for_cpu(cpu); |
| if (c_idle.idle) { |
| init_idle(c_idle.idle, cpu); |
| goto do_rest; |
| } |
| |
| /* |
| * We can't use kernel_thread since we must avoid to reschedule the child. |
| */ |
| if (!keventd_up() || current_is_keventd()) |
| c_idle.work.func(&c_idle.work); |
| else { |
| schedule_work(&c_idle.work); |
| wait_for_completion(&c_idle.done); |
| } |
| |
| if (IS_ERR(c_idle.idle)) |
| panic("failed fork for CPU %d", cpu); |
| |
| set_idle_for_cpu(cpu, c_idle.idle); |
| |
| do_rest: |
| task_for_booting_cpu = c_idle.idle; |
| |
| Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); |
| |
| set_brendez_area(cpu); |
| platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); |
| |
| /* |
| * Wait 10s total for the AP to start |
| */ |
| Dprintk("Waiting on callin_map ..."); |
| for (timeout = 0; timeout < 100000; timeout++) { |
| if (cpu_isset(cpu, cpu_callin_map)) |
| break; /* It has booted */ |
| udelay(100); |
| } |
| Dprintk("\n"); |
| |
| if (!cpu_isset(cpu, cpu_callin_map)) { |
| printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); |
| ia64_cpu_to_sapicid[cpu] = -1; |
| cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */ |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int __init |
| decay (char *str) |
| { |
| int ticks; |
| get_option (&str, &ticks); |
| return 1; |
| } |
| |
| __setup("decay=", decay); |
| |
| /* |
| * Initialize the logical CPU number to SAPICID mapping |
| */ |
| void __init |
| smp_build_cpu_map (void) |
| { |
| int sapicid, cpu, i; |
| int boot_cpu_id = hard_smp_processor_id(); |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| ia64_cpu_to_sapicid[cpu] = -1; |
| } |
| |
| ia64_cpu_to_sapicid[0] = boot_cpu_id; |
| cpus_clear(cpu_present_map); |
| cpu_set(0, cpu_present_map); |
| cpu_set(0, cpu_possible_map); |
| for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { |
| sapicid = smp_boot_data.cpu_phys_id[i]; |
| if (sapicid == boot_cpu_id) |
| continue; |
| cpu_set(cpu, cpu_present_map); |
| cpu_set(cpu, cpu_possible_map); |
| ia64_cpu_to_sapicid[cpu] = sapicid; |
| cpu++; |
| } |
| } |
| |
| /* |
| * Cycle through the APs sending Wakeup IPIs to boot each. |
| */ |
| void __init |
| smp_prepare_cpus (unsigned int max_cpus) |
| { |
| int boot_cpu_id = hard_smp_processor_id(); |
| |
| /* |
| * Initialize the per-CPU profiling counter/multiplier |
| */ |
| |
| smp_setup_percpu_timer(); |
| |
| /* |
| * We have the boot CPU online for sure. |
| */ |
| cpu_set(0, cpu_online_map); |
| cpu_set(0, cpu_callin_map); |
| |
| local_cpu_data->loops_per_jiffy = loops_per_jiffy; |
| ia64_cpu_to_sapicid[0] = boot_cpu_id; |
| |
| printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); |
| |
| current_thread_info()->cpu = 0; |
| |
| /* |
| * If SMP should be disabled, then really disable it! |
| */ |
| if (!max_cpus) { |
| printk(KERN_INFO "SMP mode deactivated.\n"); |
| cpus_clear(cpu_online_map); |
| cpus_clear(cpu_present_map); |
| cpus_clear(cpu_possible_map); |
| cpu_set(0, cpu_online_map); |
| cpu_set(0, cpu_present_map); |
| cpu_set(0, cpu_possible_map); |
| return; |
| } |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| cpu_set(smp_processor_id(), cpu_online_map); |
| cpu_set(smp_processor_id(), cpu_callin_map); |
| per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static inline void |
| clear_cpu_sibling_map(int cpu) |
| { |
| int i; |
| |
| for_each_cpu_mask(i, cpu_sibling_map[cpu]) |
| cpu_clear(cpu, cpu_sibling_map[i]); |
| for_each_cpu_mask(i, cpu_core_map[cpu]) |
| cpu_clear(cpu, cpu_core_map[i]); |
| |
| cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE; |
| } |
| |
| static void |
| remove_siblinginfo(int cpu) |
| { |
| int last = 0; |
| |
| if (cpu_data(cpu)->threads_per_core == 1 && |
| cpu_data(cpu)->cores_per_socket == 1) { |
| cpu_clear(cpu, cpu_core_map[cpu]); |
| cpu_clear(cpu, cpu_sibling_map[cpu]); |
| return; |
| } |
| |
| last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0); |
| |
| /* remove it from all sibling map's */ |
| clear_cpu_sibling_map(cpu); |
| } |
| |
| extern void fixup_irqs(void); |
| |
| int migrate_platform_irqs(unsigned int cpu) |
| { |
| int new_cpei_cpu; |
| irq_desc_t *desc = NULL; |
| cpumask_t mask; |
| int retval = 0; |
| |
| /* |
| * dont permit CPEI target to removed. |
| */ |
| if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { |
| printk ("CPU (%d) is CPEI Target\n", cpu); |
| if (can_cpei_retarget()) { |
| /* |
| * Now re-target the CPEI to a different processor |
| */ |
| new_cpei_cpu = any_online_cpu(cpu_online_map); |
| mask = cpumask_of_cpu(new_cpei_cpu); |
| set_cpei_target_cpu(new_cpei_cpu); |
| desc = irq_desc + ia64_cpe_irq; |
| /* |
| * Switch for now, immediately, we need to do fake intr |
| * as other interrupts, but need to study CPEI behaviour with |
| * polling before making changes. |
| */ |
| if (desc) { |
| desc->chip->disable(ia64_cpe_irq); |
| desc->chip->set_affinity(ia64_cpe_irq, mask); |
| desc->chip->enable(ia64_cpe_irq); |
| printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu); |
