| /* |
| * Driver for DiBcom DiB3000MC/P-demodulator. |
| * |
| * Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/) |
| * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de) |
| * |
| * This code is partially based on the previous dib3000mc.c . |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation, version 2. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "dib3000mc.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| static int buggy_sfn_workaround; |
| module_param(buggy_sfn_workaround, int, 0644); |
| MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); |
| |
| #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); printk("\n"); } } while (0) |
| |
| struct dib3000mc_state { |
| struct dvb_frontend demod; |
| struct dib3000mc_config *cfg; |
| |
| u8 i2c_addr; |
| struct i2c_adapter *i2c_adap; |
| |
| struct dibx000_i2c_master i2c_master; |
| |
| u32 timf; |
| |
| fe_bandwidth_t current_bandwidth; |
| |
| u16 dev_id; |
| |
| u8 sfn_workaround_active :1; |
| }; |
| |
| static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg) |
| { |
| u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff }; |
| u8 rb[2]; |
| struct i2c_msg msg[2] = { |
| { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, |
| { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, |
| }; |
| |
| if (i2c_transfer(state->i2c_adap, msg, 2) != 2) |
| dprintk("i2c read error on %d\n",reg); |
| |
| return (rb[0] << 8) | rb[1]; |
| } |
| |
| static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val) |
| { |
| u8 b[4] = { |
| (reg >> 8) & 0xff, reg & 0xff, |
| (val >> 8) & 0xff, val & 0xff, |
| }; |
| struct i2c_msg msg = { |
| .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 |
| }; |
| return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| } |
| |
| static int dib3000mc_identify(struct dib3000mc_state *state) |
| { |
| u16 value; |
| if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) { |
| dprintk("-E- DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value); |
| return -EREMOTEIO; |
| } |
| |
| value = dib3000mc_read_word(state, 1026); |
| if (value != 0x3001 && value != 0x3002) { |
| dprintk("-E- DiB3000MC/P: wrong Device ID (%x)\n",value); |
| return -EREMOTEIO; |
| } |
| state->dev_id = value; |
| |
| dprintk("-I- found DiB3000MC/P: %x\n",state->dev_id); |
| |
| return 0; |
| } |
| |
| static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset) |
| { |
| u32 timf; |
| |
| if (state->timf == 0) { |
| timf = 1384402; // default value for 8MHz |
| if (update_offset) |
| msleep(200); // first time we do an update |
| } else |
| timf = state->timf; |
| |
| timf *= (bw / 1000); |
| |
| if (update_offset) { |
| s16 tim_offs = dib3000mc_read_word(state, 416); |
| |
| if (tim_offs & 0x2000) |
| tim_offs -= 0x4000; |
| |
| if (nfft == TRANSMISSION_MODE_2K) |
| tim_offs *= 4; |
| |
| timf += tim_offs; |
| state->timf = timf / (bw / 1000); |
| } |
| |
| dprintk("timf: %d\n", timf); |
| |
| dib3000mc_write_word(state, 23, (u16) (timf >> 16)); |
| dib3000mc_write_word(state, 24, (u16) (timf ) & 0xffff); |
| |
| return 0; |
| } |
| |
| static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state) |
| { |
| u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb; |
| if (state->cfg->pwm3_inversion) { |
| reg_51 = (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0); |
| reg_52 |= (1 << 2); |
| } else { |
| reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0); |
| reg_52 |= (1 << 8); |
| } |
| dib3000mc_write_word(state, 51, reg_51); |
| dib3000mc_write_word(state, 52, reg_52); |
| |
| if (state->cfg->use_pwm3) |
| dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0)); |
| else |
| dib3000mc_write_word(state, 245, 0); |
