| /****************************************************************************** |
| |
| Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. |
| |
| 802.11 status code portion of this file from ethereal-0.10.6: |
| Copyright 2000, Axis Communications AB |
| Ethereal - Network traffic analyzer |
| By Gerald Combs <gerald@ethereal.com> |
| Copyright 1998 Gerald Combs |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms of version 2 of the GNU General Public License as |
| published by the Free Software Foundation. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., 59 |
| Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| The full GNU General Public License is included in this distribution in the |
| file called LICENSE. |
| |
| Contact Information: |
| James P. Ketrenos <ipw2100-admin@linux.intel.com> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| ******************************************************************************/ |
| |
| #include "ipw2200.h" |
| |
| #define IPW2200_VERSION "1.0.0" |
| #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" |
| #define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation" |
| #define DRV_VERSION IPW2200_VERSION |
| |
| MODULE_DESCRIPTION(DRV_DESCRIPTION); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_AUTHOR(DRV_COPYRIGHT); |
| MODULE_LICENSE("GPL"); |
| |
| static int debug = 0; |
| static int channel = 0; |
| static char *ifname; |
| static int mode = 0; |
| |
| static u32 ipw_debug_level; |
| static int associate = 1; |
| static int auto_create = 1; |
| static int disable = 0; |
| static const char ipw_modes[] = { |
| 'a', 'b', 'g', '?' |
| }; |
| |
| static void ipw_rx(struct ipw_priv *priv); |
| static int ipw_queue_tx_reclaim(struct ipw_priv *priv, |
| struct clx2_tx_queue *txq, int qindex); |
| static int ipw_queue_reset(struct ipw_priv *priv); |
| |
| static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, |
| int len, int sync); |
| |
| static void ipw_tx_queue_free(struct ipw_priv *); |
| |
| static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); |
| static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); |
| static void ipw_rx_queue_replenish(void *); |
| |
| static int ipw_up(struct ipw_priv *); |
| static void ipw_down(struct ipw_priv *); |
| static int ipw_config(struct ipw_priv *); |
| static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *prates); |
| |
| static u8 band_b_active_channel[MAX_B_CHANNELS] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0 |
| }; |
| static u8 band_a_active_channel[MAX_A_CHANNELS] = { |
| 36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0 |
| }; |
| |
| static int is_valid_channel(int mode_mask, int channel) |
| { |
| int i; |
| |
| if (!channel) |
| return 0; |
| |
| if (mode_mask & IEEE_A) |
| for (i = 0; i < MAX_A_CHANNELS; i++) |
| if (band_a_active_channel[i] == channel) |
| return IEEE_A; |
| |
| if (mode_mask & (IEEE_B | IEEE_G)) |
| for (i = 0; i < MAX_B_CHANNELS; i++) |
| if (band_b_active_channel[i] == channel) |
| return mode_mask & (IEEE_B | IEEE_G); |
| |
| return 0; |
| } |
| |
| static char *snprint_line(char *buf, size_t count, |
| const u8 *data, u32 len, u32 ofs) |
| { |
| int out, i, j, l; |
| char c; |
| |
| out = snprintf(buf, count, "%08X", ofs); |
| |
| for (l = 0, i = 0; i < 2; i++) { |
| out += snprintf(buf + out, count - out, " "); |
| for (j = 0; j < 8 && l < len; j++, l++) |
| out += snprintf(buf + out, count - out, "%02X ", |
| data[(i * 8 + j)]); |
| for (; j < 8; j++) |
| out += snprintf(buf + out, count - out, " "); |
| } |
| |
| out += snprintf(buf + out, count - out, " "); |
| for (l = 0, i = 0; i < 2; i++) { |
| out += snprintf(buf + out, count - out, " "); |
| for (j = 0; j < 8 && l < len; j++, l++) { |
| c = data[(i * 8 + j)]; |
| if (!isascii(c) || !isprint(c)) |
| c = '.'; |
| |
| out += snprintf(buf + out, count - out, "%c", c); |
| } |
| |
| for (; j < 8; j++) |
| out += snprintf(buf + out, count - out, " "); |
| } |
| |
| return buf; |
| } |
| |
| static void printk_buf(int level, const u8 *data, u32 len) |
| { |
| char line[81]; |
| u32 ofs = 0; |
| if (!(ipw_debug_level & level)) |
| return; |
| |
| while (len) { |
| printk(KERN_DEBUG "%s\n", |
| snprint_line(line, sizeof(line), &data[ofs], |
| min(len, 16U), ofs)); |
| ofs += 16; |
| len -= min(len, 16U); |
| } |
| } |
| |
| static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); |
| #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) |
| |
| static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); |
| #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) |
| |
| static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); |
| static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) |
| { |
| IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); |
| _ipw_write_reg8(a, b, c); |
| } |
| |
| static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); |
| static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) |
| { |
| IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); |
| _ipw_write_reg16(a, b, c); |
| } |
| |
| static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); |
| static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) |
| { |
| IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); |
| _ipw_write_reg32(a, b, c); |
| } |
| |
| #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs)) |
| #define ipw_write8(ipw, ofs, val) \ |
| IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ |
| _ipw_write8(ipw, ofs, val) |
| |
| #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs)) |
| #define ipw_write16(ipw, ofs, val) \ |
| IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ |
| _ipw_write16(ipw, ofs, val) |
| |
| #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs)) |
| #define ipw_write32(ipw, ofs, val) \ |
| IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ |
| _ipw_write32(ipw, ofs, val) |
| |
| #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs)) |
| static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { |
| IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32)(ofs)); |
| return _ipw_read8(ipw, ofs); |
| } |
| #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs) |
| |
| #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs)) |
| static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { |
| IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32)(ofs)); |
| return _ipw_read16(ipw, ofs); |
| } |
| #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs) |
| |
| #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs)) |
| static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { |
| IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32)(ofs)); |
| return _ipw_read32(ipw, ofs); |
| } |
| #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs) |
| |
| static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); |
| #define ipw_read_indirect(a, b, c, d) \ |
| IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \ |
| _ipw_read_indirect(a, b, c, d) |
| |
| static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *data, int num); |
| #define ipw_write_indirect(a, b, c, d) \ |
| IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \ |
| _ipw_write_indirect(a, b, c, d) |
| |
| /* indirect write s */ |
| static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, |
| u32 value) |
| { |
| IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", |
| priv, reg, value); |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, reg); |
| _ipw_write32(priv, CX2_INDIRECT_DATA, value); |
| } |
| |
| |
| static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) |
| { |
| IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); |
| _ipw_write8(priv, CX2_INDIRECT_DATA, value); |
| IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n", |
| (unsigned long)(priv->hw_base + CX2_INDIRECT_DATA), |
| value); |
| } |
| |
| static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, |
| u16 value) |
| { |
| IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); |
| _ipw_write16(priv, CX2_INDIRECT_DATA, value); |
| } |
| |
| /* indirect read s */ |
| |
| static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) |
| { |
| u32 word; |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); |
| IPW_DEBUG_IO(" reg = 0x%8X : \n", reg); |
| word = _ipw_read32(priv, CX2_INDIRECT_DATA); |
| return (word >> ((reg & 0x3)*8)) & 0xff; |
| } |
| |
| static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) |
| { |
| u32 value; |
| |
| IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); |
| |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, reg); |
| value = _ipw_read32(priv, CX2_INDIRECT_DATA); |
| IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value); |
| return value; |
| } |
| |
| /* iterative/auto-increment 32 bit reads and writes */ |
| static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, |
| int num) |
| { |
| u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK; |
| u32 dif_len = addr - aligned_addr; |
| u32 aligned_len; |
| u32 i; |
| |
| IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); |
| |
| /* Read the first nibble byte by byte */ |
| if (unlikely(dif_len)) { |
| /* Start reading at aligned_addr + dif_len */ |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); |
| for (i = dif_len; i < 4; i++, buf++) |
| *buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i); |
| num -= dif_len; |
| aligned_addr += 4; |
| } |
| |
| /* Read DWs through autoinc register */ |
| _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr); |
| aligned_len = num & CX2_INDIRECT_ADDR_MASK; |
| for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) |
| *(u32*)buf = ipw_read32(priv, CX2_AUTOINC_DATA); |
| |
| /* Copy the last nibble */ |
| dif_len = num - aligned_len; |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); |
| for (i = 0; i < dif_len; i++, buf++) |
| *buf = ipw_read8(priv, CX2_INDIRECT_DATA + i); |
| } |
| |
| static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *buf, |
| int num) |
| { |
| u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK; |
| u32 dif_len = addr - aligned_addr; |
| u32 aligned_len; |
| u32 i; |
| |
| IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); |
| |
| /* Write the first nibble byte by byte */ |
| if (unlikely(dif_len)) { |
| /* Start writing at aligned_addr + dif_len */ |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); |
| for (i = dif_len; i < 4; i++, buf++) |
| _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf); |
| num -= dif_len; |
| aligned_addr += 4; |
| } |
| |
| /* Write DWs through autoinc register */ |
| _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr); |
| aligned_len = num & CX2_INDIRECT_ADDR_MASK; |
| for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) |
| _ipw_write32(priv, CX2_AUTOINC_DATA, *(u32*)buf); |
| |
| /* Copy the last nibble */ |
| dif_len = num - aligned_len; |
| _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); |
| for (i = 0; i < dif_len; i++, buf++) |
| _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf); |
| } |
| |
| static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, |
| int num) |
| { |
| memcpy_toio((priv->hw_base + addr), buf, num); |
| } |
| |
| static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) |
| { |
| ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); |
| } |
| |
| static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) |
| { |
| ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); |
| } |
| |
| static inline void ipw_enable_interrupts(struct ipw_priv *priv) |
| { |
| if (priv->status & STATUS_INT_ENABLED) |
| return; |
| priv->status |= STATUS_INT_ENABLED; |
| ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL); |
| } |
| |
| static inline void ipw_disable_interrupts(struct ipw_priv *priv) |
| { |
| if (!(priv->status & STATUS_INT_ENABLED)) |
| return; |
| priv->status &= ~STATUS_INT_ENABLED; |
| ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); |
| } |
| |
| static char *ipw_error_desc(u32 val) |
| { |
| switch (val) { |
| case IPW_FW_ERROR_OK: |
| return "ERROR_OK"; |
| case IPW_FW_ERROR_FAIL: |
| return "ERROR_FAIL"; |
| case IPW_FW_ERROR_MEMORY_UNDERFLOW: |
| return "MEMORY_UNDERFLOW"; |
| case IPW_FW_ERROR_MEMORY_OVERFLOW: |
| return "MEMORY_OVERFLOW"; |
| case IPW_FW_ERROR_BAD_PARAM: |
| return "ERROR_BAD_PARAM"; |
| case IPW_FW_ERROR_BAD_CHECKSUM: |
| return "ERROR_BAD_CHECKSUM"; |
| case IPW_FW_ERROR_NMI_INTERRUPT: |
| return "ERROR_NMI_INTERRUPT"; |
| case IPW_FW_ERROR_BAD_DATABASE: |
| return "ERROR_BAD_DATABASE"; |
| case IPW_FW_ERROR_ALLOC_FAIL: |
| return "ERROR_ALLOC_FAIL"; |
| case IPW_FW_ERROR_DMA_UNDERRUN: |
| return "ERROR_DMA_UNDERRUN"; |
| case IPW_FW_ERROR_DMA_STATUS: |
| return "ERROR_DMA_STATUS"; |
| case IPW_FW_ERROR_DINOSTATUS_ERROR: |
| return "ERROR_DINOSTATUS_ERROR"; |
| case IPW_FW_ERROR_EEPROMSTATUS_ERROR: |
| return "ERROR_EEPROMSTATUS_ERROR"; |
| case IPW_FW_ERROR_SYSASSERT: |
| return "ERROR_SYSASSERT"; |
| case IPW_FW_ERROR_FATAL_ERROR: |
| return "ERROR_FATALSTATUS_ERROR"; |
| default: |
| return "UNKNOWNSTATUS_ERROR"; |
| } |
| } |
| |
| static void ipw_dump_nic_error_log(struct ipw_priv *priv) |
| { |
| u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base; |
| |
| base = ipw_read32(priv, IPWSTATUS_ERROR_LOG); |
| count = ipw_read_reg32(priv, base); |
| |
| if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) { |
| IPW_ERROR("Start IPW Error Log Dump:\n"); |
| IPW_ERROR("Status: 0x%08X, Config: %08X\n", |
| priv->status, priv->config); |
| } |
| |
| for (i = ERROR_START_OFFSET; |
| i <= count * ERROR_ELEM_SIZE; |
| i += ERROR_ELEM_SIZE) { |
| desc = ipw_read_reg32(priv, base + i); |
| time = ipw_read_reg32(priv, base + i + 1*sizeof(u32)); |
| blink1 = ipw_read_reg32(priv, base + i + 2*sizeof(u32)); |
| blink2 = ipw_read_reg32(priv, base + i + 3*sizeof(u32)); |
| ilink1 = ipw_read_reg32(priv, base + i + 4*sizeof(u32)); |
| ilink2 = ipw_read_reg32(priv, base + i + 5*sizeof(u32)); |
| idata = ipw_read_reg32(priv, base + i + 6*sizeof(u32)); |
| |
| IPW_ERROR( |
| "%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| ipw_error_desc(desc), time, blink1, blink2, |
| ilink1, ilink2, idata); |
| } |
| } |
| |
| static void ipw_dump_nic_event_log(struct ipw_priv *priv) |
| { |
| u32 ev, time, data, i, count, base; |
| |
| base = ipw_read32(priv, IPW_EVENT_LOG); |
| count = ipw_read_reg32(priv, base); |
| |
| if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE) |
| IPW_ERROR("Start IPW Event Log Dump:\n"); |
| |
| for (i = EVENT_START_OFFSET; |
| i <= count * EVENT_ELEM_SIZE; |
| i += EVENT_ELEM_SIZE) { |
| ev = ipw_read_reg32(priv, base + i); |
| time = ipw_read_reg32(priv, base + i + 1*sizeof(u32)); |
| data = ipw_read_reg32(priv, base + i + 2*sizeof(u32)); |
| |
| #ifdef CONFIG_IPW_DEBUG |
| IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev); |
| #endif |
| } |
| } |
| |
| static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, |
| u32 *len) |
| { |
| u32 addr, field_info, field_len, field_count, total_len; |
| |
| IPW_DEBUG_ORD("ordinal = %i\n", ord); |
| |
| if (!priv || !val || !len) { |
| IPW_DEBUG_ORD("Invalid argument\n"); |
| return -EINVAL; |
| } |
| |
| /* verify device ordinal tables have been initialized */ |
| if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { |
| IPW_DEBUG_ORD("Access ordinals before initialization\n"); |
| return -EINVAL; |
| } |
| |
| switch (IPW_ORD_TABLE_ID_MASK & ord) { |
| case IPW_ORD_TABLE_0_MASK: |
| /* |
| * TABLE 0: Direct access to a table of 32 bit values |
| * |
| * This is a very simple table with the data directly |
| * read from the table |
| */ |
| |
| /* remove the table id from the ordinal */ |
| ord &= IPW_ORD_TABLE_VALUE_MASK; |
| |
| /* boundary check */ |
| if (ord > priv->table0_len) { |
| IPW_DEBUG_ORD("ordinal value (%i) longer then " |
| "max (%i)\n", ord, priv->table0_len); |
| return -EINVAL; |
| } |
| |
| /* verify we have enough room to store the value */ |
| if (*len < sizeof(u32)) { |
| IPW_DEBUG_ORD("ordinal buffer length too small, " |
| "need %zd\n", sizeof(u32)); |
| return -EINVAL; |
| } |
| |
| IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", |
| ord, priv->table0_addr + (ord << 2)); |
| |
| *len = sizeof(u32); |
| ord <<= 2; |
| *((u32 *)val) = ipw_read32(priv, priv->table0_addr + ord); |
| break; |
| |
| case IPW_ORD_TABLE_1_MASK: |
| /* |
| * TABLE 1: Indirect access to a table of 32 bit values |
| * |
| * This is a fairly large table of u32 values each |
| * representing starting addr for the data (which is |
| * also a u32) |
| */ |
| |
| /* remove the table id from the ordinal */ |
| ord &= IPW_ORD_TABLE_VALUE_MASK; |
| |
| /* boundary check */ |
| if (ord > priv->table1_len) { |
| IPW_DEBUG_ORD("ordinal value too long\n"); |
| return -EINVAL; |
| } |
| |
| /* verify we have enough room to store the value */ |
| if (*len < sizeof(u32)) { |
| IPW_DEBUG_ORD("ordinal buffer length too small, " |
| "need %zd\n", sizeof(u32)); |
| return -EINVAL; |
| } |
| |
| *((u32 *)val) = ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); |
| *len = sizeof(u32); |
| break; |
| |
| case IPW_ORD_TABLE_2_MASK: |
| /* |
| * TABLE 2: Indirect access to a table of variable sized values |
| * |
| * This table consist of six values, each containing |
| * - dword containing the starting offset of the data |
| * - dword containing the lengh in the first 16bits |
| * and the count in the second 16bits |
| */ |
| |
| /* remove the table id from the ordinal */ |
| ord &= IPW_ORD_TABLE_VALUE_MASK; |
| |
| /* boundary check */ |
| if (ord > priv->table2_len) { |
| IPW_DEBUG_ORD("ordinal value too long\n"); |
| return -EINVAL; |
| } |
| |
| /* get the address of statistic */ |
| addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); |
| |
| /* get the second DW of statistics ; |
| * two 16-bit words - first is length, second is count */ |
| field_info = ipw_read_reg32(priv, priv->table2_addr + (ord << 3) + sizeof(u32)); |
| |
| /* get each entry length */ |
| field_len = *((u16 *)&field_info); |
| |
| /* get number of entries */ |
| field_count = *(((u16 *)&field_info) + 1); |
| |
| /* abort if not enought memory */ |
| total_len = field_len * field_count; |
| if (total_len > *len) { |
| *len = total_len; |
| return -EINVAL; |
| } |
| |
| *len = total_len; |
| if (!total_len) |
| return 0; |
| |
| IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " |
| "field_info = 0x%08x\n", |
| addr, total_len, field_info); |
| ipw_read_indirect(priv, addr, val, total_len); |
| break; |
| |
| default: |
| IPW_DEBUG_ORD("Invalid ordinal!\n"); |
| return -EINVAL; |
| |
| } |
| |
| |
| return 0; |
| } |
| |
| static void ipw_init_ordinals(struct ipw_priv *priv) |
| { |
| priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; |
| priv->table0_len = ipw_read32(priv, priv->table0_addr); |
| |
| IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", |
| priv->table0_addr, priv->table0_len); |
| |
| priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); |
| priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); |
| |
| IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", |
| priv->table1_addr, priv->table1_len); |
| |
| priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); |
| priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); |
| priv->table2_len &= 0x0000ffff; /* use first two bytes */ |
| |
| IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", |
| priv->table2_addr, priv->table2_len); |
| |
| } |
| |
| /* |
| * The following adds a new attribute to the sysfs representation |
| * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) |
| * used for controling the debug level. |
| * |
| * See the level definitions in ipw for details. |
| */ |
| static ssize_t show_debug_level(struct device_driver *d, char *buf) |
