| /* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $ |
| * pbm.h: UltraSparc PCI controller software state. |
| * |
| * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com) |
| */ |
| |
| #ifndef __SPARC64_PBM_H |
| #define __SPARC64_PBM_H |
| |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/io.h> |
| #include <asm/page.h> |
| #include <asm/oplib.h> |
| |
| /* The abstraction used here is that there are PCI controllers, |
| * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules |
| * underneath. Each PCI bus module uses an IOMMU (shared by both |
| * PBMs of a controller, or per-PBM), and if a streaming buffer |
| * is present, each PCI bus module has it's own. (ie. the IOMMU |
| * might be shared between PBMs, the STC is never shared) |
| * Furthermore, each PCI bus module controls it's own autonomous |
| * PCI bus. |
| */ |
| |
| #define PBM_LOGCLUSTERS 3 |
| #define PBM_NCLUSTERS (1 << PBM_LOGCLUSTERS) |
| |
| struct pci_controller_info; |
| |
| /* This contains the software state necessary to drive a PCI |
| * controller's IOMMU. |
| */ |
| struct pci_iommu { |
| /* This protects the controller's IOMMU and all |
| * streaming buffers underneath. |
| */ |
| spinlock_t lock; |
| |
| /* Context allocator. */ |
| unsigned int iommu_cur_ctx; |
| |
| /* IOMMU page table, a linear array of ioptes. */ |
| iopte_t *page_table; /* The page table itself. */ |
| int page_table_sz_bits; /* log2 of ow many pages does it map? */ |
| |
| /* Base PCI memory space address where IOMMU mappings |
| * begin. |
| */ |
| u32 page_table_map_base; |
| |
| /* IOMMU Controller Registers */ |
| unsigned long iommu_control; /* IOMMU control register */ |
| unsigned long iommu_tsbbase; /* IOMMU page table base register */ |
| unsigned long iommu_flush; /* IOMMU page flush register */ |
| unsigned long iommu_ctxflush; /* IOMMU context flush register */ |
| |
| /* This is a register in the PCI controller, which if |
| * read will have no side-effects but will guarantee |
| * completion of all previous writes into IOMMU/STC. |
| */ |
| unsigned long write_complete_reg; |
| |
| /* The lowest used consistent mapping entry. Since |
| * we allocate consistent maps out of cluster 0 this |
| * is relative to the beginning of closter 0. |
| */ |
| u32 lowest_consistent_map; |
| |
| /* In order to deal with some buggy third-party PCI bridges that |
| * do wrong prefetching, we never mark valid mappings as invalid. |
| * Instead we point them at this dummy page. |
| */ |
| unsigned long dummy_page; |
| unsigned long dummy_page_pa; |
| |
| /* If PBM_NCLUSTERS is ever decreased to 4 or lower, |
| * or if largest supported page_table_sz * 8K goes above |
| * 2GB, you must increase the size of the type of |
| * these counters. You have been duly warned. -DaveM |
| */ |
| struct { |
| u16 next; |
| u16 flush; |
| } alloc_info[PBM_NCLUSTERS]; |
| |
| /* Here a PCI controller driver describes the areas of |
| * PCI memory space where DMA to/from physical memory |
| * are addressed. Drivers interrogate the PCI layer |
| * if their device has addressing limitations. They |
| * do so via pci_dma_supported, and pass in a mask of |
| * DMA address bits their device can actually drive. |
| * |
| * The test for being usable is: |
| * (device_mask & dma_addr_mask) == dma_addr_mask |
| */ |
| u32 dma_addr_mask; |
| }; |
| |
| extern void pci_iommu_table_init(struct pci_iommu *, int); |
| |
| /* This describes a PCI bus module's streaming buffer. */ |
| struct pci_strbuf { |
| int strbuf_enabled; /* Present and using it? */ |
| |
| /* Streaming Buffer Control Registers */ |
| unsigned long strbuf_control; /* STC control register */ |
| unsigned long strbuf_pflush; /* STC page flush register */ |
| unsigned long strbuf_fsync; /* STC flush synchronization reg */ |
| unsigned long strbuf_ctxflush; /* STC context flush register */ |
| unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */ |
| unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */ |
| volatile unsigned long *strbuf_flushflag; /* The flush flag itself */ |
| |
| /* And this is the actual flush flag area. |
| * We allocate extra because the chips require |
| * a 64-byte aligned area. |
| */ |
| volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)]; |
| }; |
| |
| #define PCI_STC_FLUSHFLAG_INIT(STC) \ |
| (*((STC)->strbuf_flushflag) = 0UL) |
| #define PCI_STC_FLUSHFLAG_SET(STC) \ |
| (*((STC)->strbuf_flushflag) != 0UL) |
| |
| /* There can be quite a few ranges and interrupt maps on a PCI |
| * segment. Thus... |
| */ |
| #define PROM_PCIRNG_MAX 64 |
| #define PROM_PCIIMAP_MAX 64 |
| |
| struct pci_pbm_info { |
| /* PCI controller we sit under. */ |
| struct pci_controller_info *parent; |
| |
| /* Physical address base of controller registers. */ |
| unsigned long controller_regs; |
| |
| /* Physical address base of PBM registers. */ |
| unsigned long pbm_regs; |
| |
| /* Opaque 32-bit system bus Port ID. */ |
| u32 portid; |
| |
| /* Chipset version information. */ |
| int chip_type; |
| #define PBM_CHIP_TYPE_SABRE 1 |
| #define PBM_CHIP_TYPE_PSYCHO 2 |
| #define PBM_CHIP_TYPE_SCHIZO 3 |
| #define PBM_CHIP_TYPE_SCHIZO_PLUS 4 |
| #define PBM_CHIP_TYPE_TOMATILLO 5 |
| int chip_version; |
| int chip_revision; |
| |
| /* Name used for top-level resources. */ |
| char name[64]; |
| |
| /* OBP specific information. */ |
| int prom_node; |
| char prom_name[64]; |
| struct linux_prom_pci_ranges pbm_ranges[PROM_PCIRNG_MAX]; |
| int num_pbm_ranges; |
| struct linux_prom_pci_intmap pbm_intmap[PROM_PCIIMAP_MAX]; |
| int num_pbm_intmap; |
| struct linux_prom_pci_intmask pbm_intmask; |
| u64 ino_bitmap; |
| |
| /* PBM I/O and Memory space resources. */ |
| struct resource io_space; |
| struct resource mem_space; |
| |
| /* Base of PCI Config space, can be per-PBM or shared. */ |
| unsigned long config_space; |
| |
| /* State of 66MHz capabilities on this PBM. */ |
| int is_66mhz_capable; |
| int all_devs_66mhz; |
| |
| /* This PBM's streaming buffer. */ |
| struct pci_strbuf stc; |
| |
| /* IOMMU state, potentially shared by both PBM segments. */ |
| struct pci_iommu *iommu; |
| |
| /* PCI slot mapping. */ |
| unsigned int pci_first_slot; |
| |
| /* Now things for the actual PCI bus probes. */ |
| unsigned int pci_first_busno; |
| unsigned int pci_last_busno; |
| struct pci_bus *pci_bus; |
| }; |
| |
| struct pci_controller_info { |
| /* List of all PCI controllers. */ |
| struct pci_controller_info *next; |
| |
| /* Each controller gets a unique index, used mostly for |
| * error logging purposes. |
| */ |
| int index; |
| |
| /* Do the PBMs both exist in the same PCI domain? */ |
| int pbms_same_domain; |
| |
| /* The PCI bus modules controlled by us. */ |
| struct pci_pbm_info pbm_A; |
| struct pci_pbm_info pbm_B; |
| |
| /* Operations which are controller specific. */ |
| void (*scan_bus)(struct pci_controller_info *); |
| unsigned int (*irq_build)(struct pci_pbm_info *, struct pci_dev *, unsigned int); |
| void (*base_address_update)(struct pci_dev *, int); |
| void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *); |
| |
| /* Now things for the actual PCI bus probes. */ |
| struct pci_ops *pci_ops; |
| unsigned int pci_first_busno; |
| unsigned int pci_last_busno; |
| |
| void *starfire_cookie; |
| }; |
| |
| /* PCI devices which are not bridges have this placed in their pci_dev |
| * sysdata member. This makes OBP aware PCI device drivers easier to |
| * code. |
| */ |
| struct pcidev_cookie { |
| struct pci_pbm_info *pbm; |
| char prom_name[64]; |
| int prom_node; |
| struct linux_prom_pci_registers prom_regs[PROMREG_MAX]; |
| int num_prom_regs; |
| struct linux_prom_pci_registers prom_assignments[PROMREG_MAX]; |
| int num_prom_assignments; |
| }; |
| |
| /* Currently these are the same across all PCI controllers |
| * we support. Someday they may not be... |
| */ |
| #define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */ |
| #define PCI_IRQ_INO 0x0000003f /* Interrupt Number */ |
| |
| #endif /* !(__SPARC64_PBM_H) */ |