| |
| dib3000mc_write_word(state, 1040, 0x3); |
| return 0; |
| } |
| |
| static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode) |
| { |
| int ret = 0; |
| u16 fifo_threshold = 1792; |
| u16 outreg = 0; |
| u16 outmode = 0; |
| u16 elecout = 1; |
| u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */ |
| |
| dprintk("-I- Setting output mode for demod %p to %d\n", |
| &state->demod, mode); |
| |
| switch (mode) { |
| case OUTMODE_HIGH_Z: // disable |
| elecout = 0; |
| break; |
| case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| outmode = 0; |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| outmode = 1; |
| break; |
| case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| outmode = 2; |
| break; |
| case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| elecout = 3; |
| /*ADDR @ 206 : |
| P_smo_error_discard [1;6:6] = 0 |
| P_smo_rs_discard [1;5:5] = 0 |
| P_smo_pid_parse [1;4:4] = 0 |
| P_smo_fifo_flush [1;3:3] = 0 |
| P_smo_mode [2;2:1] = 11 |
| P_smo_ovf_prot [1;0:0] = 0 |
| */ |
| smo_reg |= 3 << 1; |
| fifo_threshold = 512; |
| outmode = 5; |
| break; |
| case OUTMODE_DIVERSITY: |
| outmode = 4; |
| elecout = 1; |
| break; |
| default: |
| dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); |
| outmode = 0; |
| break; |
| } |
| |
| if ((state->cfg->output_mpeg2_in_188_bytes)) |
| smo_reg |= (1 << 5); // P_smo_rs_discard [1;5:5] = 1 |
| |
| outreg = dib3000mc_read_word(state, 244) & 0x07FF; |
| outreg |= (outmode << 11); |
| ret |= dib3000mc_write_word(state, 244, outreg); |
| ret |= dib3000mc_write_word(state, 206, smo_reg); /*smo_ mode*/ |
| ret |= dib3000mc_write_word(state, 207, fifo_threshold); /* synchronous fread */ |
| ret |= dib3000mc_write_word(state, 1040, elecout); /* P_out_cfg */ |
| return ret; |
| } |
| |
| static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw) |
| { |
| u16 bw_cfg[6] = { 0 }; |
| u16 imp_bw_cfg[3] = { 0 }; |
| u16 reg; |
| |
| /* settings here are for 27.7MHz */ |
| switch (bw) { |
| case 8000: |
| bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20; |
| imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7; |
| break; |
| |
| case 7000: |
| bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7; |
| imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0; |
| break; |
| |
| case 6000: |
| bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5; |
| imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089; |
| break; |
| |
| case 5000: |
| bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500; |
| imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072; |
| break; |
| |
| default: return -EINVAL; |
| } |
| |
| for (reg = 6; reg < 12; reg++) |
| dib3000mc_write_word(state, reg, bw_cfg[reg - 6]); |
| dib3000mc_write_word(state, 12, 0x0000); |
| dib3000mc_write_word(state, 13, 0x03e8); |
| dib3000mc_write_word(state, 14, 0x0000); |
| dib3000mc_write_word(state, 15, 0x03f2); |
| dib3000mc_write_word(state, 16, 0x0001); |
| dib3000mc_write_word(state, 17, 0xb0d0); |
| // P_sec_len |
| dib3000mc_write_word(state, 18, 0x0393); |
| dib3000mc_write_word(state, 19, 0x8700); |
| |
| for (reg = 55; reg < 58; reg++) |
| dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]); |
| |
| // Timing configuration |
| dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0); |
| |
| return 0; |
| } |
| |
| static u16 impulse_noise_val[29] = |
| |
| { |
| 0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3, |
| 0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2, |
| 0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd |
| }; |
| |
| static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft) |
| { |
| u16 i; |
| for (i = 58; i < 87; i++) |