| { |
| return sprintf(buf, "0x%08X\n", ipw_debug_level); |
| } |
| static ssize_t store_debug_level(struct device_driver *d, |
| const char *buf, size_t count) |
| { |
| char *p = (char *)buf; |
| u32 val; |
| |
| if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { |
| p++; |
| if (p[0] == 'x' || p[0] == 'X') |
| p++; |
| val = simple_strtoul(p, &p, 16); |
| } else |
| val = simple_strtoul(p, &p, 10); |
| if (p == buf) |
| printk(KERN_INFO DRV_NAME |
| ": %s is not in hex or decimal form.\n", buf); |
| else |
| ipw_debug_level = val; |
| |
| return strnlen(buf, count); |
| } |
| |
| static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, |
| show_debug_level, store_debug_level); |
| |
| static ssize_t show_status(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ipw_priv *p = d->driver_data; |
| return sprintf(buf, "0x%08x\n", (int)p->status); |
| } |
| static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); |
| |
| static ssize_t show_cfg(struct device *d, struct device_attribute *attr, |
| char *buf) |
| { |
| struct ipw_priv *p = d->driver_data; |
| return sprintf(buf, "0x%08x\n", (int)p->config); |
| } |
| static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL); |
| |
| static ssize_t show_nic_type(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| struct ipw_priv *p = d->driver_data; |
| u8 type = p->eeprom[EEPROM_NIC_TYPE]; |
| |
| switch (type) { |
| case EEPROM_NIC_TYPE_STANDARD: |
| return sprintf(buf, "STANDARD\n"); |
| case EEPROM_NIC_TYPE_DELL: |
| return sprintf(buf, "DELL\n"); |
| case EEPROM_NIC_TYPE_FUJITSU: |
| return sprintf(buf, "FUJITSU\n"); |
| case EEPROM_NIC_TYPE_IBM: |
| return sprintf(buf, "IBM\n"); |
| case EEPROM_NIC_TYPE_HP: |
| return sprintf(buf, "HP\n"); |
| } |
| |
| return sprintf(buf, "UNKNOWN\n"); |
| } |
| static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL); |
| |
| static ssize_t dump_error_log(struct device *d, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| char *p = (char *)buf; |
| |
| if (p[0] == '1') |
| ipw_dump_nic_error_log((struct ipw_priv*)d->driver_data); |
| |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log); |
| |
| static ssize_t dump_event_log(struct device *d, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| char *p = (char *)buf; |
| |
| if (p[0] == '1') |
| ipw_dump_nic_event_log((struct ipw_priv*)d->driver_data); |
| |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log); |
| |
| static ssize_t show_ucode_version(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 len = sizeof(u32), tmp = 0; |
| struct ipw_priv *p = d->driver_data; |
| |
| if(ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) |
| return 0; |
| |
| return sprintf(buf, "0x%08x\n", tmp); |
| } |
| static DEVICE_ATTR(ucode_version, S_IWUSR|S_IRUGO, show_ucode_version, NULL); |
| |
| static ssize_t show_rtc(struct device *d, struct device_attribute *attr, |
| char *buf) |
| { |
| u32 len = sizeof(u32), tmp = 0; |
| struct ipw_priv *p = d->driver_data; |
| |
| if(ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) |
| return 0; |
| |
| return sprintf(buf, "0x%08x\n", tmp); |
| } |
| static DEVICE_ATTR(rtc, S_IWUSR|S_IRUGO, show_rtc, NULL); |
| |
| /* |
| * Add a device attribute to view/control the delay between eeprom |
| * operations. |
| */ |
| static ssize_t show_eeprom_delay(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| int n = ((struct ipw_priv*)d->driver_data)->eeprom_delay; |
| return sprintf(buf, "%i\n", n); |
| } |
| static ssize_t store_eeprom_delay(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct ipw_priv *p = d->driver_data; |
| sscanf(buf, "%i", &p->eeprom_delay); |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(eeprom_delay, S_IWUSR|S_IRUGO, |
| show_eeprom_delay,store_eeprom_delay); |
| |
| static ssize_t show_command_event_reg(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 reg = 0; |
| struct ipw_priv *p = d->driver_data; |
| |
| reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT); |
| return sprintf(buf, "0x%08x\n", reg); |
| } |
| static ssize_t store_command_event_reg(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| u32 reg; |
| struct ipw_priv *p = d->driver_data; |
| |
| sscanf(buf, "%x", ®); |
| ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg); |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(command_event_reg, S_IWUSR|S_IRUGO, |
| show_command_event_reg,store_command_event_reg); |
| |
| static ssize_t show_mem_gpio_reg(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 reg = 0; |
| struct ipw_priv *p = d->driver_data; |
| |
| reg = ipw_read_reg32(p, 0x301100); |
| return sprintf(buf, "0x%08x\n", reg); |
| } |
| static ssize_t store_mem_gpio_reg(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| u32 reg; |
| struct ipw_priv *p = d->driver_data; |
| |
| sscanf(buf, "%x", ®); |
| ipw_write_reg32(p, 0x301100, reg); |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(mem_gpio_reg, S_IWUSR|S_IRUGO, |
| show_mem_gpio_reg,store_mem_gpio_reg); |
| |
| static ssize_t show_indirect_dword(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 reg = 0; |
| struct ipw_priv *priv = d->driver_data; |
| if (priv->status & STATUS_INDIRECT_DWORD) |
| reg = ipw_read_reg32(priv, priv->indirect_dword); |
| else |
| reg = 0; |
| |
| return sprintf(buf, "0x%08x\n", reg); |
| } |
| static ssize_t store_indirect_dword(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct ipw_priv *priv = d->driver_data; |
| |
| sscanf(buf, "%x", &priv->indirect_dword); |
| priv->status |= STATUS_INDIRECT_DWORD; |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(indirect_dword, S_IWUSR|S_IRUGO, |
| show_indirect_dword,store_indirect_dword); |
| |
| static ssize_t show_indirect_byte(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u8 reg = 0; |
| struct ipw_priv *priv = d->driver_data; |
| if (priv->status & STATUS_INDIRECT_BYTE) |
| reg = ipw_read_reg8(priv, priv->indirect_byte); |
| else |
| reg = 0; |
| |
| return sprintf(buf, "0x%02x\n", reg); |
| } |
| static ssize_t store_indirect_byte(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct ipw_priv *priv = d->driver_data; |
| |
| sscanf(buf, "%x", &priv->indirect_byte); |
| priv->status |= STATUS_INDIRECT_BYTE; |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(indirect_byte, S_IWUSR|S_IRUGO, |
| show_indirect_byte, store_indirect_byte); |
| |
| static ssize_t show_direct_dword(struct device *d, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 reg = 0; |
| struct ipw_priv *priv = d->driver_data; |
| |
| if (priv->status & STATUS_DIRECT_DWORD) |
| reg = ipw_read32(priv, priv->direct_dword); |
| else |
| reg = 0; |
| |
| return sprintf(buf, "0x%08x\n", reg); |
| } |
| static ssize_t store_direct_dword(struct device *d, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct ipw_priv *priv = d->driver_data; |
| |
| sscanf(buf, "%x", &priv->direct_dword); |
| priv->status |= STATUS_DIRECT_DWORD; |
| return strnlen(buf, count); |
| } |
| static DEVICE_ATTR(direct_dword, S_IWUSR|S_IRUGO, |
| show_direct_dword,store_direct_dword); |
| |
| |
| static inline int rf_kill_active(struct ipw_priv *priv) |
| { |
| if (0 == (ipw_read32(priv, 0x30) & 0x10000)) |
| priv->status |= STATUS_RF_KILL_HW; |
| else |
| priv->status &= ~STATUS_RF_KILL_HW; |
| |
| return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; |
| } |
| |
| static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, |
| char *buf) |
| { |
| /* 0 - RF kill not enabled |
| 1 - SW based RF kill active (sysfs) |
| 2 - HW based RF kill active |
| 3 - Both HW and SW baed RF kill active */ |
| struct ipw_priv *priv = d->driver_data; |
| int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | |
| (rf_kill_active(priv) ? 0x2 : 0x0); |
| return sprintf(buf, "%i\n", val); |
| } |
| |
| static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) |
| { |
| if ((disable_radio ? 1 : 0) == |
| (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) |
| return 0 ; |
| |
| IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", |
| disable_radio ? "OFF" : "ON"); |
| |
| if (disable_radio) { |
| priv->status |= STATUS_RF_KILL_SW; |
| |
| if (priv->workqueue) { |
| cancel_delayed_work(&priv->request_scan); |
| } |
| wake_up_interruptible(&priv->wait_command_queue); |
| queue_work(priv->workqueue, &priv->down); |
| } else { |
| priv->status &= ~STATUS_RF_KILL_SW; |
| if (rf_kill_active(priv)) { |
| IPW_DEBUG_RF_KILL("Can not turn radio back on - " |
| "disabled by HW switch\n"); |
| /* Make sure the RF_KILL check timer is running */ |
| cancel_delayed_work(&priv->rf_kill); |
| queue_delayed_work(priv->workqueue, &priv->rf_kill, |
| 2 * HZ); |
| } else |
| queue_work(priv->workqueue, &priv->up); |
| } |
| |
| return 1; |
| } |
| |
| static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct ipw_priv *priv = d->driver_data; |
| |
| ipw_radio_kill_sw(priv, buf[0] == '1'); |
| |
| return count; |
| } |
| static DEVICE_ATTR(rf_kill, S_IWUSR|S_IRUGO, show_rf_kill, store_rf_kill); |
| |
| static void ipw_irq_tasklet(struct ipw_priv *priv) |
| { |
| u32 inta, inta_mask, handled = 0; |
| unsigned long flags; |
| int rc = 0; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| inta = ipw_read32(priv, CX2_INTA_RW); |
| inta_mask = ipw_read32(priv, CX2_INTA_MASK_R); |
| inta &= (CX2_INTA_MASK_ALL & inta_mask); |
| |
| /* Add any cached INTA values that need to be handled */ |
| inta |= priv->isr_inta; |
| |
| /* handle all the justifications for the interrupt */ |
| if (inta & CX2_INTA_BIT_RX_TRANSFER) { |
| ipw_rx(priv); |
| handled |= CX2_INTA_BIT_RX_TRANSFER; |
| } |
| |
| if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) { |
| IPW_DEBUG_HC("Command completed.\n"); |
| rc = ipw_queue_tx_reclaim( priv, &priv->txq_cmd, -1); |
| priv->status &= ~STATUS_HCMD_ACTIVE; |
| wake_up_interruptible(&priv->wait_command_queue); |
| handled |= CX2_INTA_BIT_TX_CMD_QUEUE; |
| } |
| |
| if (inta & CX2_INTA_BIT_TX_QUEUE_1) { |
| IPW_DEBUG_TX("TX_QUEUE_1\n"); |
| rc = ipw_queue_tx_reclaim( priv, &priv->txq[0], 0); |
| handled |= CX2_INTA_BIT_TX_QUEUE_1; |
| } |
| |
| if (inta & CX2_INTA_BIT_TX_QUEUE_2) { |
| IPW_DEBUG_TX("TX_QUEUE_2\n"); |
| rc = ipw_queue_tx_reclaim( priv, &priv->txq[1], 1); |
| handled |= CX2_INTA_BIT_TX_QUEUE_2; |
| } |
| |
| if (inta & CX2_INTA_BIT_TX_QUEUE_3) { |
| IPW_DEBUG_TX("TX_QUEUE_3\n"); |
| rc = ipw_queue_tx_reclaim( priv, &priv->txq[2], 2); |
| handled |= CX2_INTA_BIT_TX_QUEUE_3; |
| } |
| |
| if (inta & CX2_INTA_BIT_TX_QUEUE_4) { |
| IPW_DEBUG_TX("TX_QUEUE_4\n"); |
| rc = ipw_queue_tx_reclaim( priv, &priv->txq[3], 3); |
| handled |= CX2_INTA_BIT_TX_QUEUE_4; |
| } |
| |
| if (inta & CX2_INTA_BIT_STATUS_CHANGE) { |
| IPW_WARNING("STATUS_CHANGE\n"); |
| handled |= CX2_INTA_BIT_STATUS_CHANGE; |
| } |
| |
| if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) { |
| IPW_WARNING("TX_PERIOD_EXPIRED\n"); |
| handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED; |
| } |
| |
| if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { |
| IPW_WARNING("HOST_CMD_DONE\n"); |
| handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; |
| } |
| |
| if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) { |
| IPW_WARNING("FW_INITIALIZATION_DONE\n"); |
| handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE; |
| } |
| |
| if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { |
| IPW_WARNING("PHY_OFF_DONE\n"); |
| handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; |
| } |
| |
| if (inta & CX2_INTA_BIT_RF_KILL_DONE) { |
| IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); |
| priv->status |= STATUS_RF_KILL_HW; |
| wake_up_interruptible(&priv->wait_command_queue); |
| netif_carrier_off(priv->net_dev); |
| netif_stop_queue(priv->net_dev); |
| cancel_delayed_work(&priv->request_scan); |
| queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); |
| handled |= CX2_INTA_BIT_RF_KILL_DONE; |
| } |
| |
| if (inta & CX2_INTA_BIT_FATAL_ERROR) { |
| IPW_ERROR("Firmware error detected. Restarting.\n"); |
| #ifdef CONFIG_IPW_DEBUG |
| if (ipw_debug_level & IPW_DL_FW_ERRORS) { |
| ipw_dump_nic_error_log(priv); |
| ipw_dump_nic_event_log(priv); |
| } |
| #endif |
| queue_work(priv->workqueue, &priv->adapter_restart); |
| handled |= CX2_INTA_BIT_FATAL_ERROR; |
| } |
| |
| if (inta & CX2_INTA_BIT_PARITY_ERROR) { |
| IPW_ERROR("Parity error\n"); |
| handled |= CX2_INTA_BIT_PARITY_ERROR; |
| } |
| |
| if (handled != inta) { |
| IPW_ERROR("Unhandled INTA bits 0x%08x\n", |
| inta & ~handled); |
| } |
| |
| /* enable all interrupts */ |
| ipw_enable_interrupts(priv); |
| |
| spin_unlock_irqrestore(&priv->lock, flags); |
| } |
| |
| #ifdef CONFIG_IPW_DEBUG |
| #define IPW_CMD(x) case IPW_CMD_ ## x : return #x |
| static char *get_cmd_string(u8 cmd) |
| { |
| switch (cmd) { |
| IPW_CMD(HOST_COMPLETE); |
| IPW_CMD(POWER_DOWN); |
| IPW_CMD(SYSTEM_CONFIG); |
| IPW_CMD(MULTICAST_ADDRESS); |
| IPW_CMD(SSID); |
| IPW_CMD(ADAPTER_ADDRESS); |
| IPW_CMD(PORT_TYPE); |
| IPW_CMD(RTS_THRESHOLD); |
| IPW_CMD(FRAG_THRESHOLD); |
| IPW_CMD(POWER_MODE); |
| IPW_CMD(WEP_KEY); |
| IPW_CMD(TGI_TX_KEY); |
| IPW_CMD(SCAN_REQUEST); |
| IPW_CMD(SCAN_REQUEST_EXT); |
| IPW_CMD(ASSOCIATE); |
| IPW_CMD(SUPPORTED_RATES); |
| IPW_CMD(SCAN_ABORT); |
| IPW_CMD(TX_FLUSH); |
| IPW_CMD(QOS_PARAMETERS); |
| IPW_CMD(DINO_CONFIG); |
| IPW_CMD(RSN_CAPABILITIES); |
| IPW_CMD(RX_KEY); |
| IPW_CMD(CARD_DISABLE); |
| IPW_CMD(SEED_NUMBER); |
| IPW_CMD(TX_POWER); |
| IPW_CMD(COUNTRY_INFO); |
| IPW_CMD(AIRONET_INFO); |
| IPW_CMD(AP_TX_POWER); |
| IPW_CMD(CCKM_INFO); |
| IPW_CMD(CCX_VER_INFO); |
| IPW_CMD(SET_CALIBRATION); |
| IPW_CMD(SENSITIVITY_CALIB); |
| IPW_CMD(RETRY_LIMIT); |
| IPW_CMD(IPW_PRE_POWER_DOWN); |
| IPW_CMD(VAP_BEACON_TEMPLATE); |
| IPW_CMD(VAP_DTIM_PERIOD); |
| IPW_CMD(EXT_SUPPORTED_RATES); |
| IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); |
| IPW_CMD(VAP_QUIET_INTERVALS); |
| IPW_CMD(VAP_CHANNEL_SWITCH); |
| IPW_CMD(VAP_MANDATORY_CHANNELS); |
| IPW_CMD(VAP_CELL_PWR_LIMIT); |
| IPW_CMD(VAP_CF_PARAM_SET); |
| IPW_CMD(VAP_SET_BEACONING_STATE); |
| IPW_CMD(MEASUREMENT); |
| IPW_CMD(POWER_CAPABILITY); |
| IPW_CMD(SUPPORTED_CHANNELS); |
| IPW_CMD(TPC_REPORT); |
| IPW_CMD(WME_INFO); |
| IPW_CMD(PRODUCTION_COMMAND); |
| default: |
| return "UNKNOWN"; |
| } |
| } |
| #endif /* CONFIG_IPW_DEBUG */ |
| |
| #define HOST_COMPLETE_TIMEOUT HZ |
| static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) |
| { |
| int rc = 0; |
| |
| if (priv->status & STATUS_HCMD_ACTIVE) { |
| IPW_ERROR("Already sending a command\n"); |
| return -1; |
| } |
| |
| priv->status |= STATUS_HCMD_ACTIVE; |
| |
| IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", |
| get_cmd_string(cmd->cmd), cmd->cmd, cmd->len); |
| printk_buf(IPW_DL_HOST_COMMAND, (u8*)cmd->param, cmd->len); |
| |
| rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0); |
| if (rc) |
| return rc; |
| |
| rc = wait_event_interruptible_timeout( |
| priv->wait_command_queue, !(priv->status & STATUS_HCMD_ACTIVE), |
| HOST_COMPLETE_TIMEOUT); |
| if (rc == 0) { |
| IPW_DEBUG_INFO("Command completion failed out after %dms.\n", |
| jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); |
| priv->status &= ~STATUS_HCMD_ACTIVE; |
| return -EIO; |
| } |
| if (priv->status & STATUS_RF_KILL_MASK) { |
| IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_host_complete(struct ipw_priv *priv) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_HOST_COMPLETE, |
| .len = 0 |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send HOST_COMPLETE command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_system_config(struct ipw_priv *priv, |
| struct ipw_sys_config *config) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SYSTEM_CONFIG, |
| .len = sizeof(*config) |
| }; |
| |
| if (!priv || !config) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param,config,sizeof(*config)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SYSTEM_CONFIG command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_ssid(struct ipw_priv *priv, u8 *ssid, int len) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SSID, |
| .len = min(len, IW_ESSID_MAX_SIZE) |
| }; |
| |
| if (!priv || !ssid) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param, ssid, cmd.len); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SSID command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_adapter_address(struct ipw_priv *priv, u8 *mac) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_ADAPTER_ADDRESS, |
| .len = ETH_ALEN |
| }; |
| |
| if (!priv || !mac) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n", |
| priv->net_dev->name, MAC_ARG(mac)); |
| |
| memcpy(&cmd.param, mac, ETH_ALEN); |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send ADAPTER_ADDRESS command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void ipw_adapter_restart(void *adapter) |
| { |
| struct ipw_priv *priv = adapter; |
| |
| if (priv->status & STATUS_RF_KILL_MASK) |
| return; |
| |
| ipw_down(priv); |
| if (ipw_up(priv)) { |
| IPW_ERROR("Failed to up device\n"); |
| return; |
| } |
| } |
| |
| |
| |
| |
| #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) |
| |
| static void ipw_scan_check(void *data) |
| { |
| struct ipw_priv *priv = data; |
| if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) { |
| IPW_DEBUG_SCAN("Scan completion watchdog resetting " |
| "adapter (%dms).\n", |
| IPW_SCAN_CHECK_WATCHDOG / 100); |
| ipw_adapter_restart(priv); |
| } |
| } |
| |
| static int ipw_send_scan_request_ext(struct ipw_priv *priv, |
| struct ipw_scan_request_ext *request) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SCAN_REQUEST_EXT, |
| .len = sizeof(*request) |
| }; |
| |
| if (!priv || !request) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param,request,sizeof(*request)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n"); |
| return -1; |
| } |
| |
| queue_delayed_work(priv->workqueue, &priv->scan_check, |
| IPW_SCAN_CHECK_WATCHDOG); |
| return 0; |
| } |
| |
| static int ipw_send_scan_abort(struct ipw_priv *priv) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SCAN_ABORT, |
| .len = 0 |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SCAN_ABORT command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SENSITIVITY_CALIB, |
| .len = sizeof(struct ipw_sensitivity_calib) |
| }; |
| struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *) |
| &cmd.param; |
| calib->beacon_rssi_raw = sens; |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SENSITIVITY CALIB command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_associate(struct ipw_priv *priv, |
| struct ipw_associate *associate) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_ASSOCIATE, |
| .len = sizeof(*associate) |
| }; |
| |
| if (!priv || !associate) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param,associate,sizeof(*associate)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send ASSOCIATE command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_supported_rates(struct ipw_priv *priv, |
| struct ipw_supported_rates *rates) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SUPPORTED_RATES, |
| .len = sizeof(*rates) |
| }; |
| |
| if (!priv || !rates) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param,rates,sizeof(*rates)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SUPPORTED_RATES command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_set_random_seed(struct ipw_priv *priv) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_SEED_NUMBER, |
| .len = sizeof(u32) |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| get_random_bytes(&cmd.param, sizeof(u32)); |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send SEED_NUMBER command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #if 0 |
| static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_CARD_DISABLE, |
