| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #ifndef _ASM_TILE_PAGE_H |
| #define _ASM_TILE_PAGE_H |
| |
| #include <linux/const.h> |
| #include <hv/pagesize.h> |
| |
| /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */ |
| #define PAGE_SHIFT HV_LOG2_PAGE_SIZE_SMALL |
| #define HPAGE_SHIFT HV_LOG2_PAGE_SIZE_LARGE |
| |
| #define PAGE_SIZE (_AC(1, UL) << PAGE_SHIFT) |
| #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) |
| |
| #define PAGE_MASK (~(PAGE_SIZE - 1)) |
| #define HPAGE_MASK (~(HPAGE_SIZE - 1)) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * If the Kconfig doesn't specify, set a maximum zone order that |
| * is enough so that we can create huge pages from small pages given |
| * the respective sizes of the two page types. See <linux/mmzone.h>. |
| */ |
| #ifndef CONFIG_FORCE_MAX_ZONEORDER |
| #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1) |
| #endif |
| |
| #include <hv/hypervisor.h> |
| #include <arch/chip.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| |
| struct page; |
| |
| static inline void clear_page(void *page) |
| { |
| memset(page, 0, PAGE_SIZE); |
| } |
| |
| static inline void copy_page(void *to, void *from) |
| { |
| memcpy(to, from, PAGE_SIZE); |
| } |
| |
| static inline void clear_user_page(void *page, unsigned long vaddr, |
| struct page *pg) |
| { |
| clear_page(page); |
| } |
| |
| static inline void copy_user_page(void *to, void *from, unsigned long vaddr, |
| struct page *topage) |
| { |
| copy_page(to, from); |
| } |
| |
| /* |
| * Hypervisor page tables are made of the same basic structure. |
| */ |
| |
| typedef HV_PTE pte_t; |
| typedef HV_PTE pgd_t; |
| typedef HV_PTE pgprot_t; |
| |
| /* |
| * User L2 page tables are managed as one L2 page table per page, |
| * because we use the page allocator for them. This keeps the allocation |
| * simple and makes it potentially useful to implement HIGHPTE at some point. |
| * However, it's also inefficient, since L2 page tables are much smaller |
| * than pages (currently 2KB vs 64KB). So we should revisit this. |
| */ |
| typedef struct page *pgtable_t; |
| |
| /* Must be a macro since it is used to create constants. */ |
| #define __pgprot(val) hv_pte(val) |
| |
| static inline u64 pgprot_val(pgprot_t pgprot) |
| { |
| return hv_pte_val(pgprot); |
| } |
| |
| static inline u64 pte_val(pte_t pte) |
| { |
| return hv_pte_val(pte); |
| } |
| |
| static inline u64 pgd_val(pgd_t pgd) |
| { |
| return hv_pte_val(pgd); |
| } |
| |
| #ifdef __tilegx__ |
| |
| typedef HV_PTE pmd_t; |
| |
| static inline u64 pmd_val(pmd_t pmd) |
| { |
| return hv_pte_val(pmd); |
| } |
| |
| #endif |
| |
| static inline __attribute_const__ int get_order(unsigned long size) |
| { |
| return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT); |
| } |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) |
| |
| #define HUGE_MAX_HSTATE 2 |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA |
| #endif |
| |
| /* Each memory controller has PAs distinct in their high bits. */ |
| #define NR_PA_HIGHBIT_SHIFT (CHIP_PA_WIDTH() - CHIP_LOG_NUM_MSHIMS()) |
| #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS()) |
| #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT) |
| #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)) |
| |
| #ifdef __tilegx__ |
| |
| /* |
| * We reserve the lower half of memory for user-space programs, and the |
| * upper half for system code. We re-map all of physical memory in the |
| * upper half, which takes a quarter of our VA space. Then we have |
| * the vmalloc regions. The supervisor code lives at 0xfffffff700000000, |
| * with the hypervisor above that. |
| * |
| * Loadable kernel modules are placed immediately after the static |
| * supervisor code, with each being allocated a 256MB region of |
| * address space, so we don't have to worry about the range of "jal" |
| * and other branch instructions. |
| * |
| * For now we keep life simple and just allocate one pmd (4GB) for vmalloc. |
| * Similarly, for now we don't play any struct page mapping games. |
| */ |
| |
| #if CHIP_PA_WIDTH() + 2 > CHIP_VA_WIDTH() |
| # error Too much PA to map with the VA available! |
| #endif |
| #define HALF_VA_SPACE (_AC(1, UL) << (CHIP_VA_WIDTH() - 1)) |
| |
| #define MEM_LOW_END (HALF_VA_SPACE - 1) /* low half */ |
| #define MEM_HIGH_START (-HALF_VA_SPACE) /* high half */ |
| #define PAGE_OFFSET MEM_HIGH_START |
| #define _VMALLOC_START _AC(0xfffffff500000000, UL) /* 4 GB */ |
| #define HUGE_VMAP_BASE _AC(0xfffffff600000000, UL) /* 4 GB */ |
| #define MEM_SV_START _AC(0xfffffff700000000, UL) /* 256 MB */ |
| #define MEM_SV_INTRPT MEM_SV_START |
| #define MEM_MODULE_START _AC(0xfffffff710000000, UL) /* 256 MB */ |
| #define MEM_MODULE_END (MEM_MODULE_START + (256*1024*1024)) |
| #define MEM_HV_START _AC(0xfffffff800000000, UL) /* 32 GB */ |
| |
| /* Highest DTLB address we will use */ |
| #define KERNEL_HIGH_VADDR MEM_SV_START |
| |
| /* Since we don't currently provide any fixmaps, we use an impossible VA. */ |
| #define FIXADDR_TOP MEM_HV_START |
| |
| #else /* !__tilegx__ */ |
| |
| /* |
| * A PAGE_OFFSET of 0xC0000000 means that the kernel has |