| dib3000mc_write_word(state, i, impulse_noise_val[i-58]); |
| |
| if (nfft == TRANSMISSION_MODE_8K) { |
| dib3000mc_write_word(state, 58, 0x3b); |
| dib3000mc_write_word(state, 84, 0x00); |
| dib3000mc_write_word(state, 85, 0x8200); |
| } |
| |
| dib3000mc_write_word(state, 34, 0x1294); |
| dib3000mc_write_word(state, 35, 0x1ff8); |
| if (mode == 1) |
| dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10)); |
| } |
| |
| static int dib3000mc_init(struct dvb_frontend *demod) |
| { |
| struct dib3000mc_state *state = demod->demodulator_priv; |
| struct dibx000_agc_config *agc = state->cfg->agc; |
| |
| // Restart Configuration |
| dib3000mc_write_word(state, 1027, 0x8000); |
| dib3000mc_write_word(state, 1027, 0x0000); |
| |
| // power up the demod + mobility configuration |
| dib3000mc_write_word(state, 140, 0x0000); |
| dib3000mc_write_word(state, 1031, 0); |
| |
| if (state->cfg->mobile_mode) { |
| dib3000mc_write_word(state, 139, 0x0000); |
| dib3000mc_write_word(state, 141, 0x0000); |
| dib3000mc_write_word(state, 175, 0x0002); |
| dib3000mc_write_word(state, 1032, 0x0000); |
| } else { |
| dib3000mc_write_word(state, 139, 0x0001); |
| dib3000mc_write_word(state, 141, 0x0000); |
| dib3000mc_write_word(state, 175, 0x0000); |
| dib3000mc_write_word(state, 1032, 0x012C); |
| } |
| dib3000mc_write_word(state, 1033, 0x0000); |
| |
| // P_clk_cfg |
| dib3000mc_write_word(state, 1037, 0x3130); |
| |
| // other configurations |
| |
| // P_ctrl_sfreq |
| dib3000mc_write_word(state, 33, (5 << 0)); |
| dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0)); |
| |
| // Phase noise control |
| // P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange |
| dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0)); |
| |
| if (state->cfg->phase_noise_mode == 0) |
| dib3000mc_write_word(state, 111, 0x00); |
| else |
| dib3000mc_write_word(state, 111, 0x02); |
| |
| // P_agc_global |
| dib3000mc_write_word(state, 50, 0x8000); |
| |
| // agc setup misc |
| dib3000mc_setup_pwm_state(state); |
| |
| // P_agc_counter_lock |
| dib3000mc_write_word(state, 53, 0x87); |
| // P_agc_counter_unlock |
| dib3000mc_write_word(state, 54, 0x87); |
| |
| /* agc */ |
| dib3000mc_write_word(state, 36, state->cfg->max_time); |
| dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0)); |
| dib3000mc_write_word(state, 38, state->cfg->pwm3_value); |
| dib3000mc_write_word(state, 39, state->cfg->ln_adc_level); |
| |
| // set_agc_loop_Bw |
| dib3000mc_write_word(state, 40, 0x0179); |
| dib3000mc_write_word(state, 41, 0x03f0); |
| |
| dib3000mc_write_word(state, 42, agc->agc1_max); |
| dib3000mc_write_word(state, 43, agc->agc1_min); |
| dib3000mc_write_word(state, 44, agc->agc2_max); |
| dib3000mc_write_word(state, 45, agc->agc2_min); |
| dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2); |
| dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| |
| // Begin: TimeOut registers |
| // P_pha3_thres |
| dib3000mc_write_word(state, 110, 3277); |
| // P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80 |
| dib3000mc_write_word(state, 26, 0x6680); |
| // lock_mask0 |
| dib3000mc_write_word(state, 1, 4); |
| // lock_mask1 |
| dib3000mc_write_word(state, 2, 4); |
| // lock_mask2 |
| dib3000mc_write_word(state, 3, 0x1000); |
| // P_search_maxtrial=1 |
| dib3000mc_write_word(state, 5, 1); |
| |
| dib3000mc_set_bandwidth(state, 8000); |
| |
| // div_lock_mask |
| dib3000mc_write_word(state, 4, 0x814); |
| |
| dib3000mc_write_word(state, 21, (1 << 9) | 0x164); |
| dib3000mc_write_word(state, 22, 0x463d); |
| |
| // Spurious rm cfg |
| // P_cspu_regul, P_cspu_win_cut |
| dib3000mc_write_word(state, 120, 0x200f); |
| // P_adp_selec_monit |