| .len = sizeof(u32) |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| *((u32*)&cmd.param) = phy_off; |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send CARD_DISABLE command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int ipw_send_tx_power(struct ipw_priv *priv, |
| struct ipw_tx_power *power) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_TX_POWER, |
| .len = sizeof(*power) |
| }; |
| |
| if (!priv || !power) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param,power,sizeof(*power)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send TX_POWER command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) |
| { |
| struct ipw_rts_threshold rts_threshold = { |
| .rts_threshold = rts, |
| }; |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_RTS_THRESHOLD, |
| .len = sizeof(rts_threshold) |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send RTS_THRESHOLD command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) |
| { |
| struct ipw_frag_threshold frag_threshold = { |
| .frag_threshold = frag, |
| }; |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_FRAG_THRESHOLD, |
| .len = sizeof(frag_threshold) |
| }; |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold)); |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send FRAG_THRESHOLD command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) |
| { |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_POWER_MODE, |
| .len = sizeof(u32) |
| }; |
| u32 *param = (u32*)(&cmd.param); |
| |
| if (!priv) { |
| IPW_ERROR("Invalid args\n"); |
| return -1; |
| } |
| |
| /* If on battery, set to 3, if AC set to CAM, else user |
| * level */ |
| switch (mode) { |
| case IPW_POWER_BATTERY: |
| *param = IPW_POWER_INDEX_3; |
| break; |
| case IPW_POWER_AC: |
| *param = IPW_POWER_MODE_CAM; |
| break; |
| default: |
| *param = mode; |
| break; |
| } |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send POWER_MODE command\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The IPW device contains a Microwire compatible EEPROM that stores |
| * various data like the MAC address. Usually the firmware has exclusive |
| * access to the eeprom, but during device initialization (before the |
| * device driver has sent the HostComplete command to the firmware) the |
| * device driver has read access to the EEPROM by way of indirect addressing |
| * through a couple of memory mapped registers. |
| * |
| * The following is a simplified implementation for pulling data out of the |
| * the eeprom, along with some helper functions to find information in |
| * the per device private data's copy of the eeprom. |
| * |
| * NOTE: To better understand how these functions work (i.e what is a chip |
| * select and why do have to keep driving the eeprom clock?), read |
| * just about any data sheet for a Microwire compatible EEPROM. |
| */ |
| |
| /* write a 32 bit value into the indirect accessor register */ |
| static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) |
| { |
| ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); |
| |
| /* the eeprom requires some time to complete the operation */ |
| udelay(p->eeprom_delay); |
| |
| return; |
| } |
| |
| /* perform a chip select operation */ |
| static inline void eeprom_cs(struct ipw_priv* priv) |
| { |
| eeprom_write_reg(priv,0); |
| eeprom_write_reg(priv,EEPROM_BIT_CS); |
| eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK); |
| eeprom_write_reg(priv,EEPROM_BIT_CS); |
| } |
| |
| /* perform a chip select operation */ |
| static inline void eeprom_disable_cs(struct ipw_priv* priv) |
| { |
| eeprom_write_reg(priv,EEPROM_BIT_CS); |
| eeprom_write_reg(priv,0); |
| eeprom_write_reg(priv,EEPROM_BIT_SK); |
| } |
| |
| /* push a single bit down to the eeprom */ |
| static inline void eeprom_write_bit(struct ipw_priv *p,u8 bit) |
| { |
| int d = ( bit ? EEPROM_BIT_DI : 0); |
| eeprom_write_reg(p,EEPROM_BIT_CS|d); |
| eeprom_write_reg(p,EEPROM_BIT_CS|d|EEPROM_BIT_SK); |
| } |
| |
| /* push an opcode followed by an address down to the eeprom */ |
| static void eeprom_op(struct ipw_priv* priv, u8 op, u8 addr) |
| { |
| int i; |
| |
| eeprom_cs(priv); |
| eeprom_write_bit(priv,1); |
| eeprom_write_bit(priv,op&2); |
| eeprom_write_bit(priv,op&1); |
| for ( i=7; i>=0; i-- ) { |
| eeprom_write_bit(priv,addr&(1<<i)); |
| } |
| } |
| |
| /* pull 16 bits off the eeprom, one bit at a time */ |
| static u16 eeprom_read_u16(struct ipw_priv* priv, u8 addr) |
| { |
| int i; |
| u16 r=0; |
| |
| /* Send READ Opcode */ |
| eeprom_op(priv,EEPROM_CMD_READ,addr); |
| |
| /* Send dummy bit */ |
| eeprom_write_reg(priv,EEPROM_BIT_CS); |
| |
| /* Read the byte off the eeprom one bit at a time */ |
| for ( i=0; i<16; i++ ) { |
| u32 data = 0; |
| eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK); |
| eeprom_write_reg(priv,EEPROM_BIT_CS); |
| data = ipw_read_reg32(priv,FW_MEM_REG_EEPROM_ACCESS); |
| r = (r<<1) | ((data & EEPROM_BIT_DO)?1:0); |
| } |
| |
| /* Send another dummy bit */ |
| eeprom_write_reg(priv,0); |
| eeprom_disable_cs(priv); |
| |
| return r; |
| } |
| |
| /* helper function for pulling the mac address out of the private */ |
| /* data's copy of the eeprom data */ |
| static void eeprom_parse_mac(struct ipw_priv* priv, u8* mac) |
| { |
| u8* ee = (u8*)priv->eeprom; |
| memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6); |
| } |
| |
| /* |
| * Either the device driver (i.e. the host) or the firmware can |
| * load eeprom data into the designated region in SRAM. If neither |
| * happens then the FW will shutdown with a fatal error. |
| * |
| * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE |
| * bit needs region of shared SRAM needs to be non-zero. |
| */ |
| static void ipw_eeprom_init_sram(struct ipw_priv *priv) |
| { |
| int i; |
| u16 *eeprom = (u16 *)priv->eeprom; |
| |
| IPW_DEBUG_TRACE(">>\n"); |
| |
| /* read entire contents of eeprom into private buffer */ |
| for ( i=0; i<128; i++ ) |
| eeprom[i] = eeprom_read_u16(priv,(u8)i); |
| |
| /* |
| If the data looks correct, then copy it to our private |
| copy. Otherwise let the firmware know to perform the operation |
| on it's own |
| */ |
| if ((priv->eeprom + EEPROM_VERSION) != 0) { |
| IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); |
| |
| /* write the eeprom data to sram */ |
| for( i=0; i<CX2_EEPROM_IMAGE_SIZE; i++ ) |
| ipw_write8(priv, IPW_EEPROM_DATA + i, |
| priv->eeprom[i]); |
| |
| /* Do not load eeprom data on fatal error or suspend */ |
| ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); |
| } else { |
| IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n"); |
| |
| /* Load eeprom data on fatal error or suspend */ |
| ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); |
| } |
| |
| IPW_DEBUG_TRACE("<<\n"); |
| } |
| |
| |
| static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) |
| { |
| count >>= 2; |
| if (!count) return; |
| _ipw_write32(priv, CX2_AUTOINC_ADDR, start); |
| while (count--) |
| _ipw_write32(priv, CX2_AUTOINC_DATA, 0); |
| } |
| |
| static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) |
| { |
| ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL, |
| CB_NUMBER_OF_ELEMENTS_SMALL * |
| sizeof(struct command_block)); |
| } |
| |
| static int ipw_fw_dma_enable(struct ipw_priv *priv) |
| { /* start dma engine but no transfers yet*/ |
| |
| IPW_DEBUG_FW(">> : \n"); |
| |
| /* Start the dma */ |
| ipw_fw_dma_reset_command_blocks(priv); |
| |
| /* Write CB base address */ |
| ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL); |
| |
| IPW_DEBUG_FW("<< : \n"); |
| return 0; |
| } |
| |
| static void ipw_fw_dma_abort(struct ipw_priv *priv) |
| { |
| u32 control = 0; |
| |
| IPW_DEBUG_FW(">> :\n"); |
| |
| //set the Stop and Abort bit |
| control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; |
| ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control); |
| priv->sram_desc.last_cb_index = 0; |
| |
| IPW_DEBUG_FW("<< \n"); |
| } |
| |
| static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, struct command_block *cb) |
| { |
| u32 address = CX2_SHARED_SRAM_DMA_CONTROL + (sizeof(struct command_block) * index); |
| IPW_DEBUG_FW(">> :\n"); |
| |
| ipw_write_indirect(priv, address, (u8*)cb, (int)sizeof(struct command_block)); |
| |
| IPW_DEBUG_FW("<< :\n"); |
| return 0; |
| |
| } |
| |
| static int ipw_fw_dma_kick(struct ipw_priv *priv) |
| { |
| u32 control = 0; |
| u32 index=0; |
| |
| IPW_DEBUG_FW(">> :\n"); |
| |
| for (index = 0; index < priv->sram_desc.last_cb_index; index++) |
| ipw_fw_dma_write_command_block(priv, index, &priv->sram_desc.cb_list[index]); |
| |
| /* Enable the DMA in the CSR register */ |
| ipw_clear_bit(priv, CX2_RESET_REG,CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER); |
| |
| /* Set the Start bit. */ |
| control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; |
| ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control); |
| |
| IPW_DEBUG_FW("<< :\n"); |
| return 0; |
| } |
| |
| static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) |
| { |
| u32 address; |
| u32 register_value=0; |
| u32 cb_fields_address=0; |
| |
| IPW_DEBUG_FW(">> :\n"); |
| address = ipw_read_reg32(priv,CX2_DMA_I_CURRENT_CB); |
| IPW_DEBUG_FW_INFO("Current CB is 0x%x \n",address); |
| |
| /* Read the DMA Controlor register */ |
| register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL); |
| IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n",register_value); |
| |
| /* Print the CB values*/ |
| cb_fields_address = address; |
| register_value = ipw_read_reg32(priv, cb_fields_address); |
| IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n",register_value); |
| |
| cb_fields_address += sizeof(u32); |
| register_value = ipw_read_reg32(priv, cb_fields_address); |
| IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n",register_value); |
| |
| cb_fields_address += sizeof(u32); |
| register_value = ipw_read_reg32(priv, cb_fields_address); |
| IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n", |
| register_value); |
| |
| cb_fields_address += sizeof(u32); |
| register_value = ipw_read_reg32(priv, cb_fields_address); |
| IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n",register_value); |
| |
| IPW_DEBUG_FW(">> :\n"); |
| } |
| |
| static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) |
| { |
| u32 current_cb_address = 0; |
| u32 current_cb_index = 0; |
| |
| IPW_DEBUG_FW("<< :\n"); |
| current_cb_address= ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB); |
| |
| current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL )/ |
| sizeof (struct command_block); |
| |
| IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n", |
| current_cb_index, current_cb_address ); |
| |
| IPW_DEBUG_FW(">> :\n"); |
| return current_cb_index; |
| |
| } |
| |
| static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, |
| u32 src_address, |
| u32 dest_address, |
| u32 length, |
| int interrupt_enabled, |
| int is_last) |
| { |
| |
| u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | |
| CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | |
| CB_DEST_SIZE_LONG; |
| struct command_block *cb; |
| u32 last_cb_element=0; |
| |
| IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", |
| src_address, dest_address, length); |
| |
| if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) |
| return -1; |
| |
| last_cb_element = priv->sram_desc.last_cb_index; |
| cb = &priv->sram_desc.cb_list[last_cb_element]; |
| priv->sram_desc.last_cb_index++; |
| |
| /* Calculate the new CB control word */ |
| if (interrupt_enabled ) |
| control |= CB_INT_ENABLED; |
| |
| if (is_last) |
| control |= CB_LAST_VALID; |
| |
| control |= length; |
| |
| /* Calculate the CB Element's checksum value */ |
| cb->status = control ^src_address ^dest_address; |
| |
| /* Copy the Source and Destination addresses */ |
| cb->dest_addr = dest_address; |
| cb->source_addr = src_address; |
| |
| /* Copy the Control Word last */ |
| cb->control = control; |
| |
| return 0; |
| } |
| |
| static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, |
| u32 src_phys, |
| u32 dest_address, |
| u32 length) |
| { |
| u32 bytes_left = length; |
| u32 src_offset=0; |
| u32 dest_offset=0; |
| int status = 0; |
| IPW_DEBUG_FW(">> \n"); |
| IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n", |
| src_phys, dest_address, length); |
| while (bytes_left > CB_MAX_LENGTH) { |
| status = ipw_fw_dma_add_command_block( priv, |
| src_phys + src_offset, |
| dest_address + dest_offset, |
| CB_MAX_LENGTH, 0, 0); |
| if (status) { |
| IPW_DEBUG_FW_INFO(": Failed\n"); |
| return -1; |
| } else |
| IPW_DEBUG_FW_INFO(": Added new cb\n"); |
| |
| src_offset += CB_MAX_LENGTH; |
| dest_offset += CB_MAX_LENGTH; |
| bytes_left -= CB_MAX_LENGTH; |
| } |
| |
| /* add the buffer tail */ |
| if (bytes_left > 0) { |
| status = ipw_fw_dma_add_command_block( |
| priv, src_phys + src_offset, |
| dest_address + dest_offset, |
| bytes_left, 0, 0); |
| if (status) { |
| IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n"); |
| return -1; |
| } else |
| IPW_DEBUG_FW_INFO(": Adding new cb - the buffer tail\n"); |
| } |
| |
| |
| IPW_DEBUG_FW("<< \n"); |
| return 0; |
| } |
| |
| static int ipw_fw_dma_wait(struct ipw_priv *priv) |
| { |
| u32 current_index = 0; |
| u32 watchdog = 0; |
| |
| IPW_DEBUG_FW(">> : \n"); |
| |
| current_index = ipw_fw_dma_command_block_index(priv); |
| IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n", |
| (int) priv->sram_desc.last_cb_index); |
| |
| while (current_index < priv->sram_desc.last_cb_index) { |
| udelay(50); |
| current_index = ipw_fw_dma_command_block_index(priv); |
| |
| watchdog++; |
| |
| if (watchdog > 400) { |
| IPW_DEBUG_FW_INFO("Timeout\n"); |
| ipw_fw_dma_dump_command_block(priv); |
| ipw_fw_dma_abort(priv); |
| return -1; |
| } |
| } |
| |
| ipw_fw_dma_abort(priv); |
| |
| /*Disable the DMA in the CSR register*/ |
| ipw_set_bit(priv, CX2_RESET_REG, |
| CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER); |
| |
| IPW_DEBUG_FW("<< dmaWaitSync \n"); |
| return 0; |
| } |
| |
| static void ipw_remove_current_network(struct ipw_priv *priv) |
| { |
| struct list_head *element, *safe; |
| struct ieee80211_network *network = NULL; |
| list_for_each_safe(element, safe, &priv->ieee->network_list) { |
| network = list_entry(element, struct ieee80211_network, list); |
| if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) { |
| list_del(element); |
| list_add_tail(&network->list, |
| &priv->ieee->network_free_list); |
| } |
| } |
| } |
| |
| /** |
| * Check that card is still alive. |
| * Reads debug register from domain0. |
| * If card is present, pre-defined value should |
| * be found there. |
| * |
| * @param priv |
| * @return 1 if card is present, 0 otherwise |
| */ |
| static inline int ipw_alive(struct ipw_priv *priv) |
| { |
| return ipw_read32(priv, 0x90) == 0xd55555d5; |
| } |
| |
| static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, |
| int timeout) |
| { |
| int i = 0; |
| |
| do { |
| if ((ipw_read32(priv, addr) & mask) == mask) |
| return i; |
| mdelay(10); |
| i += 10; |
| } while (i < timeout); |
| |
| return -ETIME; |
| } |
| |
| /* These functions load the firmware and micro code for the operation of |
| * the ipw hardware. It assumes the buffer has all the bits for the |
| * image and the caller is handling the memory allocation and clean up. |
| */ |
| |
| |
| static int ipw_stop_master(struct ipw_priv * priv) |
| { |
| int rc; |
| |
| IPW_DEBUG_TRACE(">> \n"); |
| /* stop master. typical delay - 0 */ |
| ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER); |
| |
| rc = ipw_poll_bit(priv, CX2_RESET_REG, |
| CX2_RESET_REG_MASTER_DISABLED, 100); |
| if (rc < 0) { |
| IPW_ERROR("stop master failed in 10ms\n"); |
| return -1; |
| } |
| |
| IPW_DEBUG_INFO("stop master %dms\n", rc); |
| |
| return rc; |
| } |
| |
| static void ipw_arc_release(struct ipw_priv *priv) |
| { |
| IPW_DEBUG_TRACE(">> \n"); |
| mdelay(5); |
| |
| ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); |
| |
| /* no one knows timing, for safety add some delay */ |
| mdelay(5); |
| } |
| |
| struct fw_header { |
| u32 version; |
| u32 mode; |
| }; |
| |
| struct fw_chunk { |
| u32 address; |
| u32 length; |
| }; |
| |
| #define IPW_FW_MAJOR_VERSION 2 |
| #define IPW_FW_MINOR_VERSION 2 |
| |
| #define IPW_FW_MINOR(x) ((x & 0xff) >> 8) |
| #define IPW_FW_MAJOR(x) (x & 0xff) |
| |
| #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \ |
| IPW_FW_MAJOR_VERSION) |
| |
| #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \ |
| "." __stringify(IPW_FW_MINOR_VERSION) "-" |
| |
| #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0 |
| #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw" |
| #else |
| #define IPW_FW_NAME(x) "ipw2200_" x ".fw" |
| #endif |
| |
| static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, |
| size_t len) |
| { |
| int rc = 0, i, addr; |
| u8 cr = 0; |
| u16 *image; |
| |
| image = (u16 *)data; |
| |
| IPW_DEBUG_TRACE(">> \n"); |
| |
| rc = ipw_stop_master(priv); |
| |
| if (rc < 0) |
| return rc; |
| |
| // spin_lock_irqsave(&priv->lock, flags); |
| |
| for (addr = CX2_SHARED_LOWER_BOUND; |
| addr < CX2_REGISTER_DOMAIN1_END; addr += 4) { |
| ipw_write32(priv, addr, 0); |
| } |
| |
| /* no ucode (yet) */ |
| memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); |
| /* destroy DMA queues */ |
| /* reset sequence */ |
| |
| ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET ,CX2_BIT_HALT_RESET_ON); |
| ipw_arc_release(priv); |
| ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF); |
| mdelay(1); |
| |
| /* reset PHY */ |
| ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN); |
| mdelay(1); |
| |
| ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0); |
| mdelay(1); |
| |
| /* enable ucode store */ |
| ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0); |
| ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS); |
| mdelay(1); |
| |
| /* write ucode */ |
| /** |
| * @bug |
| * Do NOT set indirect address register once and then |
| * store data to indirect data register in the loop. |
| * It seems very reasonable, but in this case DINO do not |
| * accept ucode. It is essential to set address each time. |
| */ |
| /* load new ipw uCode */ |
| for (i = 0; i < len / 2; i++) |
| ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]); |
| |
| |
| /* enable DINO */ |
| ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0); |
| ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, |
| DINO_ENABLE_SYSTEM ); |
| |
| /* this is where the igx / win driver deveates from the VAP driver.*/ |
| |
| /* wait for alive response */ |
| for (i = 0; i < 100; i++) { |
| /* poll for incoming data */ |
| cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS); |
| if (cr & DINO_RXFIFO_DATA) |
| break; |
| mdelay(1); |
| } |
| |
| if (cr & DINO_RXFIFO_DATA) { |
| /* alive_command_responce size is NOT multiple of 4 */ |
| u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; |
| |
| for (i = 0; i < ARRAY_SIZE(response_buffer); i++) |
| response_buffer[i] = |
| ipw_read_reg32(priv, |
| CX2_BASEBAND_RX_FIFO_READ); |
| memcpy(&priv->dino_alive, response_buffer, |
| sizeof(priv->dino_alive)); |
| if (priv->dino_alive.alive_command == 1 |
| && priv->dino_alive.ucode_valid == 1) { |
| rc = 0; |
| IPW_DEBUG_INFO( |
| "Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " |
| "of %02d/%02d/%02d %02d:%02d\n", |
| priv->dino_alive.software_revision, |
| priv->dino_alive.software_revision, |
| priv->dino_alive.device_identifier, |
| priv->dino_alive.device_identifier, |
| priv->dino_alive.time_stamp[0], |
| priv->dino_alive.time_stamp[1], |
| priv->dino_alive.time_stamp[2], |
| priv->dino_alive.time_stamp[3], |
| priv->dino_alive.time_stamp[4]); |
| } else { |
| IPW_DEBUG_INFO("Microcode is not alive\n"); |