| } |
| } |
| if (!desc) { |
| printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); |
| retval = -EBUSY; |
| } |
| } |
| return retval; |
| } |
| |
| /* must be called with cpucontrol mutex held */ |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * dont permit boot processor for now |
| */ |
| if (cpu == 0 && !bsp_remove_ok) { |
| printk ("Your platform does not support removal of BSP\n"); |
| return (-EBUSY); |
| } |
| |
| cpu_clear(cpu, cpu_online_map); |
| |
| if (migrate_platform_irqs(cpu)) { |
| cpu_set(cpu, cpu_online_map); |
| return (-EBUSY); |
| } |
| |
| remove_siblinginfo(cpu); |
| cpu_clear(cpu, cpu_online_map); |
| fixup_irqs(); |
| local_flush_tlb_all(); |
| cpu_clear(cpu, cpu_callin_map); |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 100; i++) { |
| /* They ack this in play_dead by setting CPU_DEAD */ |
| if (per_cpu(cpu_state, cpu) == CPU_DEAD) |
| { |
| printk ("CPU %d is now offline\n", cpu); |
| return; |
| } |
| msleep(100); |
| } |
| printk(KERN_ERR "CPU %u didn't die...\n", cpu); |
| } |
| #else /* !CONFIG_HOTPLUG_CPU */ |
| int __cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* We said "no" in __cpu_disable */ |
| BUG(); |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| void |
| smp_cpus_done (unsigned int dummy) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| |
| /* |
| * Allow the user to impress friends. |
| */ |
| |
| for_each_online_cpu(cpu) { |
| bogosum += cpu_data(cpu)->loops_per_jiffy; |
| } |
| |
| printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); |
| } |
| |
| static inline void __devinit |
| set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| |
| for_each_online_cpu(i) { |
| if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { |
| cpu_set(i, cpu_core_map[cpu]); |
| cpu_set(cpu, cpu_core_map[i]); |
| if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { |
| cpu_set(i, cpu_sibling_map[cpu]); |
| cpu_set(cpu, cpu_sibling_map[i]); |
| } |
| } |
| } |
| } |
| |
| int __cpuinit |
| __cpu_up (unsigned int cpu) |
| { |
| int ret; |
| int sapicid; |
| |
| sapicid = ia64_cpu_to_sapicid[cpu]; |
| if (sapicid == -1) |
| return -EINVAL; |
| |
| /* |
| * Already booted cpu? not valid anymore since we dont |
| * do idle loop tightspin anymore. |
| */ |
| if (cpu_isset(cpu, cpu_callin_map)) |
| return -EINVAL; |
| |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| /* Processor goes to start_secondary(), sets online flag */ |
| ret = do_boot_cpu(sapicid, cpu); |
| if (ret < 0) |
| return ret; |
| |
| if (cpu_data(cpu)->threads_per_core == 1 && |
| cpu_data(cpu)->cores_per_socket == 1) { |
| cpu_set(cpu, cpu_sibling_map[cpu]); |
| cpu_set(cpu, cpu_core_map[cpu]); |
| return 0; |
| } |
| |
| set_cpu_sibling_map(cpu); |
| |
| return 0; |
| } |
| |
| /* |
| * Assume that CPUs have been discovered by some platform-dependent interface. For |
| * SoftSDV/Lion, that would be ACPI. |
| * |
| * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). |
| */ |
| void __init |
| init_smp_config(void) |
| { |
| struct fptr { |
| unsigned long fp; |
| unsigned long gp; |
| } *ap_startup; |
| long sal_ret; |
| |
| /* Tell SAL where to drop the APs. */ |
| ap_startup = (struct fptr *) start_ap; |
| sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, |
| ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); |
| if (sal_ret < 0) |
| printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", |
| ia64_sal_strerror(sal_ret)); |
| } |
| |
| /* |
| * identify_siblings(cpu) gets called from identify_cpu. This populates the |
| * information related to logical execution units in per_cpu_data structure. |
| */ |
| void __devinit |
| identify_siblings(struct cpuinfo_ia64 *c) |
| { |
| s64 status; |
| u16 pltid; |
| pal_logical_to_physical_t info; |
| |
| if (smp_num_cpucores == 1 && smp_num_siblings == 1) |
| return; |
| |
| if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) { |
| printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n", |
| status); |
| return; |
| } |
| if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) { |
| printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status); |
| return; |
| } |
| |
| c->socket_id = (pltid << 8) | info.overview_ppid; |
| c->cores_per_socket = info.overview_cpp; |
| c->threads_per_core = info.overview_tpc; |
| c->num_log = info.overview_num_log; |
| |
| c->core_id = info.log1_cid; |
| c->thread_id = info.log1_tid; |
| } |
| |
| /* |
| * returns non zero, if multi-threading is enabled |
| * on at least one physical package. Due to hotplug cpu |
| * and (maxcpus=), all threads may not necessarily be enabled |
| * even though the processor supports multi-threading. |
| */ |
| int is_multithreading_enabled(void) |
| { |
| int i, j; |
| |
| for_each_present_cpu(i) { |
| for_each_present_cpu(j) { |
| if (j == i) |
| continue; |
| if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { |
| if (cpu_data(j)->core_id == cpu_data(i)->core_id) |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(is_multithreading_enabled); |