| dib3000mc_write_word(state, 134, 0); |
| |
| // Fec cfg |
| dib3000mc_write_word(state, 195, 0x10); |
| |
| // diversity register: P_dvsy_sync_wait.. |
| dib3000mc_write_word(state, 180, 0x2FF0); |
| |
| // Impulse noise configuration |
| dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K); |
| |
| // output mode set-up |
| dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z); |
| |
| /* close the i2c-gate */ |
| dib3000mc_write_word(state, 769, (1 << 7) ); |
| |
| return 0; |
| } |
| |
| static int dib3000mc_sleep(struct dvb_frontend *demod) |
| { |
| struct dib3000mc_state *state = demod->demodulator_priv; |
| |
| dib3000mc_write_word(state, 1031, 0xFFFF); |
| dib3000mc_write_word(state, 1032, 0xFFFF); |
| dib3000mc_write_word(state, 1033, 0xFFF0); |
| |
| return 0; |
| } |
| |
| static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam) |
| { |
| u16 cfg[4] = { 0 },reg; |
| switch (qam) { |
| case QPSK: |
| cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0; |
| break; |
| case QAM_16: |
| cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0; |
| break; |
| case QAM_64: |
| cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8; |
| break; |
| } |
| for (reg = 129; reg < 133; reg++) |
| dib3000mc_write_word(state, reg, cfg[reg - 129]); |
| } |
| |
| static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dvb_frontend_parameters *ch, u16 seq) |
| { |
| u16 value; |
| dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); |
| dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 0); |
| |
| // if (boost) |
| // dib3000mc_write_word(state, 100, (11 << 6) + 6); |
| // else |
| dib3000mc_write_word(state, 100, (16 << 6) + 9); |
| |
| dib3000mc_write_word(state, 1027, 0x0800); |
| dib3000mc_write_word(state, 1027, 0x0000); |
| |
| //Default cfg isi offset adp |
| dib3000mc_write_word(state, 26, 0x6680); |
| dib3000mc_write_word(state, 29, 0x1273); |
| dib3000mc_write_word(state, 33, 5); |
| dib3000mc_set_adp_cfg(state, QAM_16); |
| dib3000mc_write_word(state, 133, 15564); |
| |
| dib3000mc_write_word(state, 12 , 0x0); |
| dib3000mc_write_word(state, 13 , 0x3e8); |
| dib3000mc_write_word(state, 14 , 0x0); |
| dib3000mc_write_word(state, 15 , 0x3f2); |
| |
| dib3000mc_write_word(state, 93,0); |
| dib3000mc_write_word(state, 94,0); |
| dib3000mc_write_word(state, 95,0); |
| dib3000mc_write_word(state, 96,0); |
| dib3000mc_write_word(state, 97,0); |
| dib3000mc_write_word(state, 98,0); |
| |
| dib3000mc_set_impulse_noise(state, 0, ch->u.ofdm.transmission_mode); |
| |
| value = 0; |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: value |= (0 << 7); break; |
| default: |
| case TRANSMISSION_MODE_8K: value |= (1 << 7); break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_32: value |= (0 << 5); break; |
| case GUARD_INTERVAL_1_16: value |= (1 << 5); break; |
| case GUARD_INTERVAL_1_4: value |= (3 << 5); break; |
| default: |
| case GUARD_INTERVAL_1_8: value |= (2 << 5); break; |
| } |
| switch (ch->u.ofdm.constellation) { |
| case QPSK: value |= (0 << 3); break; |
| case QAM_16: value |= (1 << 3); break; |
| default: |
| case QAM_64: value |= (2 << 3); break; |
| } |
| switch (HIERARCHY_1) { |
| case HIERARCHY_2: value |= 2; break; |
| case HIERARCHY_4: value |= 4; break; |
| default: |
| case HIERARCHY_1: value |= 1; break; |
| } |
| dib3000mc_write_word(state, 0, value); |
| dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4)); |
| |
| value = 0; |
| if (ch->u.ofdm.hierarchy_information == 1) |
| value |= (1 << 4); |
| if (1 == 1) |
| value |= 1; |
| switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { |
| case FEC_2_3: value |= (2 << 1); break; |
| case FEC_3_4: value |= (3 << 1); break; |