| rc = -EINVAL; |
| } |
| } else { |
| IPW_DEBUG_INFO("No alive response from DINO\n"); |
| rc = -ETIME; |
| } |
| |
| /* disable DINO, otherwise for some reason |
| firmware have problem getting alive resp. */ |
| ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0); |
| |
| // spin_unlock_irqrestore(&priv->lock, flags); |
| |
| return rc; |
| } |
| |
| static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, |
| size_t len) |
| { |
| int rc = -1; |
| int offset = 0; |
| struct fw_chunk *chunk; |
| dma_addr_t shared_phys; |
| u8 *shared_virt; |
| |
| IPW_DEBUG_TRACE("<< : \n"); |
| shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys); |
| |
| if (!shared_virt) |
| return -ENOMEM; |
| |
| memmove(shared_virt, data, len); |
| |
| /* Start the Dma */ |
| rc = ipw_fw_dma_enable(priv); |
| |
| if (priv->sram_desc.last_cb_index > 0) { |
| /* the DMA is already ready this would be a bug. */ |
| BUG(); |
| goto out; |
| } |
| |
| do { |
| chunk = (struct fw_chunk *)(data + offset); |
| offset += sizeof(struct fw_chunk); |
| /* build DMA packet and queue up for sending */ |
| /* dma to chunk->address, the chunk->length bytes from data + |
| * offeset*/ |
| /* Dma loading */ |
| rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset, |
| chunk->address, chunk->length); |
| if (rc) { |
| IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); |
| goto out; |
| } |
| |
| offset += chunk->length; |
| } while (offset < len); |
| |
| /* Run the DMA and wait for the answer*/ |
| rc = ipw_fw_dma_kick(priv); |
| if (rc) { |
| IPW_ERROR("dmaKick Failed\n"); |
| goto out; |
| } |
| |
| rc = ipw_fw_dma_wait(priv); |
| if (rc) { |
| IPW_ERROR("dmaWaitSync Failed\n"); |
| goto out; |
| } |
| out: |
| pci_free_consistent( priv->pci_dev, len, shared_virt, shared_phys); |
| return rc; |
| } |
| |
| /* stop nic */ |
| static int ipw_stop_nic(struct ipw_priv *priv) |
| { |
| int rc = 0; |
| |
| /* stop*/ |
| ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER); |
| |
| rc = ipw_poll_bit(priv, CX2_RESET_REG, |
| CX2_RESET_REG_MASTER_DISABLED, 500); |
| if (rc < 0) { |
| IPW_ERROR("wait for reg master disabled failed\n"); |
| return rc; |
| } |
| |
| ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); |
| |
| return rc; |
| } |
| |
| static void ipw_start_nic(struct ipw_priv *priv) |
| { |
| IPW_DEBUG_TRACE(">>\n"); |
| |
| /* prvHwStartNic release ARC*/ |
| ipw_clear_bit(priv, CX2_RESET_REG, |
| CX2_RESET_REG_MASTER_DISABLED | |
| CX2_RESET_REG_STOP_MASTER | |
| CBD_RESET_REG_PRINCETON_RESET); |
| |
| /* enable power management */ |
| ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); |
| |
| IPW_DEBUG_TRACE("<<\n"); |
| } |
| |
| static int ipw_init_nic(struct ipw_priv *priv) |
| { |
| int rc; |
| |
| IPW_DEBUG_TRACE(">>\n"); |
| /* reset */ |
| /*prvHwInitNic */ |
| /* set "initialization complete" bit to move adapter to D0 state */ |
| ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE); |
| |
| /* low-level PLL activation */ |
| ipw_write32(priv, CX2_READ_INT_REGISTER, CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER); |
| |
| /* wait for clock stabilization */ |
| rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW, |
| CX2_GP_CNTRL_BIT_CLOCK_READY, 250); |
| if (rc < 0 ) |
| IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); |
| |
| /* assert SW reset */ |
| ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET); |
| |
| udelay(10); |
| |
| /* set "initialization complete" bit to move adapter to D0 state */ |
| ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE); |
| |
| IPW_DEBUG_TRACE(">>\n"); |
| return 0; |
| } |
| |
| |
| /* Call this function from process context, it will sleep in request_firmware. |
| * Probe is an ok place to call this from. |
| */ |
| static int ipw_reset_nic(struct ipw_priv *priv) |
| { |
| int rc = 0; |
| |
| IPW_DEBUG_TRACE(">>\n"); |
| |
| rc = ipw_init_nic(priv); |
| |
| /* Clear the 'host command active' bit... */ |
| priv->status &= ~STATUS_HCMD_ACTIVE; |
| wake_up_interruptible(&priv->wait_command_queue); |
| |
| IPW_DEBUG_TRACE("<<\n"); |
| return rc; |
| } |
| |
| static int ipw_get_fw(struct ipw_priv *priv, |
| const struct firmware **fw, const char *name) |
| { |
| struct fw_header *header; |
| int rc; |
| |
| /* ask firmware_class module to get the boot firmware off disk */ |
| rc = request_firmware(fw, name, &priv->pci_dev->dev); |
| if (rc < 0) { |
| IPW_ERROR("%s load failed: Reason %d\n", name, rc); |
| return rc; |
| } |
| |
| header = (struct fw_header *)(*fw)->data; |
| if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) { |
| IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n", |
| name, |
| IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION); |
| return -EINVAL; |
| } |
| |
| IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n", |
| name, |
| IPW_FW_MAJOR(header->version), |
| IPW_FW_MINOR(header->version), |
| (*fw)->size - sizeof(struct fw_header)); |
| return 0; |
| } |
| |
| #define CX2_RX_BUF_SIZE (3000) |
| |
| static inline void ipw_rx_queue_reset(struct ipw_priv *priv, |
| struct ipw_rx_queue *rxq) |
| { |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&rxq->lock, flags); |
| |
| INIT_LIST_HEAD(&rxq->rx_free); |
| INIT_LIST_HEAD(&rxq->rx_used); |
| |
| /* Fill the rx_used queue with _all_ of the Rx buffers */ |
| for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { |
| /* In the reset function, these buffers may have been allocated |
| * to an SKB, so we need to unmap and free potential storage */ |
| if (rxq->pool[i].skb != NULL) { |
| pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, |
| CX2_RX_BUF_SIZE, |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(rxq->pool[i].skb); |
| } |
| list_add_tail(&rxq->pool[i].list, &rxq->rx_used); |
| } |
| |
| /* Set us so that we have processed and used all buffers, but have |
| * not restocked the Rx queue with fresh buffers */ |
| rxq->read = rxq->write = 0; |
| rxq->processed = RX_QUEUE_SIZE - 1; |
| rxq->free_count = 0; |
| spin_unlock_irqrestore(&rxq->lock, flags); |
| } |
| |
| #ifdef CONFIG_PM |
| static int fw_loaded = 0; |
| static const struct firmware *bootfw = NULL; |
| static const struct firmware *firmware = NULL; |
| static const struct firmware *ucode = NULL; |
| #endif |
| |
| static int ipw_load(struct ipw_priv *priv) |
| { |
| #ifndef CONFIG_PM |
| const struct firmware *bootfw = NULL; |
| const struct firmware *firmware = NULL; |
| const struct firmware *ucode = NULL; |
| #endif |
| int rc = 0, retries = 3; |
| |
| #ifdef CONFIG_PM |
| if (!fw_loaded) { |
| #endif |
| rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot")); |
| if (rc) |
| goto error; |
| |
| switch (priv->ieee->iw_mode) { |
| case IW_MODE_ADHOC: |
| rc = ipw_get_fw(priv, &ucode, |
| IPW_FW_NAME("ibss_ucode")); |
| if (rc) |
| goto error; |
| |
| rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss")); |
| break; |
| |
| #ifdef CONFIG_IPW_PROMISC |
| case IW_MODE_MONITOR: |
| rc = ipw_get_fw(priv, &ucode, |
| IPW_FW_NAME("ibss_ucode")); |
| if (rc) |
| goto error; |
| |
| rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("sniffer")); |
| break; |
| #endif |
| case IW_MODE_INFRA: |
| rc = ipw_get_fw(priv, &ucode, |
| IPW_FW_NAME("bss_ucode")); |
| if (rc) |
| goto error; |
| |
| rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss")); |
| break; |
| |
| default: |
| rc = -EINVAL; |
| } |
| |
| if (rc) |
| goto error; |
| |
| #ifdef CONFIG_PM |
| fw_loaded = 1; |
| } |
| #endif |
| |
| if (!priv->rxq) |
| priv->rxq = ipw_rx_queue_alloc(priv); |
| else |
| ipw_rx_queue_reset(priv, priv->rxq); |
| if (!priv->rxq) { |
| IPW_ERROR("Unable to initialize Rx queue\n"); |
| goto error; |
| } |
| |
| retry: |
| /* Ensure interrupts are disabled */ |
| ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); |
| priv->status &= ~STATUS_INT_ENABLED; |
| |
| /* ack pending interrupts */ |
| ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL); |
| |
| ipw_stop_nic(priv); |
| |
| rc = ipw_reset_nic(priv); |
| if (rc) { |
| IPW_ERROR("Unable to reset NIC\n"); |
| goto error; |
| } |
| |
| ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND, |
| CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND); |
| |
| /* DMA the initial boot firmware into the device */ |
| rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header), |
| bootfw->size - sizeof(struct fw_header)); |
| if (rc < 0) { |
| IPW_ERROR("Unable to load boot firmware\n"); |
| goto error; |
| } |
| |
| /* kick start the device */ |
| ipw_start_nic(priv); |
| |
| /* wait for the device to finish it's initial startup sequence */ |
| rc = ipw_poll_bit(priv, CX2_INTA_RW, |
| CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); |
| if (rc < 0) { |
| IPW_ERROR("device failed to boot initial fw image\n"); |
| goto error; |
| } |
| IPW_DEBUG_INFO("initial device response after %dms\n", rc); |
| |
| /* ack fw init done interrupt */ |
| ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE); |
| |
| /* DMA the ucode into the device */ |
| rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header), |
| ucode->size - sizeof(struct fw_header)); |
| if (rc < 0) { |
| IPW_ERROR("Unable to load ucode\n"); |
| goto error; |
| } |
| |
| /* stop nic */ |
| ipw_stop_nic(priv); |
| |
| /* DMA bss firmware into the device */ |
| rc = ipw_load_firmware(priv, firmware->data + |
| sizeof(struct fw_header), |
| firmware->size - sizeof(struct fw_header)); |
| if (rc < 0 ) { |
| IPW_ERROR("Unable to load firmware\n"); |
| goto error; |
| } |
| |
| ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); |
| |
| rc = ipw_queue_reset(priv); |
| if (rc) { |
| IPW_ERROR("Unable to initialize queues\n"); |
| goto error; |
| } |
| |
| /* Ensure interrupts are disabled */ |
| ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); |
| |
| /* kick start the device */ |
| ipw_start_nic(priv); |
| |
| if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) { |
| if (retries > 0) { |
| IPW_WARNING("Parity error. Retrying init.\n"); |
| retries--; |
| goto retry; |
| } |
| |
| IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); |
| rc = -EIO; |
| goto error; |
| } |
| |
| /* wait for the device */ |
| rc = ipw_poll_bit(priv, CX2_INTA_RW, |
| CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); |
| if (rc < 0) { |
| IPW_ERROR("device failed to start after 500ms\n"); |
| goto error; |
| } |
| IPW_DEBUG_INFO("device response after %dms\n", rc); |
| |
| /* ack fw init done interrupt */ |
| ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE); |
| |
| /* read eeprom data and initialize the eeprom region of sram */ |
| priv->eeprom_delay = 1; |
| ipw_eeprom_init_sram(priv); |
| |
| /* enable interrupts */ |
| ipw_enable_interrupts(priv); |
| |
| /* Ensure our queue has valid packets */ |
| ipw_rx_queue_replenish(priv); |
| |
| ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read); |
| |
| /* ack pending interrupts */ |
| ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL); |
| |
| #ifndef CONFIG_PM |
| release_firmware(bootfw); |
| release_firmware(ucode); |
| release_firmware(firmware); |
| #endif |
| return 0; |
| |
| error: |
| if (priv->rxq) { |
| ipw_rx_queue_free(priv, priv->rxq); |
| priv->rxq = NULL; |
| } |
| ipw_tx_queue_free(priv); |
| if (bootfw) |
| release_firmware(bootfw); |
| if (ucode) |
| release_firmware(ucode); |
| if (firmware) |
| release_firmware(firmware); |
| #ifdef CONFIG_PM |
| fw_loaded = 0; |
| bootfw = ucode = firmware = NULL; |
| #endif |
| |
| return rc; |
| } |
| |
| /** |
| * DMA services |
| * |
| * Theory of operation |
| * |
| * A queue is a circular buffers with 'Read' and 'Write' pointers. |
| * 2 empty entries always kept in the buffer to protect from overflow. |
| * |
| * For Tx queue, there are low mark and high mark limits. If, after queuing |
| * the packet for Tx, free space become < low mark, Tx queue stopped. When |
| * reclaiming packets (on 'tx done IRQ), if free space become > high mark, |
| * Tx queue resumed. |
| * |
| * The IPW operates with six queues, one receive queue in the device's |
| * sram, one transmit queue for sending commands to the device firmware, |
| * and four transmit queues for data. |
| * |
| * The four transmit queues allow for performing quality of service (qos) |
| * transmissions as per the 802.11 protocol. Currently Linux does not |
| * provide a mechanism to the user for utilizing prioritized queues, so |
| * we only utilize the first data transmit queue (queue1). |
| */ |
| |
| /** |
| * Driver allocates buffers of this size for Rx |
| */ |
| |
| static inline int ipw_queue_space(const struct clx2_queue *q) |
| { |
| int s = q->last_used - q->first_empty; |
| if (s <= 0) |
| s += q->n_bd; |
| s -= 2; /* keep some reserve to not confuse empty and full situations */ |
| if (s < 0) |
| s = 0; |
| return s; |
| } |
| |
| static inline int ipw_queue_inc_wrap(int index, int n_bd) |
| { |
| return (++index == n_bd) ? 0 : index; |
| } |
| |
| /** |
| * Initialize common DMA queue structure |
| * |
| * @param q queue to init |
| * @param count Number of BD's to allocate. Should be power of 2 |
| * @param read_register Address for 'read' register |
| * (not offset within BAR, full address) |
| * @param write_register Address for 'write' register |
| * (not offset within BAR, full address) |
| * @param base_register Address for 'base' register |
| * (not offset within BAR, full address) |
| * @param size Address for 'size' register |
| * (not offset within BAR, full address) |
| */ |
| static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, |
| int count, u32 read, u32 write, |
| u32 base, u32 size) |
| { |
| q->n_bd = count; |
| |
| q->low_mark = q->n_bd / 4; |
| if (q->low_mark < 4) |
| q->low_mark = 4; |
| |
| q->high_mark = q->n_bd / 8; |
| if (q->high_mark < 2) |
| q->high_mark = 2; |
| |
| q->first_empty = q->last_used = 0; |
| q->reg_r = read; |
| q->reg_w = write; |
| |
| ipw_write32(priv, base, q->dma_addr); |
| ipw_write32(priv, size, count); |
| ipw_write32(priv, read, 0); |
| ipw_write32(priv, write, 0); |
| |
| _ipw_read32(priv, 0x90); |
| } |
| |
| static int ipw_queue_tx_init(struct ipw_priv *priv, |
| struct clx2_tx_queue *q, |
| int count, u32 read, u32 write, |
| u32 base, u32 size) |
| { |
| struct pci_dev *dev = priv->pci_dev; |
| |
| q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL); |
| if (!q->txb) { |
| IPW_ERROR("vmalloc for auxilary BD structures failed\n"); |
| return -ENOMEM; |
| } |
| |
| q->bd = pci_alloc_consistent(dev,sizeof(q->bd[0])*count, &q->q.dma_addr); |
| if (!q->bd) { |
| IPW_ERROR("pci_alloc_consistent(%zd) failed\n", |
| sizeof(q->bd[0]) * count); |
| kfree(q->txb); |
| q->txb = NULL; |
| return -ENOMEM; |
| } |
| |
| ipw_queue_init(priv, &q->q, count, read, write, base, size); |
| return 0; |
| } |
| |
| /** |
| * Free one TFD, those at index [txq->q.last_used]. |
| * Do NOT advance any indexes |
| * |
| * @param dev |
| * @param txq |
| */ |
| static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, |
| struct clx2_tx_queue *txq) |
| { |
| struct tfd_frame *bd = &txq->bd[txq->q.last_used]; |
| struct pci_dev *dev = priv->pci_dev; |
| int i; |
| |
| /* classify bd */ |
| if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) |
| /* nothing to cleanup after for host commands */ |
| return; |
| |
| /* sanity check */ |
| if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) { |
| IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks); |
| /** @todo issue fatal error, it is quite serious situation */ |
| return; |
| } |
| |
| /* unmap chunks if any */ |
| for (i = 0; i < bd->u.data.num_chunks; i++) { |
| pci_unmap_single(dev, bd->u.data.chunk_ptr[i], |
| bd->u.data.chunk_len[i], PCI_DMA_TODEVICE); |
| if (txq->txb[txq->q.last_used]) { |
| ieee80211_txb_free(txq->txb[txq->q.last_used]); |
| txq->txb[txq->q.last_used] = NULL; |
| } |
| } |
| } |
| |
| /** |
| * Deallocate DMA queue. |
| * |
| * Empty queue by removing and destroying all BD's. |
| * Free all buffers. |
| * |
| * @param dev |
| * @param q |
| */ |
| static void ipw_queue_tx_free(struct ipw_priv *priv, |
| struct clx2_tx_queue *txq) |
| { |
| struct clx2_queue *q = &txq->q; |
| struct pci_dev *dev = priv->pci_dev; |
| |
| if (q->n_bd == 0) |
| return; |
| |
| /* first, empty all BD's */ |
| for (; q->first_empty != q->last_used; |
| q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { |
| ipw_queue_tx_free_tfd(priv, txq); |
| } |
| |
| /* free buffers belonging to queue itself */ |
| pci_free_consistent(dev, sizeof(txq->bd[0])*q->n_bd, txq->bd, |
| q->dma_addr); |
| kfree(txq->txb); |
| |
| /* 0 fill whole structure */ |
| memset(txq, 0, sizeof(*txq)); |
| } |
| |
| |
| /** |
| * Destroy all DMA queues and structures |
| * |
| * @param priv |
| */ |
| static void ipw_tx_queue_free(struct ipw_priv *priv) |
| { |
| /* Tx CMD queue */ |
| ipw_queue_tx_free(priv, &priv->txq_cmd); |
| |
| /* Tx queues */ |
| ipw_queue_tx_free(priv, &priv->txq[0]); |
| ipw_queue_tx_free(priv, &priv->txq[1]); |
| ipw_queue_tx_free(priv, &priv->txq[2]); |
| ipw_queue_tx_free(priv, &priv->txq[3]); |
| } |
| |
| static void inline __maybe_wake_tx(struct ipw_priv *priv) |
| { |
| if (netif_running(priv->net_dev)) { |
| switch (priv->port_type) { |
| case DCR_TYPE_MU_BSS: |
| case DCR_TYPE_MU_IBSS: |
| if (!(priv->status & STATUS_ASSOCIATED)) { |
| return; |
| } |
| } |
| netif_wake_queue(priv->net_dev); |
| } |
| |
| } |
| |
| static inline void ipw_create_bssid(struct ipw_priv *priv, u8 *bssid) |
| { |
| /* First 3 bytes are manufacturer */ |
| bssid[0] = priv->mac_addr[0]; |
| bssid[1] = priv->mac_addr[1]; |
| bssid[2] = priv->mac_addr[2]; |
| |
| /* Last bytes are random */ |
| get_random_bytes(&bssid[3], ETH_ALEN-3); |
| |
| bssid[0] &= 0xfe; /* clear multicast bit */ |
| bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ |
| } |
| |
| static inline u8 ipw_add_station(struct ipw_priv *priv, u8 *bssid) |
| { |
| struct ipw_station_entry entry; |
| int i; |
| |
| for (i = 0; i < priv->num_stations; i++) { |
| if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) { |
| /* Another node is active in network */ |
| priv->missed_adhoc_beacons = 0; |
| if (!(priv->config & CFG_STATIC_CHANNEL)) |
| /* when other nodes drop out, we drop out */ |
| priv->config &= ~CFG_ADHOC_PERSIST; |
| |
| return i; |
| } |
| } |
| |
| if (i == MAX_STATIONS) |
| return IPW_INVALID_STATION; |
| |
| IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid)); |
| |
| entry.reserved = 0; |
| entry.support_mode = 0; |
| memcpy(entry.mac_addr, bssid, ETH_ALEN); |
| memcpy(priv->stations[i], bssid, ETH_ALEN); |
| ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), |
| &entry, |
| sizeof(entry)); |
| priv->num_stations++; |
| |
| return i; |
| } |
| |
| static inline u8 ipw_find_station(struct ipw_priv *priv, u8 *bssid) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_stations; i++) |
| if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) |
| return i; |
| |
| return IPW_INVALID_STATION; |
| } |
| |
| static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) |
| { |
| int err; |
| |
| if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) { |
| IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); |
| return; |
| } |
| |
| IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " " |
| "on channel %d.\n", |
| MAC_ARG(priv->assoc_request.bssid), |
| priv->assoc_request.channel); |
| |
| priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); |
| priv->status |= STATUS_DISASSOCIATING; |
| |
| if (quiet) |
| priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; |
| else |
| priv->assoc_request.assoc_type = HC_DISASSOCIATE; |
| err = ipw_send_associate(priv, &priv->assoc_request); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send [dis]associate command " |
