| #ifndef _M68K_BITOPS_H |
| #define _M68K_BITOPS_H |
| /* |
| * Copyright 1992, Linus Torvalds. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/compiler.h> |
| |
| /* |
| * Require 68020 or better. |
| * |
| * They use the standard big-endian m680x0 bit ordering. |
| */ |
| |
| #define test_and_set_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_test_and_set_bit(nr, vaddr) : \ |
| __generic_test_and_set_bit(nr, vaddr)) |
| |
| #define __test_and_set_bit(nr,vaddr) test_and_set_bit(nr,vaddr) |
| |
| static inline int __constant_test_and_set_bit(int nr, unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bset %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| |
| return retval; |
| } |
| |
| static inline int __generic_test_and_set_bit(int nr, unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0" |
| : "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory"); |
| |
| return retval; |
| } |
| |
| #define set_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_set_bit(nr, vaddr) : \ |
| __generic_set_bit(nr, vaddr)) |
| |
| #define __set_bit(nr,vaddr) set_bit(nr,vaddr) |
| |
| static inline void __constant_set_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| __asm__ __volatile__ ("bset %1,%0" |
| : "+m" (*p) : "di" (nr & 7)); |
| } |
| |
| static inline void __generic_set_bit(int nr, volatile unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfset %1{%0:#1}" |
| : : "d" (nr^31), "o" (*vaddr) : "memory"); |
| } |
| |
| #define test_and_clear_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_test_and_clear_bit(nr, vaddr) : \ |
| __generic_test_and_clear_bit(nr, vaddr)) |
| |
| #define __test_and_clear_bit(nr,vaddr) test_and_clear_bit(nr,vaddr) |
| |
| static inline int __constant_test_and_clear_bit(int nr, unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bclr %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| |
| return retval; |
| } |
| |
| static inline int __generic_test_and_clear_bit(int nr, unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0" |
| : "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory"); |
| |
| return retval; |
| } |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| #define clear_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_clear_bit(nr, vaddr) : \ |
| __generic_clear_bit(nr, vaddr)) |
| #define __clear_bit(nr,vaddr) clear_bit(nr,vaddr) |
| |
| static inline void __constant_clear_bit(int nr, volatile unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| __asm__ __volatile__ ("bclr %1,%0" |
| : "+m" (*p) : "di" (nr & 7)); |
| } |
| |
| static inline void __generic_clear_bit(int nr, volatile unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfclr %1{%0:#1}" |
| : : "d" (nr^31), "o" (*vaddr) : "memory"); |
| } |
| |
| #define test_and_change_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_test_and_change_bit(nr, vaddr) : \ |
| __generic_test_and_change_bit(nr, vaddr)) |
| |
| #define __test_and_change_bit(nr,vaddr) test_and_change_bit(nr,vaddr) |
| #define __change_bit(nr,vaddr) change_bit(nr,vaddr) |
| |
| static inline int __constant_test_and_change_bit(int nr, unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| char retval; |
| |
| __asm__ __volatile__ ("bchg %2,%1; sne %0" |
| : "=d" (retval), "+m" (*p) |
| : "di" (nr & 7)); |
| |
| return retval; |
| } |
| |
| static inline int __generic_test_and_change_bit(int nr, unsigned long *vaddr) |
| { |
| char retval; |
| |
| __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0" |
| : "=d" (retval) : "d" (nr^31), "o" (*vaddr) : "memory"); |
| |
| return retval; |
| } |
| |
| #define change_bit(nr,vaddr) \ |
| (__builtin_constant_p(nr) ? \ |
| __constant_change_bit(nr, vaddr) : \ |
| __generic_change_bit(nr, vaddr)) |
| |
| static inline void __constant_change_bit(int nr, unsigned long *vaddr) |
| { |
| char *p = (char *)vaddr + (nr ^ 31) / 8; |
| __asm__ __volatile__ ("bchg %1,%0" |
| : "+m" (*p) : "di" (nr & 7)); |
| } |
| |
| static inline void __generic_change_bit(int nr, unsigned long *vaddr) |
| { |
| __asm__ __volatile__ ("bfchg %1{%0:#1}" |
| : : "d" (nr^31), "o" (*vaddr) : "memory"); |
| } |
| |
| static inline int test_bit(int nr, const unsigned long *vaddr) |
| { |
| return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0; |
| } |
| |
| static inline int find_first_zero_bit(const unsigned long *vaddr, |
| unsigned size) |
| { |
| const unsigned long *p = vaddr; |
| int res = 32; |
| unsigned long num; |
| |
| if (!size) |
| return 0; |
| |
| size = (size + 31) >> 5; |
| while (!(num = ~*p++)) { |
| if (!--size) |
| goto out; |
| } |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| res ^= 31; |
| out: |
| return ((long)p - (long)vaddr - 4) * 8 + res; |
| } |
| |
| static inline int find_next_zero_bit(const unsigned long *vaddr, int size, |
| int offset) |
| { |
| const unsigned long *p = vaddr + (offset >> 5); |
| int bit = offset & 31UL, res; |
| |
| if (offset >= size) |
| return size; |
| |
| if (bit) { |
| unsigned long num = ~*p++ & (~0UL << bit); |
| offset -= bit; |