| * a virtual address space of one gigabyte, which limits the |
| * amount of physical memory you can use to about 768MB. |
| * If you want more physical memory than this then see the CONFIG_HIGHMEM |
| * option in the kernel configuration. |
| * |
| * The top 16MB chunk in the table below is unavailable to Linux. Since |
| * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000 |
| * (depending on whether the kernel is at PL2 or Pl1), we map all of the |
| * bottom of RAM at this address with a huge page table entry to minimize |
| * its ITLB footprint (as well as at PAGE_OFFSET). The last architected |
| * requirement is that user interrupt vectors live at 0xfc000000, so we |
| * make that range of memory available to user processes. The remaining |
| * regions are sized as shown; the first four addresses use the PL 1 |
| * values, and after that, we show "typical" values, since the actual |
| * addresses depend on kernel #defines. |
| * |
| * MEM_HV_INTRPT 0xfe000000 |
| * MEM_SV_INTRPT (kernel code) 0xfd000000 |
| * MEM_USER_INTRPT (user vector) 0xfc000000 |
| * FIX_KMAP_xxx 0xf8000000 (via NR_CPUS * KM_TYPE_NR) |
| * PKMAP_BASE 0xf7000000 (via LAST_PKMAP) |
| * HUGE_VMAP 0xf3000000 (via CONFIG_NR_HUGE_VMAPS) |
| * VMALLOC_START 0xf0000000 (via __VMALLOC_RESERVE) |
| * mapped LOWMEM 0xc0000000 |
| */ |
| |
| #define MEM_USER_INTRPT _AC(0xfc000000, UL) |
| #if CONFIG_KERNEL_PL == 1 |
| #define MEM_SV_INTRPT _AC(0xfd000000, UL) |
| #define MEM_HV_INTRPT _AC(0xfe000000, UL) |
| #else |
| #define MEM_GUEST_INTRPT _AC(0xfd000000, UL) |
| #define MEM_SV_INTRPT _AC(0xfe000000, UL) |
| #define MEM_HV_INTRPT _AC(0xff000000, UL) |
| #endif |
| |
| #define INTRPT_SIZE 0x4000 |
| |
| /* Tolerate page size larger than the architecture interrupt region size. */ |
| #if PAGE_SIZE > INTRPT_SIZE |
| #undef INTRPT_SIZE |
| #define INTRPT_SIZE PAGE_SIZE |
| #endif |
| |
| #define KERNEL_HIGH_VADDR MEM_USER_INTRPT |
| #define FIXADDR_TOP (KERNEL_HIGH_VADDR - PAGE_SIZE) |
| |
| #define PAGE_OFFSET _AC(CONFIG_PAGE_OFFSET, UL) |
| |
| /* On 32-bit architectures we mix kernel modules in with other vmaps. */ |
| #define MEM_MODULE_START VMALLOC_START |
| #define MEM_MODULE_END VMALLOC_END |
| |
| #endif /* __tilegx__ */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef CONFIG_HIGHMEM |
| |
| /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */ |
| extern unsigned long pbase_map[]; |
| extern void *vbase_map[]; |
| |
| static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr) |
| { |
| unsigned long kaddr = (unsigned long)_kaddr; |
| return pbase_map[kaddr >> HPAGE_SHIFT] + |
| ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT); |
| } |
| |
| static inline void *pfn_to_kaddr(unsigned long pfn) |
| { |
| return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT); |
| } |
| |
| static inline phys_addr_t virt_to_phys(const volatile void *kaddr) |
| { |
| unsigned long pfn = kaddr_to_pfn(kaddr); |
| return ((phys_addr_t)pfn << PAGE_SHIFT) + |
| ((unsigned long)kaddr & (PAGE_SIZE-1)); |
| } |
| |
| static inline void *phys_to_virt(phys_addr_t paddr) |
| { |
| return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1)); |
| } |
| |
| /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */ |
| static inline int virt_addr_valid(const volatile void *kaddr) |
| { |
| extern void *high_memory; /* copied from <linux/mm.h> */ |
| return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory); |
| } |
| |
| #else /* !CONFIG_HIGHMEM */ |
| |
| static inline unsigned long kaddr_to_pfn(const volatile void *kaddr) |
| { |
| return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT; |
| } |
| |
| static inline void *pfn_to_kaddr(unsigned long pfn) |
| { |
| return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET); |
| } |
| |
| static inline phys_addr_t virt_to_phys(const volatile void *kaddr) |
| { |
| return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET); |
| } |
| |
| static inline void *phys_to_virt(phys_addr_t paddr) |
| { |
| return (void *)((unsigned long)paddr + PAGE_OFFSET); |
| } |
| |
| /* Check that the given address is within some mapped range of PAs. */ |
| #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr)) |
| |
| #endif /* !CONFIG_HIGHMEM */ |
| |
| /* All callers are not consistent in how they call these functions. */ |
| #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr)) |
| #define __va(paddr) phys_to_virt((phys_addr_t)(paddr)) |
| |
| extern int devmem_is_allowed(unsigned long pagenr); |
| |
| #ifdef CONFIG_FLATMEM |
| static inline int pfn_valid(unsigned long pfn) |
| { |
| return pfn < max_mapnr; |
| } |
| #endif |
| |
| /* Provide as macros since these require some other headers included. */ |
| #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT) |
| #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn(kaddr)) |
| #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page)) |
| |
| struct mm_struct; |
| extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define VM_DATA_DEFAULT_FLAGS \ |
| (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| |
| #include <asm-generic/memory_model.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_TILE_PAGE_H */ |