| "failed.\n"); |
| return; |
| } |
| |
| } |
| |
| static void ipw_disassociate(void *data) |
| { |
| ipw_send_disassociate(data, 0); |
| } |
| |
| static void notify_wx_assoc_event(struct ipw_priv *priv) |
| { |
| union iwreq_data wrqu; |
| wrqu.ap_addr.sa_family = ARPHRD_ETHER; |
| if (priv->status & STATUS_ASSOCIATED) |
| memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); |
| else |
| memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); |
| wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); |
| } |
| |
| struct ipw_status_code { |
| u16 status; |
| const char *reason; |
| }; |
| |
| static const struct ipw_status_code ipw_status_codes[] = { |
| {0x00, "Successful"}, |
| {0x01, "Unspecified failure"}, |
| {0x0A, "Cannot support all requested capabilities in the " |
| "Capability information field"}, |
| {0x0B, "Reassociation denied due to inability to confirm that " |
| "association exists"}, |
| {0x0C, "Association denied due to reason outside the scope of this " |
| "standard"}, |
| {0x0D, "Responding station does not support the specified authentication " |
| "algorithm"}, |
| {0x0E, "Received an Authentication frame with authentication sequence " |
| "transaction sequence number out of expected sequence"}, |
| {0x0F, "Authentication rejected because of challenge failure"}, |
| {0x10, "Authentication rejected due to timeout waiting for next " |
| "frame in sequence"}, |
| {0x11, "Association denied because AP is unable to handle additional " |
| "associated stations"}, |
| {0x12, "Association denied due to requesting station not supporting all " |
| "of the datarates in the BSSBasicServiceSet Parameter"}, |
| {0x13, "Association denied due to requesting station not supporting " |
| "short preamble operation"}, |
| {0x14, "Association denied due to requesting station not supporting " |
| "PBCC encoding"}, |
| {0x15, "Association denied due to requesting station not supporting " |
| "channel agility"}, |
| {0x19, "Association denied due to requesting station not supporting " |
| "short slot operation"}, |
| {0x1A, "Association denied due to requesting station not supporting " |
| "DSSS-OFDM operation"}, |
| {0x28, "Invalid Information Element"}, |
| {0x29, "Group Cipher is not valid"}, |
| {0x2A, "Pairwise Cipher is not valid"}, |
| {0x2B, "AKMP is not valid"}, |
| {0x2C, "Unsupported RSN IE version"}, |
| {0x2D, "Invalid RSN IE Capabilities"}, |
| {0x2E, "Cipher suite is rejected per security policy"}, |
| }; |
| |
| #ifdef CONFIG_IPW_DEBUG |
| static const char *ipw_get_status_code(u16 status) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) |
| if (ipw_status_codes[i].status == status) |
| return ipw_status_codes[i].reason; |
| return "Unknown status value."; |
| } |
| #endif |
| |
| static void inline average_init(struct average *avg) |
| { |
| memset(avg, 0, sizeof(*avg)); |
| } |
| |
| static void inline average_add(struct average *avg, s16 val) |
| { |
| avg->sum -= avg->entries[avg->pos]; |
| avg->sum += val; |
| avg->entries[avg->pos++] = val; |
| if (unlikely(avg->pos == AVG_ENTRIES)) { |
| avg->init = 1; |
| avg->pos = 0; |
| } |
| } |
| |
| static s16 inline average_value(struct average *avg) |
| { |
| if (!unlikely(avg->init)) { |
| if (avg->pos) |
| return avg->sum / avg->pos; |
| return 0; |
| } |
| |
| return avg->sum / AVG_ENTRIES; |
| } |
| |
| static void ipw_reset_stats(struct ipw_priv *priv) |
| { |
| u32 len = sizeof(u32); |
| |
| priv->quality = 0; |
| |
| average_init(&priv->average_missed_beacons); |
| average_init(&priv->average_rssi); |
| average_init(&priv->average_noise); |
| |
| priv->last_rate = 0; |
| priv->last_missed_beacons = 0; |
| priv->last_rx_packets = 0; |
| priv->last_tx_packets = 0; |
| priv->last_tx_failures = 0; |
| |
| /* Firmware managed, reset only when NIC is restarted, so we have to |
| * normalize on the current value */ |
| ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, |
| &priv->last_rx_err, &len); |
| ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, |
| &priv->last_tx_failures, &len); |
| |
| /* Driver managed, reset with each association */ |
| priv->missed_adhoc_beacons = 0; |
| priv->missed_beacons = 0; |
| priv->tx_packets = 0; |
| priv->rx_packets = 0; |
| |
| } |
| |
| |
| static inline u32 ipw_get_max_rate(struct ipw_priv *priv) |
| { |
| u32 i = 0x80000000; |
| u32 mask = priv->rates_mask; |
| /* If currently associated in B mode, restrict the maximum |
| * rate match to B rates */ |
| if (priv->assoc_request.ieee_mode == IPW_B_MODE) |
| mask &= IEEE80211_CCK_RATES_MASK; |
| |
| /* TODO: Verify that the rate is supported by the current rates |
| * list. */ |
| |
| while (i && !(mask & i)) i >>= 1; |
| switch (i) { |
| case IEEE80211_CCK_RATE_1MB_MASK: return 1000000; |
| case IEEE80211_CCK_RATE_2MB_MASK: return 2000000; |
| case IEEE80211_CCK_RATE_5MB_MASK: return 5500000; |
| case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000; |
| case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000; |
| case IEEE80211_CCK_RATE_11MB_MASK: return 11000000; |
| case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000; |
| case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000; |
| case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000; |
| case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000; |
| case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000; |
| case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000; |
| } |
| |
| if (priv->ieee->mode == IEEE_B) |
| return 11000000; |
| else |
| return 54000000; |
| } |
| |
| static u32 ipw_get_current_rate(struct ipw_priv *priv) |
| { |
| u32 rate, len = sizeof(rate); |
| int err; |
| |
| if (!(priv->status & STATUS_ASSOCIATED)) |
| return 0; |
| |
| if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { |
| err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, |
| &len); |
| if (err) { |
| IPW_DEBUG_INFO("failed querying ordinals.\n"); |
| return 0; |
| } |
| } else |
| return ipw_get_max_rate(priv); |
| |
| switch (rate) { |
| case IPW_TX_RATE_1MB: return 1000000; |
| case IPW_TX_RATE_2MB: return 2000000; |
| case IPW_TX_RATE_5MB: return 5500000; |
| case IPW_TX_RATE_6MB: return 6000000; |
| case IPW_TX_RATE_9MB: return 9000000; |
| case IPW_TX_RATE_11MB: return 11000000; |
| case IPW_TX_RATE_12MB: return 12000000; |
| case IPW_TX_RATE_18MB: return 18000000; |
| case IPW_TX_RATE_24MB: return 24000000; |
| case IPW_TX_RATE_36MB: return 36000000; |
| case IPW_TX_RATE_48MB: return 48000000; |
| case IPW_TX_RATE_54MB: return 54000000; |
| } |
| |
| return 0; |
| } |
| |
| #define PERFECT_RSSI (-50) |
| #define WORST_RSSI (-85) |
| #define IPW_STATS_INTERVAL (2 * HZ) |
| static void ipw_gather_stats(struct ipw_priv *priv) |
| { |
| u32 rx_err, rx_err_delta, rx_packets_delta; |
| u32 tx_failures, tx_failures_delta, tx_packets_delta; |
| u32 missed_beacons_percent, missed_beacons_delta; |
| u32 quality = 0; |
| u32 len = sizeof(u32); |
| s16 rssi; |
| u32 beacon_quality, signal_quality, tx_quality, rx_quality, |
| rate_quality; |
| |
| if (!(priv->status & STATUS_ASSOCIATED)) { |
| priv->quality = 0; |
| return; |
| } |
| |
| /* Update the statistics */ |
| ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, |
| &priv->missed_beacons, &len); |
| missed_beacons_delta = priv->missed_beacons - |
| priv->last_missed_beacons; |
| priv->last_missed_beacons = priv->missed_beacons; |
| if (priv->assoc_request.beacon_interval) { |
| missed_beacons_percent = missed_beacons_delta * |
| (HZ * priv->assoc_request.beacon_interval) / |
| (IPW_STATS_INTERVAL * 10); |
| } else { |
| missed_beacons_percent = 0; |
| } |
| average_add(&priv->average_missed_beacons, missed_beacons_percent); |
| |
| ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); |
| rx_err_delta = rx_err - priv->last_rx_err; |
| priv->last_rx_err = rx_err; |
| |
| ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); |
| tx_failures_delta = tx_failures - priv->last_tx_failures; |
| priv->last_tx_failures = tx_failures; |
| |
| rx_packets_delta = priv->rx_packets - priv->last_rx_packets; |
| priv->last_rx_packets = priv->rx_packets; |
| |
| tx_packets_delta = priv->tx_packets - priv->last_tx_packets; |
| priv->last_tx_packets = priv->tx_packets; |
| |
| /* Calculate quality based on the following: |
| * |
| * Missed beacon: 100% = 0, 0% = 70% missed |
| * Rate: 60% = 1Mbs, 100% = Max |
| * Rx and Tx errors represent a straight % of total Rx/Tx |
| * RSSI: 100% = > -50, 0% = < -80 |
| * Rx errors: 100% = 0, 0% = 50% missed |
| * |
| * The lowest computed quality is used. |
| * |
| */ |
| #define BEACON_THRESHOLD 5 |
| beacon_quality = 100 - missed_beacons_percent; |
| if (beacon_quality < BEACON_THRESHOLD) |
| beacon_quality = 0; |
| else |
| beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / |
| (100 - BEACON_THRESHOLD); |
| IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", |
| beacon_quality, missed_beacons_percent); |
| |
| priv->last_rate = ipw_get_current_rate(priv); |
| rate_quality = priv->last_rate * 40 / priv->last_rate + 60; |
| IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", |
| rate_quality, priv->last_rate / 1000000); |
| |
| if (rx_packets_delta > 100 && |
| rx_packets_delta + rx_err_delta) |
| rx_quality = 100 - (rx_err_delta * 100) / |
| (rx_packets_delta + rx_err_delta); |
| else |
| rx_quality = 100; |
| IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", |
| rx_quality, rx_err_delta, rx_packets_delta); |
| |
| if (tx_packets_delta > 100 && |
| tx_packets_delta + tx_failures_delta) |
| tx_quality = 100 - (tx_failures_delta * 100) / |
| (tx_packets_delta + tx_failures_delta); |
| else |
| tx_quality = 100; |
| IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", |
| tx_quality, tx_failures_delta, tx_packets_delta); |
| |
| rssi = average_value(&priv->average_rssi); |
| if (rssi > PERFECT_RSSI) |
| signal_quality = 100; |
| else if (rssi < WORST_RSSI) |
| signal_quality = 0; |
| else |
| signal_quality = (rssi - WORST_RSSI) * 100 / |
| (PERFECT_RSSI - WORST_RSSI); |
| IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", |
| signal_quality, rssi); |
| |
| quality = min(beacon_quality, |
| min(rate_quality, |
| min(tx_quality, min(rx_quality, signal_quality)))); |
| if (quality == beacon_quality) |
| IPW_DEBUG_STATS( |
| "Quality (%d%%): Clamped to missed beacons.\n", |
| quality); |
| if (quality == rate_quality) |
| IPW_DEBUG_STATS( |
| "Quality (%d%%): Clamped to rate quality.\n", |
| quality); |
| if (quality == tx_quality) |
| IPW_DEBUG_STATS( |
| "Quality (%d%%): Clamped to Tx quality.\n", |
| quality); |
| if (quality == rx_quality) |
| IPW_DEBUG_STATS( |
| "Quality (%d%%): Clamped to Rx quality.\n", |
| quality); |
| if (quality == signal_quality) |
| IPW_DEBUG_STATS( |
| "Quality (%d%%): Clamped to signal quality.\n", |
| quality); |
| |
| priv->quality = quality; |
| |
| queue_delayed_work(priv->workqueue, &priv->gather_stats, |
| IPW_STATS_INTERVAL); |
| } |
| |
| /** |
| * Handle host notification packet. |
| * Called from interrupt routine |
| */ |
| static inline void ipw_rx_notification(struct ipw_priv* priv, |
| struct ipw_rx_notification *notif) |
| { |
| IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", |
| notif->subtype, notif->size); |
| |
| switch (notif->subtype) { |
| case HOST_NOTIFICATION_STATUS_ASSOCIATED: { |
| struct notif_association *assoc = ¬if->u.assoc; |
| |
| switch (assoc->state) { |
| case CMAS_ASSOCIATED: { |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "associated: '%s' " MAC_FMT " \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| |
| switch (priv->ieee->iw_mode) { |
| case IW_MODE_INFRA: |
| memcpy(priv->ieee->bssid, priv->bssid, |
| ETH_ALEN); |
| break; |
| |
| case IW_MODE_ADHOC: |
| memcpy(priv->ieee->bssid, priv->bssid, |
| ETH_ALEN); |
| |
| /* clear out the station table */ |
| priv->num_stations = 0; |
| |
| IPW_DEBUG_ASSOC("queueing adhoc check\n"); |
| queue_delayed_work(priv->workqueue, |
| &priv->adhoc_check, |
| priv->assoc_request.beacon_interval); |
| break; |
| } |
| |
| priv->status &= ~STATUS_ASSOCIATING; |
| priv->status |= STATUS_ASSOCIATED; |
| |
| netif_carrier_on(priv->net_dev); |
| if (netif_queue_stopped(priv->net_dev)) { |
| IPW_DEBUG_NOTIF("waking queue\n"); |
| netif_wake_queue(priv->net_dev); |
| } else { |
| IPW_DEBUG_NOTIF("starting queue\n"); |
| netif_start_queue(priv->net_dev); |
| } |
| |
| ipw_reset_stats(priv); |
| /* Ensure the rate is updated immediately */ |
| priv->last_rate = ipw_get_current_rate(priv); |
| schedule_work(&priv->gather_stats); |
| notify_wx_assoc_event(priv); |
| |
| /* queue_delayed_work(priv->workqueue, |
| &priv->request_scan, |
| SCAN_ASSOCIATED_INTERVAL); |
| */ |
| break; |
| } |
| |
| case CMAS_AUTHENTICATED: { |
| if (priv->status & (STATUS_ASSOCIATED | STATUS_AUTH)) { |
| #ifdef CONFIG_IPW_DEBUG |
| struct notif_authenticate *auth = ¬if->u.auth; |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "deauthenticated: '%s' " MAC_FMT ": (0x%04X) - %s \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid), |
| ntohs(auth->status), |
| ipw_get_status_code(ntohs(auth->status))); |
| #endif |
| |
| priv->status &= ~(STATUS_ASSOCIATING | |
| STATUS_AUTH | |
| STATUS_ASSOCIATED); |
| |
| netif_carrier_off(priv->net_dev); |
| netif_stop_queue(priv->net_dev); |
| queue_work(priv->workqueue, &priv->request_scan); |
| notify_wx_assoc_event(priv); |
| break; |
| } |
| |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "authenticated: '%s' " MAC_FMT "\n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| break; |
| } |
| |
| case CMAS_INIT: { |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "disassociated: '%s' " MAC_FMT " \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| |
| priv->status &= ~( |
| STATUS_DISASSOCIATING | |
| STATUS_ASSOCIATING | |
| STATUS_ASSOCIATED | |
| STATUS_AUTH); |
| |
| netif_stop_queue(priv->net_dev); |
| if (!(priv->status & STATUS_ROAMING)) { |
| netif_carrier_off(priv->net_dev); |
| notify_wx_assoc_event(priv); |
| |
| /* Cancel any queued work ... */ |
| cancel_delayed_work(&priv->request_scan); |
| cancel_delayed_work(&priv->adhoc_check); |
| |
| /* Queue up another scan... */ |
| queue_work(priv->workqueue, |
| &priv->request_scan); |
| |
| cancel_delayed_work(&priv->gather_stats); |
| } else { |
| priv->status |= STATUS_ROAMING; |
| queue_work(priv->workqueue, |
| &priv->request_scan); |
| } |
| |
| ipw_reset_stats(priv); |
| break; |
| } |
| |
| default: |
| IPW_ERROR("assoc: unknown (%d)\n", |
| assoc->state); |
| break; |
| } |
| |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_AUTHENTICATE: { |
| struct notif_authenticate *auth = ¬if->u.auth; |
| switch (auth->state) { |
| case CMAS_AUTHENTICATED: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, |
| "authenticated: '%s' " MAC_FMT " \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| priv->status |= STATUS_AUTH; |
| break; |
| |
| case CMAS_INIT: |
| if (priv->status & STATUS_AUTH) { |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "authentication failed (0x%04X): %s\n", |
| ntohs(auth->status), |
| ipw_get_status_code(ntohs(auth->status))); |
| } |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "deauthenticated: '%s' " MAC_FMT "\n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| |
| priv->status &= ~(STATUS_ASSOCIATING | |
| STATUS_AUTH | |
| STATUS_ASSOCIATED); |
| |
| netif_carrier_off(priv->net_dev); |
| netif_stop_queue(priv->net_dev); |
| queue_work(priv->workqueue, &priv->request_scan); |
| notify_wx_assoc_event(priv); |
| break; |
| |
| case CMAS_TX_AUTH_SEQ_1: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_1\n"); |
| break; |
| case CMAS_RX_AUTH_SEQ_2: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_2\n"); |
| break; |
| case CMAS_AUTH_SEQ_1_PASS: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_1_PASS\n"); |
| break; |
| case CMAS_AUTH_SEQ_1_FAIL: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_1_FAIL\n"); |
| break; |
| case CMAS_TX_AUTH_SEQ_3: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_3\n"); |
| break; |
| case CMAS_RX_AUTH_SEQ_4: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "RX_AUTH_SEQ_4\n"); |
| break; |
| case CMAS_AUTH_SEQ_2_PASS: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUTH_SEQ_2_PASS\n"); |
| break; |
| case CMAS_AUTH_SEQ_2_FAIL: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "AUT_SEQ_2_FAIL\n"); |
| break; |
| case CMAS_TX_ASSOC: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "TX_ASSOC\n"); |
| break; |
| case CMAS_RX_ASSOC_RESP: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "RX_ASSOC_RESP\n"); |
| break; |
| case CMAS_ASSOCIATED: |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, |
| "ASSOCIATED\n"); |
| break; |
| default: |
| IPW_DEBUG_NOTIF("auth: failure - %d\n", auth->state); |
| break; |
| } |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT: { |
| struct notif_channel_result *x = ¬if->u.channel_result; |
| |
| if (notif->size == sizeof(*x)) { |
| IPW_DEBUG_SCAN("Scan result for channel %d\n", |
| x->channel_num); |
| } else { |
| IPW_DEBUG_SCAN("Scan result of wrong size %d " |
| "(should be %zd)\n", |
| notif->size, sizeof(*x)); |
| } |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED: { |
| struct notif_scan_complete* x = ¬if->u.scan_complete; |
| if (notif->size == sizeof(*x)) { |
| IPW_DEBUG_SCAN("Scan completed: type %d, %d channels, " |
| "%d status\n", |
| x->scan_type, |
| x->num_channels, |
| x->status); |
| } else { |
| IPW_ERROR("Scan completed of wrong size %d " |
| "(should be %zd)\n", |
| notif->size, sizeof(*x)); |
| } |
| |
| priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); |
| |
| cancel_delayed_work(&priv->scan_check); |
| |
| if (!(priv->status & (STATUS_ASSOCIATED | |
| STATUS_ASSOCIATING | |
| STATUS_ROAMING | |
| STATUS_DISASSOCIATING))) |
| queue_work(priv->workqueue, &priv->associate); |
| else if (priv->status & STATUS_ROAMING) { |
| /* If a scan completed and we are in roam mode, then |
| * the scan that completed was the one requested as a |
| * result of entering roam... so, schedule the |
| * roam work */ |
| queue_work(priv->workqueue, &priv->roam); |
| } else if (priv->status & STATUS_SCAN_PENDING) |
| queue_work(priv->workqueue, &priv->request_scan); |
| |
| priv->ieee->scans++; |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_FRAG_LENGTH: { |
| struct notif_frag_length *x = ¬if->u.frag_len; |
| |
| if (notif->size == sizeof(*x)) { |
| IPW_ERROR("Frag length: %d\n", x->frag_length); |
| } else { |
| IPW_ERROR("Frag length of wrong size %d " |
| "(should be %zd)\n", |
| notif->size, sizeof(*x)); |
| } |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION: { |
| struct notif_link_deterioration *x = |
| ¬if->u.link_deterioration; |
| if (notif->size==sizeof(*x)) { |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, |
| "link deterioration: '%s' " MAC_FMT " \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| memcpy(&priv->last_link_deterioration, x, sizeof(*x)); |
| } else { |
| IPW_ERROR("Link Deterioration of wrong size %d " |
| "(should be %zd)\n", |
| notif->size, sizeof(*x)); |
| } |
| break; |
| } |
| |
| case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE: { |
| IPW_ERROR("Dino config\n"); |
| if (priv->hcmd && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) { |
| /* TODO: Do anything special? */ |
| } else { |
| IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); |
| } |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_BEACON_STATE: { |
| struct notif_beacon_state *x = ¬if->u.beacon_state; |
| if (notif->size != sizeof(*x)) { |
| IPW_ERROR("Beacon state of wrong size %d (should " |
| "be %zd)\n", notif->size, sizeof(*x)); |
| break; |
| } |
| |
| if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) { |