| case FEC_5_6: value |= (5 << 1); break; |
| case FEC_7_8: value |= (7 << 1); break; |
| default: |
| case FEC_1_2: value |= (1 << 1); break; |
| } |
| dib3000mc_write_word(state, 181, value); |
| |
| // diversity synchro delay add 50% SFN margin |
| switch (ch->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_8K: value = 256; break; |
| case TRANSMISSION_MODE_2K: |
| default: value = 64; break; |
| } |
| switch (ch->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_16: value *= 2; break; |
| case GUARD_INTERVAL_1_8: value *= 4; break; |
| case GUARD_INTERVAL_1_4: value *= 8; break; |
| default: |
| case GUARD_INTERVAL_1_32: value *= 1; break; |
| } |
| value <<= 4; |
| value |= dib3000mc_read_word(state, 180) & 0x000f; |
| dib3000mc_write_word(state, 180, value); |
| |
| // restart demod |
| value = dib3000mc_read_word(state, 0); |
| dib3000mc_write_word(state, 0, value | (1 << 9)); |
| dib3000mc_write_word(state, 0, value); |
| |
| msleep(30); |
| |
| dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->u.ofdm.transmission_mode); |
| } |
| |
| static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *chan) |
| { |
| struct dib3000mc_state *state = demod->demodulator_priv; |
| u16 reg; |
| // u32 val; |
| struct dvb_frontend_parameters schan; |
| |
| schan = *chan; |
| |
| /* TODO what is that ? */ |
| |
| /* a channel for autosearch */ |
| schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; |
| schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; |
| schan.u.ofdm.constellation = QAM_64; |
| schan.u.ofdm.code_rate_HP = FEC_2_3; |
| schan.u.ofdm.code_rate_LP = FEC_2_3; |
| schan.u.ofdm.hierarchy_information = 0; |
| |
| dib3000mc_set_channel_cfg(state, &schan, 11); |
| |
| reg = dib3000mc_read_word(state, 0); |
| dib3000mc_write_word(state, 0, reg | (1 << 8)); |
| dib3000mc_read_word(state, 511); |
| dib3000mc_write_word(state, 0, reg); |
| |
| return 0; |
| } |
| |
| static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod) |
| { |
| struct dib3000mc_state *state = demod->demodulator_priv; |
| u16 irq_pending = dib3000mc_read_word(state, 511); |
| |
| if (irq_pending & 0x1) // failed |
| return 1; |
| |
| if (irq_pending & 0x2) // succeeded |
| return 2; |
| |
| return 0; // still pending |
| } |
| |
| static int dib3000mc_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) |
| { |
| struct dib3000mc_state *state = demod->demodulator_priv; |
| |
| // ** configure demod ** |
| dib3000mc_set_channel_cfg(state, ch, 0); |
| |
| // activates isi |
| if (state->sfn_workaround_active) { |
| dprintk("SFN workaround is active\n"); |
| dib3000mc_write_word(state, 29, 0x1273); |
| dib3000mc_write_word(state, 108, 0x4000); // P_pha3_force_pha_shift |
| } else { |
| dib3000mc_write_word(state, 29, 0x1073); |
| dib3000mc_write_word(state, 108, 0x0000); // P_pha3_force_pha_shift |
| } |
| |
| dib3000mc_set_adp_cfg(state, (u8)ch->u.ofdm.constellation); |
| if (ch->u.ofdm.transmission_mode == TRANSMISSION_MODE_8K) { |
| dib3000mc_write_word(state, 26, 38528); |
| dib3000mc_write_word(state, 33, 8); |
| } else { |
| dib3000mc_write_word(state, 26, 30336); |
| dib3000mc_write_word(state, 33, 6); |
| } |
| |
| if (dib3000mc_read_word(state, 509) & 0x80) |
| dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 1); |
| |
| return 0; |
| } |
| |
| struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating) |
| { |
| struct dib3000mc_state *st = demod->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating); |
| } |
| |
| EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master); |
| |
| static int dib3000mc_get_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| u16 tps = dib3000mc_read_word(state,458); |
| |