| |
| /* Look for zero in first longword */ |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| if (res < 32) |
| return offset + (res ^ 31); |
| offset += 32; |
| } |
| /* No zero yet, search remaining full bytes for a zero */ |
| res = find_first_zero_bit(p, size - ((long)p - (long)vaddr) * 8); |
| return offset + res; |
| } |
| |
| static inline int find_first_bit(const unsigned long *vaddr, unsigned size) |
| { |
| const unsigned long *p = vaddr; |
| int res = 32; |
| unsigned long num; |
| |
| if (!size) |
| return 0; |
| |
| size = (size + 31) >> 5; |
| while (!(num = *p++)) { |
| if (!--size) |
| goto out; |
| } |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| res ^= 31; |
| out: |
| return ((long)p - (long)vaddr - 4) * 8 + res; |
| } |
| |
| static inline int find_next_bit(const unsigned long *vaddr, int size, |
| int offset) |
| { |
| const unsigned long *p = vaddr + (offset >> 5); |
| int bit = offset & 31UL, res; |
| |
| if (offset >= size) |
| return size; |
| |
| if (bit) { |
| unsigned long num = *p++ & (~0UL << bit); |
| offset -= bit; |
| |
| /* Look for one in first longword */ |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (num & -num)); |
| if (res < 32) |
| return offset + (res ^ 31); |
| offset += 32; |
| } |
| /* No one yet, search remaining full bytes for a one */ |
| res = find_first_bit(p, size - ((long)p - (long)vaddr) * 8); |
| return offset + res; |
| } |
| |
| /* |
| * ffz = Find First Zero in word. Undefined if no zero exists, |
| * so code should check against ~0UL first.. |
| */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| int res; |
| |
| __asm__ __volatile__ ("bfffo %1{#0,#0},%0" |
| : "=d" (res) : "d" (~word & -~word)); |
| return res ^ 31; |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| |
| static inline int ffs(int x) |
| { |
| int cnt; |
| |
| asm ("bfffo %1{#0:#0},%0" : "=d" (cnt) : "dm" (x & -x)); |
| |
| return 32 - cnt; |
| } |
| #define __ffs(x) (ffs(x) - 1) |
| |
| /* |
| * fls: find last bit set. |
| */ |
| |
| static inline int fls(int x) |
| { |
| int cnt; |
| |
| asm ("bfffo %1{#0,#0},%0" : "=d" (cnt) : "dm" (x)); |
| |
| return 32 - cnt; |
| } |
| #define fls64(x) generic_fls64(x) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* Bitmap functions for the minix filesystem */ |
| |
| static inline int minix_find_first_zero_bit(const void *vaddr, unsigned size) |
| { |
| const unsigned short *p = vaddr, *addr = vaddr; |
| int res; |
| unsigned short num; |
| |
| if (!size) |
| return 0; |
| |
| size = (size >> 4) + ((size & 15) > 0); |
| while (*p++ == 0xffff) |
| { |
| if (--size == 0) |
| return (p - addr) << 4; |
| } |
| |
| num = ~*--p; |
| __asm__ __volatile__ ("bfffo %1{#16,#16},%0" |
| : "=d" (res) : "d" (num & -num)); |
| return ((p - addr) << 4) + (res ^ 31); |
| } |
| |
| #define minix_test_and_set_bit(nr, addr) __test_and_set_bit((nr) ^ 16, (unsigned long *)(addr)) |
| #define minix_set_bit(nr,addr) __set_bit((nr) ^ 16, (unsigned long *)(addr)) |
| #define minix_test_and_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 16, (unsigned long *)(addr)) |
| |
| static inline int minix_test_bit(int nr, const void *vaddr) |
| { |
| const unsigned short *p = vaddr; |
| return (p[nr >> 4] & (1U << (nr & 15))) != 0; |
| } |
| |
| /* Bitmap functions for the ext2 filesystem. */ |
| |
| #define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 24, (unsigned long *)(addr)) |
| #define ext2_set_bit_atomic(lock, nr, addr) test_and_set_bit((nr) ^ 24, (unsigned long *)(addr)) |
| #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 24, (unsigned long *)(addr)) |
| #define ext2_clear_bit_atomic(lock, nr, addr) test_and_clear_bit((nr) ^ 24, (unsigned long *)(addr)) |
| |
| static inline int ext2_test_bit(int nr, const void *vaddr) |
| { |
| const unsigned char *p = vaddr; |
| return (p[nr >> 3] & (1U << (nr & 7))) != 0; |
| } |
| |
| static inline int ext2_find_first_zero_bit(const void *vaddr, unsigned size) |
| { |
| const unsigned long *p = vaddr, *addr = vaddr; |
| int res; |
| |
| if (!size) |
| return 0; |
| |
| size = (size >> 5) + ((size & 31) > 0); |
| while (*p++ == ~0UL) |
| { |
| if (--size == 0) |
| return (p - addr) << 5; |
| } |
| |
| --p; |
| for (res = 0; res < 32; res++) |
| if (!ext2_test_bit (res, p)) |
| break; |
| return (p - addr) * 32 + res; |
| } |
| |
| static inline int ext2_find_next_zero_bit(const void *vaddr, unsigned size, |
| unsigned offset) |
| { |
| const unsigned long *addr = vaddr; |
| const unsigned long *p = addr + (offset >> 5); |
| int bit = offset & 31UL, res; |
| |
| if (offset >= size) |
| return size; |
| |
| if (bit) { |
| /* Look for zero in first longword */ |
| for (res = bit; res < 32; res++) |
| if (!ext2_test_bit (res, p)) |
| return (p - addr) * 32 + res; |
| p++; |
| } |
| /* No zero yet, search remaining full bytes for a zero */ |
| res = ext2_find_first_zero_bit (p, size - 32 * (p - addr)); |
| return (p - addr) * 32 + res; |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _M68K_BITOPS_H */ |