| if (priv->status & STATUS_SCANNING) { |
| /* Stop scan to keep fw from getting |
| * stuck... */ |
| queue_work(priv->workqueue, |
| &priv->abort_scan); |
| } |
| |
| if (x->number > priv->missed_beacon_threshold && |
| priv->status & STATUS_ASSOCIATED) { |
| IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | |
| IPW_DL_STATE, |
| "Missed beacon: %d - disassociate\n", |
| x->number); |
| queue_work(priv->workqueue, |
| &priv->disassociate); |
| } else if (x->number > priv->roaming_threshold) { |
| IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, |
| "Missed beacon: %d - initiate " |
| "roaming\n", |
| x->number); |
| queue_work(priv->workqueue, |
| &priv->roam); |
| } else { |
| IPW_DEBUG_NOTIF("Missed beacon: %d\n", |
| x->number); |
| } |
| |
| priv->notif_missed_beacons = x->number; |
| |
| } |
| |
| |
| break; |
| } |
| |
| case HOST_NOTIFICATION_STATUS_TGI_TX_KEY: { |
| struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; |
| if (notif->size==sizeof(*x)) { |
| IPW_ERROR("TGi Tx Key: state 0x%02x sec type " |
| "0x%02x station %d\n", |
| x->key_state,x->security_type, |
| x->station_index); |
| break; |
| } |
| |
| IPW_ERROR("TGi Tx Key of wrong size %d (should be %zd)\n", |
| notif->size, sizeof(*x)); |
| break; |
| } |
| |
| case HOST_NOTIFICATION_CALIB_KEEP_RESULTS: { |
| struct notif_calibration *x = ¬if->u.calibration; |
| |
| if (notif->size == sizeof(*x)) { |
| memcpy(&priv->calib, x, sizeof(*x)); |
| IPW_DEBUG_INFO("TODO: Calibration\n"); |
| break; |
| } |
| |
| IPW_ERROR("Calibration of wrong size %d (should be %zd)\n", |
| notif->size, sizeof(*x)); |
| break; |
| } |
| |
| case HOST_NOTIFICATION_NOISE_STATS: { |
| if (notif->size == sizeof(u32)) { |
| priv->last_noise = (u8)(notif->u.noise.value & 0xff); |
| average_add(&priv->average_noise, priv->last_noise); |
| break; |
| } |
| |
| IPW_ERROR("Noise stat is wrong size %d (should be %zd)\n", |
| notif->size, sizeof(u32)); |
| break; |
| } |
| |
| default: |
| IPW_ERROR("Unknown notification: " |
| "subtype=%d,flags=0x%2x,size=%d\n", |
| notif->subtype, notif->flags, notif->size); |
| } |
| } |
| |
| /** |
| * Destroys all DMA structures and initialise them again |
| * |
| * @param priv |
| * @return error code |
| */ |
| static int ipw_queue_reset(struct ipw_priv *priv) |
| { |
| int rc = 0; |
| /** @todo customize queue sizes */ |
| int nTx = 64, nTxCmd = 8; |
| ipw_tx_queue_free(priv); |
| /* Tx CMD queue */ |
| rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, |
| CX2_TX_CMD_QUEUE_READ_INDEX, |
| CX2_TX_CMD_QUEUE_WRITE_INDEX, |
| CX2_TX_CMD_QUEUE_BD_BASE, |
| CX2_TX_CMD_QUEUE_BD_SIZE); |
| if (rc) { |
| IPW_ERROR("Tx Cmd queue init failed\n"); |
| goto error; |
| } |
| /* Tx queue(s) */ |
| rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, |
| CX2_TX_QUEUE_0_READ_INDEX, |
| CX2_TX_QUEUE_0_WRITE_INDEX, |
| CX2_TX_QUEUE_0_BD_BASE, |
| CX2_TX_QUEUE_0_BD_SIZE); |
| if (rc) { |
| IPW_ERROR("Tx 0 queue init failed\n"); |
| goto error; |
| } |
| rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, |
| CX2_TX_QUEUE_1_READ_INDEX, |
| CX2_TX_QUEUE_1_WRITE_INDEX, |
| CX2_TX_QUEUE_1_BD_BASE, |
| CX2_TX_QUEUE_1_BD_SIZE); |
| if (rc) { |
| IPW_ERROR("Tx 1 queue init failed\n"); |
| goto error; |
| } |
| rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, |
| CX2_TX_QUEUE_2_READ_INDEX, |
| CX2_TX_QUEUE_2_WRITE_INDEX, |
| CX2_TX_QUEUE_2_BD_BASE, |
| CX2_TX_QUEUE_2_BD_SIZE); |
| if (rc) { |
| IPW_ERROR("Tx 2 queue init failed\n"); |
| goto error; |
| } |
| rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, |
| CX2_TX_QUEUE_3_READ_INDEX, |
| CX2_TX_QUEUE_3_WRITE_INDEX, |
| CX2_TX_QUEUE_3_BD_BASE, |
| CX2_TX_QUEUE_3_BD_SIZE); |
| if (rc) { |
| IPW_ERROR("Tx 3 queue init failed\n"); |
| goto error; |
| } |
| /* statistics */ |
| priv->rx_bufs_min = 0; |
| priv->rx_pend_max = 0; |
| return rc; |
| |
| error: |
| ipw_tx_queue_free(priv); |
| return rc; |
| } |
| |
| /** |
| * Reclaim Tx queue entries no more used by NIC. |
| * |
| * When FW adwances 'R' index, all entries between old and |
| * new 'R' index need to be reclaimed. As result, some free space |
| * forms. If there is enough free space (> low mark), wake Tx queue. |
| * |
| * @note Need to protect against garbage in 'R' index |
| * @param priv |
| * @param txq |
| * @param qindex |
| * @return Number of used entries remains in the queue |
| */ |
| static int ipw_queue_tx_reclaim(struct ipw_priv *priv, |
| struct clx2_tx_queue *txq, int qindex) |
| { |
| u32 hw_tail; |
| int used; |
| struct clx2_queue *q = &txq->q; |
| |
| hw_tail = ipw_read32(priv, q->reg_r); |
| if (hw_tail >= q->n_bd) { |
| IPW_ERROR |
| ("Read index for DMA queue (%d) is out of range [0-%d)\n", |
| hw_tail, q->n_bd); |
| goto done; |
| } |
| for (; q->last_used != hw_tail; |
| q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { |
| ipw_queue_tx_free_tfd(priv, txq); |
| priv->tx_packets++; |
| } |
| done: |
| if (ipw_queue_space(q) > q->low_mark && qindex >= 0) { |
| __maybe_wake_tx(priv); |
| } |
| used = q->first_empty - q->last_used; |
| if (used < 0) |
| used += q->n_bd; |
| |
| return used; |
| } |
| |
| static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, |
| int len, int sync) |
| { |
| struct clx2_tx_queue *txq = &priv->txq_cmd; |
| struct clx2_queue *q = &txq->q; |
| struct tfd_frame *tfd; |
| |
| if (ipw_queue_space(q) < (sync ? 1 : 2)) { |
| IPW_ERROR("No space for Tx\n"); |
| return -EBUSY; |
| } |
| |
| tfd = &txq->bd[q->first_empty]; |
| txq->txb[q->first_empty] = NULL; |
| |
| memset(tfd, 0, sizeof(*tfd)); |
| tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; |
| tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; |
| priv->hcmd_seq++; |
| tfd->u.cmd.index = hcmd; |
| tfd->u.cmd.length = len; |
| memcpy(tfd->u.cmd.payload, buf, len); |
| q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); |
| ipw_write32(priv, q->reg_w, q->first_empty); |
| _ipw_read32(priv, 0x90); |
| |
| return 0; |
| } |
| |
| |
| |
| /* |
| * Rx theory of operation |
| * |
| * The host allocates 32 DMA target addresses and passes the host address |
| * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is |
| * 0 to 31 |
| * |
| * Rx Queue Indexes |
| * The host/firmware share two index registers for managing the Rx buffers. |
| * |
| * The READ index maps to the first position that the firmware may be writing |
| * to -- the driver can read up to (but not including) this position and get |
| * good data. |
| * The READ index is managed by the firmware once the card is enabled. |
| * |
| * The WRITE index maps to the last position the driver has read from -- the |
| * position preceding WRITE is the last slot the firmware can place a packet. |
| * |
| * The queue is empty (no good data) if WRITE = READ - 1, and is full if |
| * WRITE = READ. |
| * |
| * During initialization the host sets up the READ queue position to the first |
| * INDEX position, and WRITE to the last (READ - 1 wrapped) |
| * |
| * When the firmware places a packet in a buffer it will advance the READ index |
| * and fire the RX interrupt. The driver can then query the READ index and |
| * process as many packets as possible, moving the WRITE index forward as it |
| * resets the Rx queue buffers with new memory. |
| * |
| * The management in the driver is as follows: |
| * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When |
| * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled |
| * to replensish the ipw->rxq->rx_free. |
| * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the |
| * ipw->rxq is replenished and the READ INDEX is updated (updating the |
| * 'processed' and 'read' driver indexes as well) |
| * + A received packet is processed and handed to the kernel network stack, |
| * detached from the ipw->rxq. The driver 'processed' index is updated. |
| * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free |
| * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ |
| * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there |
| * were enough free buffers and RX_STALLED is set it is cleared. |
| * |
| * |
| * Driver sequence: |
| * |
| * ipw_rx_queue_alloc() Allocates rx_free |
| * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls |
| * ipw_rx_queue_restock |
| * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx |
| * queue, updates firmware pointers, and updates |
| * the WRITE index. If insufficient rx_free buffers |
| * are available, schedules ipw_rx_queue_replenish |
| * |
| * -- enable interrupts -- |
| * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the |
| * READ INDEX, detaching the SKB from the pool. |
| * Moves the packet buffer from queue to rx_used. |
| * Calls ipw_rx_queue_restock to refill any empty |
| * slots. |
| * ... |
| * |
| */ |
| |
| /* |
| * If there are slots in the RX queue that need to be restocked, |
| * and we have free pre-allocated buffers, fill the ranks as much |
| * as we can pulling from rx_free. |
| * |
| * This moves the 'write' index forward to catch up with 'processed', and |
| * also updates the memory address in the firmware to reference the new |
| * target buffer. |
| */ |
| static void ipw_rx_queue_restock(struct ipw_priv *priv) |
| { |
| struct ipw_rx_queue *rxq = priv->rxq; |
| struct list_head *element; |
| struct ipw_rx_mem_buffer *rxb; |
| unsigned long flags; |
| int write; |
| |
| spin_lock_irqsave(&rxq->lock, flags); |
| write = rxq->write; |
| while ((rxq->write != rxq->processed) && (rxq->free_count)) { |
| element = rxq->rx_free.next; |
| rxb = list_entry(element, struct ipw_rx_mem_buffer, list); |
| list_del(element); |
| |
| ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, |
| rxb->dma_addr); |
| rxq->queue[rxq->write] = rxb; |
| rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; |
| rxq->free_count--; |
| } |
| spin_unlock_irqrestore(&rxq->lock, flags); |
| |
| /* If the pre-allocated buffer pool is dropping low, schedule to |
| * refill it */ |
| if (rxq->free_count <= RX_LOW_WATERMARK) |
| queue_work(priv->workqueue, &priv->rx_replenish); |
| |
| /* If we've added more space for the firmware to place data, tell it */ |
| if (write != rxq->write) |
| ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write); |
| } |
| |
| /* |
| * Move all used packet from rx_used to rx_free, allocating a new SKB for each. |
| * Also restock the Rx queue via ipw_rx_queue_restock. |
| * |
| * This is called as a scheduled work item (except for during intialization) |
| */ |
| static void ipw_rx_queue_replenish(void *data) |
| { |
| struct ipw_priv *priv = data; |
| struct ipw_rx_queue *rxq = priv->rxq; |
| struct list_head *element; |
| struct ipw_rx_mem_buffer *rxb; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rxq->lock, flags); |
| while (!list_empty(&rxq->rx_used)) { |
| element = rxq->rx_used.next; |
| rxb = list_entry(element, struct ipw_rx_mem_buffer, list); |
| rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC); |
| if (!rxb->skb) { |
| printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", |
| priv->net_dev->name); |
| /* We don't reschedule replenish work here -- we will |
| * call the restock method and if it still needs |
| * more buffers it will schedule replenish */ |
| break; |
| } |
| list_del(element); |
| |
| rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data; |
| rxb->dma_addr = pci_map_single( |
| priv->pci_dev, rxb->skb->data, CX2_RX_BUF_SIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| list_add_tail(&rxb->list, &rxq->rx_free); |
| rxq->free_count++; |
| } |
| spin_unlock_irqrestore(&rxq->lock, flags); |
| |
| ipw_rx_queue_restock(priv); |
| } |
| |
| /* Assumes that the skb field of the buffers in 'pool' is kept accurate. |
| * If an SKB has been detached, the POOL needs to have it's SKB set to NULL |
| * This free routine walks the list of POOL entries and if SKB is set to |
| * non NULL it is unmapped and freed |
| */ |
| static void ipw_rx_queue_free(struct ipw_priv *priv, |
| struct ipw_rx_queue *rxq) |
| { |
| int i; |
| |
| if (!rxq) |
| return; |
| |
| for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { |
| if (rxq->pool[i].skb != NULL) { |
| pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, |
| CX2_RX_BUF_SIZE, |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(rxq->pool[i].skb); |
| } |
| } |
| |
| kfree(rxq); |
| } |
| |
| static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) |
| { |
| struct ipw_rx_queue *rxq; |
| int i; |
| |
| rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL); |
| memset(rxq, 0, sizeof(*rxq)); |
| spin_lock_init(&rxq->lock); |
| INIT_LIST_HEAD(&rxq->rx_free); |
| INIT_LIST_HEAD(&rxq->rx_used); |
| |
| /* Fill the rx_used queue with _all_ of the Rx buffers */ |
| for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) |
| list_add_tail(&rxq->pool[i].list, &rxq->rx_used); |
| |
| /* Set us so that we have processed and used all buffers, but have |
| * not restocked the Rx queue with fresh buffers */ |
| rxq->read = rxq->write = 0; |
| rxq->processed = RX_QUEUE_SIZE - 1; |
| rxq->free_count = 0; |
| |
| return rxq; |
| } |
| |
| static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) |
| { |
| rate &= ~IEEE80211_BASIC_RATE_MASK; |
| if (ieee_mode == IEEE_A) { |
| switch (rate) { |
| case IEEE80211_OFDM_RATE_6MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_9MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_12MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_18MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_24MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_36MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_48MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? |
| 1 : 0; |
| case IEEE80211_OFDM_RATE_54MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? |
| 1 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| /* B and G mixed */ |
| switch (rate) { |
| case IEEE80211_CCK_RATE_1MB: |
| return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0; |
| case IEEE80211_CCK_RATE_2MB: |
| return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0; |
| case IEEE80211_CCK_RATE_5MB: |
| return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0; |
| case IEEE80211_CCK_RATE_11MB: |
| return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0; |
| } |
| |
| /* If we are limited to B modulations, bail at this point */ |
| if (ieee_mode == IEEE_B) |
| return 0; |
| |
| /* G */ |
| switch (rate) { |
| case IEEE80211_OFDM_RATE_6MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_9MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_12MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_18MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_24MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_36MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_48MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0; |
| case IEEE80211_OFDM_RATE_54MB: |
| return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_compatible_rates(struct ipw_priv *priv, |
| const struct ieee80211_network *network, |
| struct ipw_supported_rates *rates) |
| { |
| int num_rates, i; |
| |
| memset(rates, 0, sizeof(*rates)); |
| num_rates = min(network->rates_len, (u8)IPW_MAX_RATES); |
| rates->num_rates = 0; |
| for (i = 0; i < num_rates; i++) { |
| if (!ipw_is_rate_in_mask(priv, network->mode, network->rates[i])) { |
| IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", |
| network->rates[i], priv->rates_mask); |
| continue; |
| } |
| |
| rates->supported_rates[rates->num_rates++] = network->rates[i]; |
| } |
| |
| num_rates = min(network->rates_ex_len, (u8)(IPW_MAX_RATES - num_rates)); |
| for (i = 0; i < num_rates; i++) { |
| if (!ipw_is_rate_in_mask(priv, network->mode, network->rates_ex[i])) { |
| IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", |
| network->rates_ex[i], priv->rates_mask); |
| continue; |
| } |
| |
| rates->supported_rates[rates->num_rates++] = network->rates_ex[i]; |
| } |
| |
| return rates->num_rates; |
| } |
| |
| static inline void ipw_copy_rates(struct ipw_supported_rates *dest, |
| const struct ipw_supported_rates *src) |
| { |
| u8 i; |
| for (i = 0; i < src->num_rates; i++) |
| dest->supported_rates[i] = src->supported_rates[i]; |
| dest->num_rates = src->num_rates; |
| } |
| |
| /* TODO: Look at sniffed packets in the air to determine if the basic rate |
| * mask should ever be used -- right now all callers to add the scan rates are |
| * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ |
| static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, |
| u8 modulation, u32 rate_mask) |
| { |
| u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? |
| IEEE80211_BASIC_RATE_MASK : 0; |
| |
| if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB; |
| |
| if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB; |
| |
| if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK) |
| rates->supported_rates[rates->num_rates++] = basic_mask | |
| IEEE80211_CCK_RATE_5MB; |
| |
| if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK) |
| rates->supported_rates[rates->num_rates++] = basic_mask | |
| IEEE80211_CCK_RATE_11MB; |
| } |
| |
| static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, |
| u8 modulation, u32 rate_mask) |
| { |
| u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? |
| IEEE80211_BASIC_RATE_MASK : 0; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK) |
| rates->supported_rates[rates->num_rates++] = basic_mask | |
| IEEE80211_OFDM_RATE_6MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_OFDM_RATE_9MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK) |
| rates->supported_rates[rates->num_rates++] = basic_mask | |
| IEEE80211_OFDM_RATE_12MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_OFDM_RATE_18MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK) |
| rates->supported_rates[rates->num_rates++] = basic_mask | |
| IEEE80211_OFDM_RATE_24MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_OFDM_RATE_36MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_OFDM_RATE_48MB; |
| |
| if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK) |
| rates->supported_rates[rates->num_rates++] = |
| IEEE80211_OFDM_RATE_54MB; |
| } |
| |
| struct ipw_network_match { |
| struct ieee80211_network *network; |
| struct ipw_supported_rates rates; |
| }; |
| |
| static int ipw_best_network( |
| struct ipw_priv *priv, |
| struct ipw_network_match *match, |
| struct ieee80211_network *network, |
| int roaming) |
| { |
| struct ipw_supported_rates rates; |
| |
| /* Verify that this network's capability is compatible with the |
| * current mode (AdHoc or Infrastructure) */ |
| if ((priv->ieee->iw_mode == IW_MODE_INFRA && |
| !(network->capability & WLAN_CAPABILITY_ESS)) || |
| (priv->ieee->iw_mode == IW_MODE_ADHOC && |
| !(network->capability & WLAN_CAPABILITY_IBSS))) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to " |
| "capability mismatch.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid)); |
| return 0; |
| } |
| |
| /* If we do not have an ESSID for this AP, we can not associate with |
| * it */ |
| if (network->flags & NETWORK_EMPTY_ESSID) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of hidden ESSID.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid)); |
| return 0; |
| } |
| |
| if (unlikely(roaming)) { |
| /* If we are roaming, then ensure check if this is a valid |
| * network to try and roam to */ |
| if ((network->ssid_len != match->network->ssid_len) || |
| memcmp(network->ssid, match->network->ssid, |
| network->ssid_len)) { |
| IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded " |
| "because of non-network ESSID.\n", |
| escape_essid(network->ssid, |
| network->ssid_len), |
| MAC_ARG(network->bssid)); |
| return 0; |
| } |
| } else { |
| /* If an ESSID has been configured then compare the broadcast |
| * ESSID to ours */ |