| fep->inversion = INVERSION_AUTO; |
| |
| fep->u.ofdm.bandwidth = state->current_bandwidth; |
| |
| switch ((tps >> 8) & 0x1) { |
| case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; |
| case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; |
| } |
| |
| switch (tps & 0x3) { |
| case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; |
| case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; |
| case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; |
| case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; |
| } |
| |
| switch ((tps >> 13) & 0x3) { |
| case 0: fep->u.ofdm.constellation = QPSK; break; |
| case 1: fep->u.ofdm.constellation = QAM_16; break; |
| case 2: |
| default: fep->u.ofdm.constellation = QAM_64; break; |
| } |
| |
| /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ |
| /* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */ |
| |
| fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; |
| switch ((tps >> 5) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; |
| |
| } |
| |
| switch ((tps >> 2) & 0x7) { |
| case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; |
| case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; |
| case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; |
| case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; |
| case 7: |
| default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; |
| } |
| |
| return 0; |
| } |
| |
| static int dib3000mc_set_frontend(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fep) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| int ret; |
| |
| dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z); |
| |
| state->current_bandwidth = fep->u.ofdm.bandwidth; |
| dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth)); |
| |
| /* maybe the parameter has been changed */ |
| state->sfn_workaround_active = buggy_sfn_workaround; |
| |
| if (fe->ops.tuner_ops.set_params) { |
| fe->ops.tuner_ops.set_params(fe, fep); |
| msleep(100); |
| } |
| |
| if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || |
| fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || |
| fep->u.ofdm.constellation == QAM_AUTO || |
| fep->u.ofdm.code_rate_HP == FEC_AUTO) { |
| int i = 1000, found; |
| |
| dib3000mc_autosearch_start(fe, fep); |
| do { |
| msleep(1); |
| found = dib3000mc_autosearch_is_irq(fe); |
| } while (found == 0 && i--); |
| |
| dprintk("autosearch returns: %d\n",found); |
| if (found == 0 || found == 1) |
| return 0; // no channel found |
| |
| dib3000mc_get_frontend(fe, fep); |
| } |
| |
| ret = dib3000mc_tune(fe, fep); |
| |
| /* make this a config parameter */ |
| dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO); |
| return ret; |
| } |
| |
| static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| u16 lock = dib3000mc_read_word(state, 509); |
| |
| *stat = 0; |
| |
| if (lock & 0x8000) |
| *stat |= FE_HAS_SIGNAL; |
| if (lock & 0x3000) |
| *stat |= FE_HAS_CARRIER; |
| if (lock & 0x0100) |
| *stat |= FE_HAS_VITERBI; |
| if (lock & 0x0010) |
| *stat |= FE_HAS_SYNC; |
| if (lock & 0x0008) |
| *stat |= FE_HAS_LOCK; |
| |
| return 0; |
| } |
| |
| static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| *ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501); |
| return 0; |
| } |
| |
| static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| *unc = dib3000mc_read_word(state, 508); |
| return 0; |
| } |
| |
| static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| u16 val = dib3000mc_read_word(state, 392); |
| *strength = 65535 - val; |
| return 0; |
| } |
| |
| static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr) |
| { |
| *snr = 0x0000; |
| return 0; |
| } |
| |