| if ((priv->config & CFG_STATIC_ESSID) && |
| ((network->ssid_len != priv->essid_len) || |
| memcmp(network->ssid, priv->essid, |
| min(network->ssid_len, priv->essid_len)))) { |
| char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; |
| strncpy(escaped, escape_essid( |
| network->ssid, network->ssid_len), |
| sizeof(escaped)); |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of ESSID mismatch: '%s'.\n", |
| escaped, MAC_ARG(network->bssid), |
| escape_essid(priv->essid, priv->essid_len)); |
| return 0; |
| } |
| } |
| |
| /* If the old network rate is better than this one, don't bother |
| * testing everything else. */ |
| if (match->network && match->network->stats.rssi > |
| network->stats.rssi) { |
| char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; |
| strncpy(escaped, |
| escape_essid(network->ssid, network->ssid_len), |
| sizeof(escaped)); |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because " |
| "'%s (" MAC_FMT ")' has a stronger signal.\n", |
| escaped, MAC_ARG(network->bssid), |
| escape_essid(match->network->ssid, |
| match->network->ssid_len), |
| MAC_ARG(match->network->bssid)); |
| return 0; |
| } |
| |
| /* If this network has already had an association attempt within the |
| * last 3 seconds, do not try and associate again... */ |
| if (network->last_associate && |
| time_after(network->last_associate + (HZ * 5UL), jiffies)) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of storming (%lu since last " |
| "assoc attempt).\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid), |
| (jiffies - network->last_associate) / HZ); |
| return 0; |
| } |
| |
| /* Now go through and see if the requested network is valid... */ |
| if (priv->ieee->scan_age != 0 && |
| jiffies - network->last_scanned > priv->ieee->scan_age) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of age: %lums.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid), |
| (jiffies - network->last_scanned) / (HZ / 100)); |
| return 0; |
| } |
| |
| if ((priv->config & CFG_STATIC_CHANNEL) && |
| (network->channel != priv->channel)) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of channel mismatch: %d != %d.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid), |
| network->channel, priv->channel); |
| return 0; |
| } |
| |
| /* Verify privacy compatability */ |
| if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != |
| ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of privacy mismatch: %s != %s.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid), |
| priv->capability & CAP_PRIVACY_ON ? "on" : |
| "off", |
| network->capability & |
| WLAN_CAPABILITY_PRIVACY ?"on" : "off"); |
| return 0; |
| } |
| |
| if ((priv->config & CFG_STATIC_BSSID) && |
| memcmp(network->bssid, priv->bssid, ETH_ALEN)) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of BSSID mismatch: " MAC_FMT ".\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid), |
| MAC_ARG(priv->bssid)); |
| return 0; |
| } |
| |
| /* Filter out any incompatible freq / mode combinations */ |
| if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of invalid frequency/mode " |
| "combination.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid)); |
| return 0; |
| } |
| |
| ipw_compatible_rates(priv, network, &rates); |
| if (rates.num_rates == 0) { |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " |
| "because of no compatible rates.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid)); |
| return 0; |
| } |
| |
| /* TODO: Perform any further minimal comparititive tests. We do not |
| * want to put too much policy logic here; intelligent scan selection |
| * should occur within a generic IEEE 802.11 user space tool. */ |
| |
| /* Set up 'new' AP to this network */ |
| ipw_copy_rates(&match->rates, &rates); |
| match->network = network; |
| |
| IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n", |
| escape_essid(network->ssid, network->ssid_len), |
| MAC_ARG(network->bssid)); |
| |
| return 1; |
| } |
| |
| |
| static void ipw_adhoc_create(struct ipw_priv *priv, |
| struct ieee80211_network *network) |
| { |
| /* |
| * For the purposes of scanning, we can set our wireless mode |
| * to trigger scans across combinations of bands, but when it |
| * comes to creating a new ad-hoc network, we have tell the FW |
| * exactly which band to use. |
| * |
| * We also have the possibility of an invalid channel for the |
| * chossen band. Attempting to create a new ad-hoc network |
| * with an invalid channel for wireless mode will trigger a |
| * FW fatal error. |
| */ |
| network->mode = is_valid_channel(priv->ieee->mode, priv->channel); |
| if (network->mode) { |
| network->channel = priv->channel; |
| } else { |
| IPW_WARNING("Overriding invalid channel\n"); |
| if (priv->ieee->mode & IEEE_A) { |
| network->mode = IEEE_A; |
| priv->channel = band_a_active_channel[0]; |
| } else if (priv->ieee->mode & IEEE_G) { |
| network->mode = IEEE_G; |
| priv->channel = band_b_active_channel[0]; |
| } else { |
| network->mode = IEEE_B; |
| priv->channel = band_b_active_channel[0]; |
| } |
| } |
| |
| network->channel = priv->channel; |
| priv->config |= CFG_ADHOC_PERSIST; |
| ipw_create_bssid(priv, network->bssid); |
| network->ssid_len = priv->essid_len; |
| memcpy(network->ssid, priv->essid, priv->essid_len); |
| memset(&network->stats, 0, sizeof(network->stats)); |
| network->capability = WLAN_CAPABILITY_IBSS; |
| if (priv->capability & CAP_PRIVACY_ON) |
| network->capability |= WLAN_CAPABILITY_PRIVACY; |
| network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); |
| memcpy(network->rates, priv->rates.supported_rates, |
| network->rates_len); |
| network->rates_ex_len = priv->rates.num_rates - network->rates_len; |
| memcpy(network->rates_ex, |
| &priv->rates.supported_rates[network->rates_len], |
| network->rates_ex_len); |
| network->last_scanned = 0; |
| network->flags = 0; |
| network->last_associate = 0; |
| network->time_stamp[0] = 0; |
| network->time_stamp[1] = 0; |
| network->beacon_interval = 100; /* Default */ |
| network->listen_interval = 10; /* Default */ |
| network->atim_window = 0; /* Default */ |
| #ifdef CONFIG_IEEE80211_WPA |
| network->wpa_ie_len = 0; |
| network->rsn_ie_len = 0; |
| #endif /* CONFIG_IEEE80211_WPA */ |
| } |
| |
| static void ipw_send_wep_keys(struct ipw_priv *priv) |
| { |
| struct ipw_wep_key *key; |
| int i; |
| struct host_cmd cmd = { |
| .cmd = IPW_CMD_WEP_KEY, |
| .len = sizeof(*key) |
| }; |
| |
| key = (struct ipw_wep_key *)&cmd.param; |
| key->cmd_id = DINO_CMD_WEP_KEY; |
| key->seq_num = 0; |
| |
| for (i = 0; i < 4; i++) { |
| key->key_index = i; |
| if (!(priv->sec.flags & (1 << i))) { |
| key->key_size = 0; |
| } else { |
| key->key_size = priv->sec.key_sizes[i]; |
| memcpy(key->key, priv->sec.keys[i], key->key_size); |
| } |
| |
| if (ipw_send_cmd(priv, &cmd)) { |
| IPW_ERROR("failed to send WEP_KEY command\n"); |
| return; |
| } |
| } |
| } |
| |
| static void ipw_adhoc_check(void *data) |
| { |
| struct ipw_priv *priv = data; |
| |
| if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold && |
| !(priv->config & CFG_ADHOC_PERSIST)) { |
| IPW_DEBUG_SCAN("Disassociating due to missed beacons\n"); |
| ipw_remove_current_network(priv); |
| ipw_disassociate(priv); |
| return; |
| } |
| |
| queue_delayed_work(priv->workqueue, &priv->adhoc_check, |
| priv->assoc_request.beacon_interval); |
| } |
| |
| #ifdef CONFIG_IPW_DEBUG |
| static void ipw_debug_config(struct ipw_priv *priv) |
| { |
| IPW_DEBUG_INFO("Scan completed, no valid APs matched " |
| "[CFG 0x%08X]\n", priv->config); |
| if (priv->config & CFG_STATIC_CHANNEL) |
| IPW_DEBUG_INFO("Channel locked to %d\n", |
| priv->channel); |
| else |
| IPW_DEBUG_INFO("Channel unlocked.\n"); |
| if (priv->config & CFG_STATIC_ESSID) |
| IPW_DEBUG_INFO("ESSID locked to '%s'\n", |
| escape_essid(priv->essid, |
| priv->essid_len)); |
| else |
| IPW_DEBUG_INFO("ESSID unlocked.\n"); |
| if (priv->config & CFG_STATIC_BSSID) |
| IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel); |
| else |
| IPW_DEBUG_INFO("BSSID unlocked.\n"); |
| if (priv->capability & CAP_PRIVACY_ON) |
| IPW_DEBUG_INFO("PRIVACY on\n"); |
| else |
| IPW_DEBUG_INFO("PRIVACY off\n"); |
| IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); |
| } |
| #else |
| #define ipw_debug_config(x) do {} while (0) |
| #endif |
| |
| static inline void ipw_set_fixed_rate(struct ipw_priv *priv, |
| struct ieee80211_network *network) |
| { |
| /* TODO: Verify that this works... */ |
| struct ipw_fixed_rate fr = { |
| .tx_rates = priv->rates_mask |
| }; |
| u32 reg; |
| u16 mask = 0; |
| |
| /* Identify 'current FW band' and match it with the fixed |
| * Tx rates */ |
| |
| switch (priv->ieee->freq_band) { |
| case IEEE80211_52GHZ_BAND: /* A only */ |
| /* IEEE_A */ |
| if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) { |
| /* Invalid fixed rate mask */ |
| fr.tx_rates = 0; |
| break; |
| } |
| |
| fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A; |
| break; |
| |
| default: /* 2.4Ghz or Mixed */ |
| /* IEEE_B */ |
| if (network->mode == IEEE_B) { |
| if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) { |
| /* Invalid fixed rate mask */ |
| fr.tx_rates = 0; |
| } |
| break; |
| } |
| |
| /* IEEE_G */ |
| if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK | |
| IEEE80211_OFDM_RATES_MASK)) { |
| /* Invalid fixed rate mask */ |
| fr.tx_rates = 0; |
| break; |
| } |
| |
| if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) { |
| mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1); |
| fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK; |
| } |
| |
| if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) { |
| mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1); |
| fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK; |
| } |
| |
| if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) { |
| mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1); |
| fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK; |
| } |
| |
| fr.tx_rates |= mask; |
| break; |
| } |
| |
| reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); |
| ipw_write_reg32(priv, reg, *(u32*)&fr); |
| } |
| |
| static int ipw_associate_network(struct ipw_priv *priv, |
| struct ieee80211_network *network, |
| struct ipw_supported_rates *rates, |
| int roaming) |
| { |
| int err; |
| |
| if (priv->config & CFG_FIXED_RATE) |
| ipw_set_fixed_rate(priv, network); |
| |
| if (!(priv->config & CFG_STATIC_ESSID)) { |
| priv->essid_len = min(network->ssid_len, |
| (u8)IW_ESSID_MAX_SIZE); |
| memcpy(priv->essid, network->ssid, priv->essid_len); |
| } |
| |
| network->last_associate = jiffies; |
| |
| memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); |
| priv->assoc_request.channel = network->channel; |
| if ((priv->capability & CAP_PRIVACY_ON) && |
| (priv->capability & CAP_SHARED_KEY)) { |
| priv->assoc_request.auth_type = AUTH_SHARED_KEY; |
| priv->assoc_request.auth_key = priv->sec.active_key; |
| } else { |
| priv->assoc_request.auth_type = AUTH_OPEN; |
| priv->assoc_request.auth_key = 0; |
| } |
| |
| if (priv->capability & CAP_PRIVACY_ON) |
| ipw_send_wep_keys(priv); |
| |
| /* |
| * It is valid for our ieee device to support multiple modes, but |
| * when it comes to associating to a given network we have to choose |
| * just one mode. |
| */ |
| if (network->mode & priv->ieee->mode & IEEE_A) |
| priv->assoc_request.ieee_mode = IPW_A_MODE; |
| else if (network->mode & priv->ieee->mode & IEEE_G) |
| priv->assoc_request.ieee_mode = IPW_G_MODE; |
| else if (network->mode & priv->ieee->mode & IEEE_B) |
| priv->assoc_request.ieee_mode = IPW_B_MODE; |
| |
| IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, " |
| "802.11%c [%d], enc=%s%s%s%c%c\n", |
| roaming ? "Rea" : "A", |
| escape_essid(priv->essid, priv->essid_len), |
| network->channel, |
| ipw_modes[priv->assoc_request.ieee_mode], |
| rates->num_rates, |
| priv->capability & CAP_PRIVACY_ON ? "on " : "off", |
| priv->capability & CAP_PRIVACY_ON ? |
| (priv->capability & CAP_SHARED_KEY ? "(shared)" : |
| "(open)") : "", |
| priv->capability & CAP_PRIVACY_ON ? " key=" : "", |
| priv->capability & CAP_PRIVACY_ON ? |
| '1' + priv->sec.active_key : '.', |
| priv->capability & CAP_PRIVACY_ON ? |
| '.' : ' '); |
| |
| priv->assoc_request.beacon_interval = network->beacon_interval; |
| if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && |
| (network->time_stamp[0] == 0) && |
| (network->time_stamp[1] == 0)) { |
| priv->assoc_request.assoc_type = HC_IBSS_START; |
| priv->assoc_request.assoc_tsf_msw = 0; |
| priv->assoc_request.assoc_tsf_lsw = 0; |
| } else { |
| if (unlikely(roaming)) |
| priv->assoc_request.assoc_type = HC_REASSOCIATE; |
| else |
| priv->assoc_request.assoc_type = HC_ASSOCIATE; |
| priv->assoc_request.assoc_tsf_msw = network->time_stamp[1]; |
| priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0]; |
| } |
| |
| memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN); |
| |
| if (priv->ieee->iw_mode == IW_MODE_ADHOC) { |
| memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN); |
| priv->assoc_request.atim_window = network->atim_window; |
| } else { |
| memcpy(&priv->assoc_request.dest, network->bssid, |
| ETH_ALEN); |
| priv->assoc_request.atim_window = 0; |
| } |
| |
| priv->assoc_request.capability = network->capability; |
| priv->assoc_request.listen_interval = network->listen_interval; |
| |
| err = ipw_send_ssid(priv, priv->essid, priv->essid_len); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); |
| return err; |
| } |
| |
| rates->ieee_mode = priv->assoc_request.ieee_mode; |
| rates->purpose = IPW_RATE_CONNECT; |
| ipw_send_supported_rates(priv, rates); |
| |
| if (priv->assoc_request.ieee_mode == IPW_G_MODE) |
| priv->sys_config.dot11g_auto_detection = 1; |
| else |
| priv->sys_config.dot11g_auto_detection = 0; |
| err = ipw_send_system_config(priv, &priv->sys_config); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); |
| return err; |
| } |
| |
| IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); |
| err = ipw_set_sensitivity(priv, network->stats.rssi); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send associate command failed.\n"); |
| return err; |
| } |
| |
| /* |
| * If preemption is enabled, it is possible for the association |
| * to complete before we return from ipw_send_associate. Therefore |
| * we have to be sure and update our priviate data first. |
| */ |
| priv->channel = network->channel; |
| memcpy(priv->bssid, network->bssid, ETH_ALEN); |
| priv->status |= STATUS_ASSOCIATING; |
| priv->status &= ~STATUS_SECURITY_UPDATED; |
| |
| priv->assoc_network = network; |
| |
| err = ipw_send_associate(priv, &priv->assoc_request); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send associate command failed.\n"); |
| return err; |
| } |
| |
| IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n", |
| escape_essid(priv->essid, priv->essid_len), |
| MAC_ARG(priv->bssid)); |
| |
| return 0; |
| } |
| |
| static void ipw_roam(void *data) |
| { |
| struct ipw_priv *priv = data; |
| struct ieee80211_network *network = NULL; |
| struct ipw_network_match match = { |
| .network = priv->assoc_network |
| }; |
| |
| /* The roaming process is as follows: |
| * |
| * 1. Missed beacon threshold triggers the roaming process by |
| * setting the status ROAM bit and requesting a scan. |
| * 2. When the scan completes, it schedules the ROAM work |
| * 3. The ROAM work looks at all of the known networks for one that |
| * is a better network than the currently associated. If none |
| * found, the ROAM process is over (ROAM bit cleared) |
| * 4. If a better network is found, a disassociation request is |
| * sent. |
| * 5. When the disassociation completes, the roam work is again |
| * scheduled. The second time through, the driver is no longer |
| * associated, and the newly selected network is sent an |
| * association request. |
| * 6. At this point ,the roaming process is complete and the ROAM |
| * status bit is cleared. |
| */ |
| |
| /* If we are no longer associated, and the roaming bit is no longer |
| * set, then we are not actively roaming, so just return */ |
| if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) |
| return; |
| |
| if (priv->status & STATUS_ASSOCIATED) { |
| /* First pass through ROAM process -- look for a better |
| * network */ |
| u8 rssi = priv->assoc_network->stats.rssi; |
| priv->assoc_network->stats.rssi = -128; |
| list_for_each_entry(network, &priv->ieee->network_list, list) { |
| if (network != priv->assoc_network) |
| ipw_best_network(priv, &match, network, 1); |
| } |
| priv->assoc_network->stats.rssi = rssi; |
| |
| if (match.network == priv->assoc_network) { |
| IPW_DEBUG_ASSOC("No better APs in this network to " |
| "roam to.\n"); |
| priv->status &= ~STATUS_ROAMING; |
| ipw_debug_config(priv); |
| return; |
| } |
| |
| ipw_send_disassociate(priv, 1); |
| priv->assoc_network = match.network; |
| |
| return; |
| } |
| |
| /* Second pass through ROAM process -- request association */ |
| ipw_compatible_rates(priv, priv->assoc_network, &match.rates); |
| ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); |
| priv->status &= ~STATUS_ROAMING; |
| } |
| |
| static void ipw_associate(void *data) |
| { |
| struct ipw_priv *priv = data; |
| |
| struct ieee80211_network *network = NULL; |
| struct ipw_network_match match = { |
| .network = NULL |
| }; |
| struct ipw_supported_rates *rates; |
| struct list_head *element; |
| |
| if (!(priv->config & CFG_ASSOCIATE) && |
| !(priv->config & (CFG_STATIC_ESSID | |
| CFG_STATIC_CHANNEL | |
| CFG_STATIC_BSSID))) { |
| IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); |
| return; |
| } |
| |
| list_for_each_entry(network, &priv->ieee->network_list, list) |
| ipw_best_network(priv, &match, network, 0); |
| |
| network = match.network; |
| rates = &match.rates; |
| |
| if (network == NULL && |
| priv->ieee->iw_mode == IW_MODE_ADHOC && |
| priv->config & CFG_ADHOC_CREATE && |
| priv->config & CFG_STATIC_ESSID && |
| !list_empty(&priv->ieee->network_free_list)) { |
| element = priv->ieee->network_free_list.next; |
| network = list_entry(element, struct ieee80211_network, |
| list); |
| ipw_adhoc_create(priv, network); |
| rates = &priv->rates; |
| list_del(element); |
| list_add_tail(&network->list, &priv->ieee->network_list); |
| } |
| |
| /* If we reached the end of the list, then we don't have any valid |
| * matching APs */ |
| if (!network) { |
| ipw_debug_config(priv); |
| |
| queue_delayed_work(priv->workqueue, &priv->request_scan, |
| SCAN_INTERVAL); |
| |
| return; |
| } |
| |
| ipw_associate_network(priv, network, rates, 0); |
| } |
| |
| static inline void ipw_handle_data_packet(struct ipw_priv *priv, |
| struct ipw_rx_mem_buffer *rxb, |
| struct ieee80211_rx_stats *stats) |
| { |
| struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; |
| |
| /* We received data from the HW, so stop the watchdog */ |
| priv->net_dev->trans_start = jiffies; |
| |
| /* We only process data packets if the |
| * interface is open */ |
| if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) > |
| skb_tailroom(rxb->skb))) { |
| priv->ieee->stats.rx_errors++; |
| priv->wstats.discard.misc++; |
| IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); |
| return; |
| } else if (unlikely(!netif_running(priv->net_dev))) { |
| priv->ieee->stats.rx_dropped++; |
| priv->wstats.discard.misc++; |
| IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); |
| return; |
| } |
| |
| /* Advance skb->data to the start of the actual payload */ |
| skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); |
| |
| /* Set the size of the skb to the size of the frame */ |
| skb_put(rxb->skb, pkt->u.frame.length); |
| |
| IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); |
| |
| if (!ieee80211_rx(priv->ieee, rxb->skb, stats)) |