| static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| return 0; |
| } |
| |
| static void dib3000mc_release(struct dvb_frontend *fe) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| dibx000_exit_i2c_master(&state->i2c_master); |
| kfree(state); |
| } |
| |
| int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| dib3000mc_write_word(state, 212 + index, onoff ? (1 << 13) | pid : 0); |
| return 0; |
| } |
| EXPORT_SYMBOL(dib3000mc_pid_control); |
| |
| int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4); |
| tmp |= (onoff << 4); |
| return dib3000mc_write_word(state, 206, tmp); |
| } |
| EXPORT_SYMBOL(dib3000mc_pid_parse); |
| |
| void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg) |
| { |
| struct dib3000mc_state *state = fe->demodulator_priv; |
| state->cfg = cfg; |
| } |
| EXPORT_SYMBOL(dib3000mc_set_config); |
| |
| int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[]) |
| { |
| struct dib3000mc_state st = { .i2c_adap = i2c }; |
| int k; |
| u8 new_addr; |
| |
| static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26}; |
| |
| for (k = no_of_demods-1; k >= 0; k--) { |
| st.cfg = &cfg[k]; |
| |
| /* designated i2c address */ |
| new_addr = DIB3000MC_I2C_ADDRESS[k]; |
| st.i2c_addr = new_addr; |
| if (dib3000mc_identify(&st) != 0) { |
| st.i2c_addr = default_addr; |
| if (dib3000mc_identify(&st) != 0) { |
| dprintk("-E- DiB3000P/MC #%d: not identified\n", k); |
| return -ENODEV; |
| } |
| } |
| |
| dib3000mc_set_output_mode(&st, OUTMODE_MPEG2_PAR_CONT_CLK); |
| |
| // set new i2c address and force divstr (Bit 1) to value 0 (Bit 0) |
| dib3000mc_write_word(&st, 1024, (new_addr << 3) | 0x1); |
| st.i2c_addr = new_addr; |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| st.cfg = &cfg[k]; |
| st.i2c_addr = DIB3000MC_I2C_ADDRESS[k]; |
| |
| dib3000mc_write_word(&st, 1024, st.i2c_addr << 3); |
| |
| /* turn off data output */ |
| dib3000mc_set_output_mode(&st, OUTMODE_HIGH_Z); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(dib3000mc_i2c_enumeration); |
| |
| static struct dvb_frontend_ops dib3000mc_ops; |
| |
| struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg) |
| { |
| struct dvb_frontend *demod; |
| struct dib3000mc_state *st; |
| st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| |
| st->cfg = cfg; |
| st->i2c_adap = i2c_adap; |
| st->i2c_addr = i2c_addr; |
| |
| demod = &st->demod; |
| demod->demodulator_priv = st; |
| memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops)); |
| |
| if (dib3000mc_identify(st) != 0) |
| goto error; |
| |
| dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr); |
| |
| dib3000mc_write_word(st, 1037, 0x3130); |
| |
| return demod; |
| |
| error: |
| kfree(st); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dib3000mc_attach); |
| |
| static struct dvb_frontend_ops dib3000mc_ops = { |
| .info = { |
| .name = "DiBcom 3000MC/P", |
| .type = FE_OFDM, |
| .frequency_min = 44250000, |
| .frequency_max = 867250000, |
| .frequency_stepsize = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | |
| FE_CAN_GUARD_INTERVAL_AUTO | |
| FE_CAN_RECOVER | |
| FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib3000mc_release, |
| |
| .init = dib3000mc_init, |
| .sleep = dib3000mc_sleep, |
| |
| .set_frontend = dib3000mc_set_frontend, |
| .get_tune_settings = dib3000mc_fe_get_tune_settings, |
| .get_frontend = dib3000mc_get_frontend, |
| |
| .read_status = dib3000mc_read_status, |
| .read_ber = dib3000mc_read_ber, |
| .read_signal_strength = dib3000mc_read_signal_strength, |
| .read_snr = dib3000mc_read_snr, |
| .read_ucblocks = dib3000mc_read_unc_blocks, |
| }; |
| |
| MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator"); |
| MODULE_LICENSE("GPL"); |