| priv->ieee->stats.rx_errors++; |
| else /* ieee80211_rx succeeded, so it now owns the SKB */ |
| rxb->skb = NULL; |
| } |
| |
| |
| /* |
| * Main entry function for recieving a packet with 80211 headers. This |
| * should be called when ever the FW has notified us that there is a new |
| * skb in the recieve queue. |
| */ |
| static void ipw_rx(struct ipw_priv *priv) |
| { |
| struct ipw_rx_mem_buffer *rxb; |
| struct ipw_rx_packet *pkt; |
| struct ieee80211_hdr *header; |
| u32 r, w, i; |
| u8 network_packet; |
| |
| r = ipw_read32(priv, CX2_RX_READ_INDEX); |
| w = ipw_read32(priv, CX2_RX_WRITE_INDEX); |
| i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE; |
| |
| while (i != r) { |
| rxb = priv->rxq->queue[i]; |
| #ifdef CONFIG_IPW_DEBUG |
| if (unlikely(rxb == NULL)) { |
| printk(KERN_CRIT "Queue not allocated!\n"); |
| break; |
| } |
| #endif |
| priv->rxq->queue[i] = NULL; |
| |
| pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, |
| CX2_RX_BUF_SIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| pkt = (struct ipw_rx_packet *)rxb->skb->data; |
| IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", |
| pkt->header.message_type, |
| pkt->header.rx_seq_num, |
| pkt->header.control_bits); |
| |
| switch (pkt->header.message_type) { |
| case RX_FRAME_TYPE: /* 802.11 frame */ { |
| struct ieee80211_rx_stats stats = { |
| .rssi = pkt->u.frame.rssi_dbm - |
| IPW_RSSI_TO_DBM, |
| .signal = pkt->u.frame.signal, |
| .rate = pkt->u.frame.rate, |
| .mac_time = jiffies, |
| .received_channel = |
| pkt->u.frame.received_channel, |
| .freq = (pkt->u.frame.control & (1<<0)) ? |
| IEEE80211_24GHZ_BAND : IEEE80211_52GHZ_BAND, |
| .len = pkt->u.frame.length, |
| }; |
| |
| if (stats.rssi != 0) |
| stats.mask |= IEEE80211_STATMASK_RSSI; |
| if (stats.signal != 0) |
| stats.mask |= IEEE80211_STATMASK_SIGNAL; |
| if (stats.rate != 0) |
| stats.mask |= IEEE80211_STATMASK_RATE; |
| |
| priv->rx_packets++; |
| |
| #ifdef CONFIG_IPW_PROMISC |
| if (priv->ieee->iw_mode == IW_MODE_MONITOR) { |
| ipw_handle_data_packet(priv, rxb, &stats); |
| break; |
| } |
| #endif |
| |
| header = (struct ieee80211_hdr *)(rxb->skb->data + |
| IPW_RX_FRAME_SIZE); |
| /* TODO: Check Ad-Hoc dest/source and make sure |
| * that we are actually parsing these packets |
| * correctly -- we should probably use the |
| * frame control of the packet and disregard |
| * the current iw_mode */ |
| switch (priv->ieee->iw_mode) { |
| case IW_MODE_ADHOC: |
| network_packet = |
| !memcmp(header->addr1, |
| priv->net_dev->dev_addr, |
| ETH_ALEN) || |
| !memcmp(header->addr3, |
| priv->bssid, ETH_ALEN) || |
| is_broadcast_ether_addr(header->addr1) || |
| is_multicast_ether_addr(header->addr1); |
| break; |
| |
| case IW_MODE_INFRA: |
| default: |
| network_packet = |
| !memcmp(header->addr3, |
| priv->bssid, ETH_ALEN) || |
| !memcmp(header->addr1, |
| priv->net_dev->dev_addr, |
| ETH_ALEN) || |
| is_broadcast_ether_addr(header->addr1) || |
| is_multicast_ether_addr(header->addr1); |
| break; |
| } |
| |
| if (network_packet && priv->assoc_network) { |
| priv->assoc_network->stats.rssi = stats.rssi; |
| average_add(&priv->average_rssi, |
| stats.rssi); |
| priv->last_rx_rssi = stats.rssi; |
| } |
| |
| IPW_DEBUG_RX("Frame: len=%u\n", pkt->u.frame.length); |
| |
| if (pkt->u.frame.length < frame_hdr_len(header)) { |
| IPW_DEBUG_DROP("Received packet is too small. " |
| "Dropping.\n"); |
| priv->ieee->stats.rx_errors++; |
| priv->wstats.discard.misc++; |
| break; |
| } |
| |
| switch (WLAN_FC_GET_TYPE(header->frame_ctl)) { |
| case IEEE80211_FTYPE_MGMT: |
| ieee80211_rx_mgt(priv->ieee, header, &stats); |
| if (priv->ieee->iw_mode == IW_MODE_ADHOC && |
| ((WLAN_FC_GET_STYPE(header->frame_ctl) == |
| IEEE80211_STYPE_PROBE_RESP) || |
| (WLAN_FC_GET_STYPE(header->frame_ctl) == |
| IEEE80211_STYPE_BEACON)) && |
| !memcmp(header->addr3, priv->bssid, ETH_ALEN)) |
| ipw_add_station(priv, header->addr2); |
| break; |
| |
| case IEEE80211_FTYPE_CTL: |
| break; |
| |
| case IEEE80211_FTYPE_DATA: |
| if (network_packet) |
| ipw_handle_data_packet(priv, rxb, &stats); |
| else |
| IPW_DEBUG_DROP("Dropping: " MAC_FMT |
| ", " MAC_FMT ", " MAC_FMT "\n", |
| MAC_ARG(header->addr1), MAC_ARG(header->addr2), |
| MAC_ARG(header->addr3)); |
| break; |
| } |
| break; |
| } |
| |
| case RX_HOST_NOTIFICATION_TYPE: { |
| IPW_DEBUG_RX("Notification: subtype=%02X flags=%02X size=%d\n", |
| pkt->u.notification.subtype, |
| pkt->u.notification.flags, |
| pkt->u.notification.size); |
| ipw_rx_notification(priv, &pkt->u.notification); |
| break; |
| } |
| |
| default: |
| IPW_DEBUG_RX("Bad Rx packet of type %d\n", |
| pkt->header.message_type); |
| break; |
| } |
| |
| /* For now we just don't re-use anything. We can tweak this |
| * later to try and re-use notification packets and SKBs that |
| * fail to Rx correctly */ |
| if (rxb->skb != NULL) { |
| dev_kfree_skb_any(rxb->skb); |
| rxb->skb = NULL; |
| } |
| |
| pci_unmap_single(priv->pci_dev, rxb->dma_addr, |
| CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); |
| list_add_tail(&rxb->list, &priv->rxq->rx_used); |
| |
| i = (i + 1) % RX_QUEUE_SIZE; |
| } |
| |
| /* Backtrack one entry */ |
| priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1; |
| |
| ipw_rx_queue_restock(priv); |
| } |
| |
| static void ipw_abort_scan(struct ipw_priv *priv) |
| { |
| int err; |
| |
| if (priv->status & STATUS_SCAN_ABORTING) { |
| IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); |
| return; |
| } |
| priv->status |= STATUS_SCAN_ABORTING; |
| |
| err = ipw_send_scan_abort(priv); |
| if (err) |
| IPW_DEBUG_HC("Request to abort scan failed.\n"); |
| } |
| |
| static int ipw_request_scan(struct ipw_priv *priv) |
| { |
| struct ipw_scan_request_ext scan; |
| int channel_index = 0; |
| int i, err, scan_type; |
| |
| if (priv->status & STATUS_EXIT_PENDING) { |
| IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n"); |
| priv->status |= STATUS_SCAN_PENDING; |
| return 0; |
| } |
| |
| if (priv->status & STATUS_SCANNING) { |
| IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n"); |
| priv->status |= STATUS_SCAN_PENDING; |
| ipw_abort_scan(priv); |
| return 0; |
| } |
| |
| if (priv->status & STATUS_SCAN_ABORTING) { |
| IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); |
| priv->status |= STATUS_SCAN_PENDING; |
| return 0; |
| } |
| |
| if (priv->status & STATUS_RF_KILL_MASK) { |
| IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n"); |
| priv->status |= STATUS_SCAN_PENDING; |
| return 0; |
| } |
| |
| memset(&scan, 0, sizeof(scan)); |
| |
| scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20; |
| scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20; |
| scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20; |
| |
| scan.full_scan_index = ieee80211_get_scans(priv->ieee); |
| /* If we are roaming, then make this a directed scan for the current |
| * network. Otherwise, ensure that every other scan is a fast |
| * channel hop scan */ |
| if ((priv->status & STATUS_ROAMING) || ( |
| !(priv->status & STATUS_ASSOCIATED) && |
| (priv->config & CFG_STATIC_ESSID) && |
| (scan.full_scan_index % 2))) { |
| err = ipw_send_ssid(priv, priv->essid, priv->essid_len); |
| if (err) { |
| IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); |
| return err; |
| } |
| |
| scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; |
| } else { |
| scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; |
| } |
| |
| if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) { |
| int start = channel_index; |
| for (i = 0; i < MAX_A_CHANNELS; i++) { |
| if (band_a_active_channel[i] == 0) |
| break; |
| if ((priv->status & STATUS_ASSOCIATED) && |
| band_a_active_channel[i] == priv->channel) |
| continue; |
| channel_index++; |
| scan.channels_list[channel_index] = |
| band_a_active_channel[i]; |
| ipw_set_scan_type(&scan, channel_index, scan_type); |
| } |
| |
| if (start != channel_index) { |
| scan.channels_list[start] = (u8)(IPW_A_MODE << 6) | |
| (channel_index - start); |
| channel_index++; |
| } |
| } |
| |
| if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) { |
| int start = channel_index; |
| for (i = 0; i < MAX_B_CHANNELS; i++) { |
| if (band_b_active_channel[i] == 0) |
| break; |
| if ((priv->status & STATUS_ASSOCIATED) && |
| band_b_active_channel[i] == priv->channel) |
| continue; |
| channel_index++; |
| scan.channels_list[channel_index] = |
| band_b_active_channel[i]; |
| ipw_set_scan_type(&scan, channel_index, scan_type); |
| } |
| |
| if (start != channel_index) { |
| scan.channels_list[start] = (u8)(IPW_B_MODE << 6) | |
| (channel_index - start); |
| } |
| } |
| |
| err = ipw_send_scan_request_ext(priv, &scan); |
| if (err) { |
| IPW_DEBUG_HC("Sending scan command failed: %08X\n", |
| err); |
| return -EIO; |
| } |
| |
| priv->status |= STATUS_SCANNING; |
| priv->status &= ~STATUS_SCAN_PENDING; |
| |
| return 0; |
| } |
| |
| /* |
| * This file defines the Wireless Extension handlers. It does not |
| * define any methods of hardware manipulation and relies on the |
| * functions defined in ipw_main to provide the HW interaction. |
| * |
| * The exception to this is the use of the ipw_get_ordinal() |
| * function used to poll the hardware vs. making unecessary calls. |
| * |
| */ |
| |
| static int ipw_wx_get_name(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| if (!(priv->status & STATUS_ASSOCIATED)) |
| strcpy(wrqu->name, "unassociated"); |
| else |
| snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c", |
| ipw_modes[priv->assoc_request.ieee_mode]); |
| IPW_DEBUG_WX("Name: %s\n", wrqu->name); |
| return 0; |
| } |
| |
| static int ipw_set_channel(struct ipw_priv *priv, u8 channel) |
| { |
| if (channel == 0) { |
| IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); |
| priv->config &= ~CFG_STATIC_CHANNEL; |
| if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | |
| STATUS_ASSOCIATING))) { |
| IPW_DEBUG_ASSOC("Attempting to associate with new " |
| "parameters.\n"); |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| priv->config |= CFG_STATIC_CHANNEL; |
| |
| if (priv->channel == channel) { |
| IPW_DEBUG_INFO( |
| "Request to set channel to current value (%d)\n", |
| channel); |
| return 0; |
| } |
| |
| IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); |
| priv->channel = channel; |
| |
| /* If we are currently associated, or trying to associate |
| * then see if this is a new channel (causing us to disassociate) */ |
| if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| IPW_DEBUG_ASSOC("Disassociating due to channel change.\n"); |
| ipw_disassociate(priv); |
| } else { |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_freq(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| struct iw_freq *fwrq = &wrqu->freq; |
| |
| /* if setting by freq convert to channel */ |
| if (fwrq->e == 1) { |
| if ((fwrq->m >= (int) 2.412e8 && |
| fwrq->m <= (int) 2.487e8)) { |
| int f = fwrq->m / 100000; |
| int c = 0; |
| |
| while ((c < REG_MAX_CHANNEL) && |
| (f != ipw_frequencies[c])) |
| c++; |
| |
| /* hack to fall through */ |
| fwrq->e = 0; |
| fwrq->m = c + 1; |
| } |
| } |
| |
| if (fwrq->e > 0 || fwrq->m > 1000) |
| return -EOPNOTSUPP; |
| |
| IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m); |
| return ipw_set_channel(priv, (u8)fwrq->m); |
| |
| return 0; |
| } |
| |
| |
| static int ipw_wx_get_freq(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| wrqu->freq.e = 0; |
| |
| /* If we are associated, trying to associate, or have a statically |
| * configured CHANNEL then return that; otherwise return ANY */ |
| if (priv->config & CFG_STATIC_CHANNEL || |
| priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) |
| wrqu->freq.m = priv->channel; |
| else |
| wrqu->freq.m = 0; |
| |
| IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel); |
| return 0; |
| } |
| |
| static int ipw_wx_set_mode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int err = 0; |
| |
| IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); |
| |
| if (wrqu->mode == priv->ieee->iw_mode) |
| return 0; |
| |
| switch (wrqu->mode) { |
| #ifdef CONFIG_IPW_PROMISC |
| case IW_MODE_MONITOR: |
| #endif |
| case IW_MODE_ADHOC: |
| case IW_MODE_INFRA: |
| break; |
| case IW_MODE_AUTO: |
| wrqu->mode = IW_MODE_INFRA; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_IPW_PROMISC |
| if (priv->ieee->iw_mode == IW_MODE_MONITOR) |
| priv->net_dev->type = ARPHRD_ETHER; |
| |
| if (wrqu->mode == IW_MODE_MONITOR) |
| priv->net_dev->type = ARPHRD_IEEE80211; |
| #endif /* CONFIG_IPW_PROMISC */ |
| |
| #ifdef CONFIG_PM |
| /* Free the existing firmware and reset the fw_loaded |
| * flag so ipw_load() will bring in the new firmawre */ |
| if (fw_loaded) { |
| fw_loaded = 0; |
| } |
| |
| release_firmware(bootfw); |
| release_firmware(ucode); |
| release_firmware(firmware); |
| bootfw = ucode = firmware = NULL; |
| #endif |
| |
| priv->ieee->iw_mode = wrqu->mode; |
| ipw_adapter_restart(priv); |
| |
| return err; |
| } |
| |
| static int ipw_wx_get_mode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| wrqu->mode = priv->ieee->iw_mode; |
| IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); |
| |
| return 0; |
| } |
| |
| |
| #define DEFAULT_RTS_THRESHOLD 2304U |
| #define MIN_RTS_THRESHOLD 1U |
| #define MAX_RTS_THRESHOLD 2304U |
| #define DEFAULT_BEACON_INTERVAL 100U |
| #define DEFAULT_SHORT_RETRY_LIMIT 7U |
| #define DEFAULT_LONG_RETRY_LIMIT 4U |
| |
| /* Values are in microsecond */ |
| static const s32 timeout_duration[] = { |
| 350000, |
| 250000, |
| 75000, |
| 37000, |
| 25000, |
| }; |
| |
| static const s32 period_duration[] = { |
| 400000, |
| 700000, |
| 1000000, |
| 1000000, |
| 1000000 |
| }; |
| |
| static int ipw_wx_get_range(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| struct iw_range *range = (struct iw_range *)extra; |
| u16 val; |
| int i; |
| |
| wrqu->data.length = sizeof(*range); |
| memset(range, 0, sizeof(*range)); |
| |
| /* 54Mbs == ~27 Mb/s real (802.11g) */ |
| range->throughput = 27 * 1000 * 1000; |
| |
| range->max_qual.qual = 100; |
| /* TODO: Find real max RSSI and stick here */ |
| range->max_qual.level = 0; |
| range->max_qual.noise = 0; |
| range->max_qual.updated = 7; /* Updated all three */ |
| |
| range->avg_qual.qual = 70; |
| /* TODO: Find real 'good' to 'bad' threshol value for RSSI */ |
| range->avg_qual.level = 0; /* FIXME to real average level */ |
| range->avg_qual.noise = 0; |
| range->avg_qual.updated = 7; /* Updated all three */ |
| |
| range->num_bitrates = min(priv->rates.num_rates, (u8)IW_MAX_BITRATES); |
| |
| for (i = 0; i < range->num_bitrates; i++) |
| range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * |
| 500000; |
| |
| range->max_rts = DEFAULT_RTS_THRESHOLD; |
| range->min_frag = MIN_FRAG_THRESHOLD; |
| range->max_frag = MAX_FRAG_THRESHOLD; |
| |
| range->encoding_size[0] = 5; |
| range->encoding_size[1] = 13; |
| range->num_encoding_sizes = 2; |
| range->max_encoding_tokens = WEP_KEYS; |
| |
| /* Set the Wireless Extension versions */ |
| range->we_version_compiled = WIRELESS_EXT; |
| range->we_version_source = 16; |
| |
| range->num_channels = FREQ_COUNT; |
| |
| val = 0; |
| for (i = 0; i < FREQ_COUNT; i++) { |
| range->freq[val].i = i + 1; |
| range->freq[val].m = ipw_frequencies[i] * 100000; |
| range->freq[val].e = 1; |
| val++; |
| |
| if (val == IW_MAX_FREQUENCIES) |
| break; |
| } |
| range->num_frequency = val; |
| |
| IPW_DEBUG_WX("GET Range\n"); |
| return 0; |
| } |
| |
| static int ipw_wx_set_wap(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| static const unsigned char any[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| static const unsigned char off[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) |
| return -EINVAL; |
| |
| if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) || |
| !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) { |
| /* we disable mandatory BSSID association */ |
| IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); |
| priv->config &= ~CFG_STATIC_BSSID; |
| if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | |
| STATUS_ASSOCIATING))) { |
| IPW_DEBUG_ASSOC("Attempting to associate with new " |
| "parameters.\n"); |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| priv->config |= CFG_STATIC_BSSID; |
| if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) { |
| IPW_DEBUG_WX("BSSID set to current BSSID.\n"); |
| return 0; |
| } |
| |
| IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n", |
| MAC_ARG(wrqu->ap_addr.sa_data)); |
| |
| memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); |
| |
| /* If we are currently associated, or trying to associate |
| * then see if this is a new BSSID (causing us to disassociate) */ |
| if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n"); |
| ipw_disassociate(priv); |
| } else { |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_wx_get_wap(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| /* If we are associated, trying to associate, or have a statically |
| * configured BSSID then return that; otherwise return ANY */ |
| if (priv->config & CFG_STATIC_BSSID || |
| priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| wrqu->ap_addr.sa_family = ARPHRD_ETHER; |
| memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN); |
| } else |
| memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN); |
| |
| IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n", |
| MAC_ARG(wrqu->ap_addr.sa_data)); |
| return 0; |
| } |
| |
| static int ipw_wx_set_essid(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| char *essid = ""; /* ANY */ |
| int length = 0; |
| |
| if (wrqu->essid.flags && wrqu->essid.length) { |
| length = wrqu->essid.length - 1; |
| essid = extra; |
| } |
| if (length == 0) { |
| IPW_DEBUG_WX("Setting ESSID to ANY\n"); |
| priv->config &= ~CFG_STATIC_ESSID; |
| if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | |
| STATUS_ASSOCIATING))) { |
| IPW_DEBUG_ASSOC("Attempting to associate with new " |
| "parameters.\n"); |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| length = min(length, IW_ESSID_MAX_SIZE); |
| |
| priv->config |= CFG_STATIC_ESSID; |
| |
| if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { |
| IPW_DEBUG_WX("ESSID set to current ESSID.\n"); |
| return 0; |
| } |
| |
| IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length), |
| length); |
| |
| priv->essid_len = length; |
| memcpy(priv->essid, essid, priv->essid_len); |
| |
| /* If we are currently associated, or trying to associate |
| * then see if this is a new ESSID (causing us to disassociate) */ |
| if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n"); |
| ipw_disassociate(priv); |
| } else { |
| ipw_associate(priv); |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_wx_get_essid(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| /* If we are associated, trying to associate, or have a statically |
| * configured ESSID then return that; otherwise return ANY */ |
| if (priv->config & CFG_STATIC_ESSID || |
| priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| IPW_DEBUG_WX("Getting essid: '%s'\n", |
| escape_essid(priv->essid, priv->essid_len)); |
| memcpy(extra, priv->essid, priv->essid_len); |
| wrqu->essid.length = priv->essid_len; |
| wrqu->essid.flags = 1; /* active */ |
| } else { |
| IPW_DEBUG_WX("Getting essid: ANY\n"); |
| wrqu->essid.length = 0; |
| wrqu->essid.flags = 0; /* active */ |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_nick(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| IPW_DEBUG_WX("Setting nick to '%s'\n", extra); |
| if (wrqu->data.length > IW_ESSID_MAX_SIZE) |
| return -E2BIG; |
| |
| wrqu->data.length = min((size_t)wrqu->data.length, sizeof(priv->nick)); |
| memset(priv->nick, 0, sizeof(priv->nick)); |
| memcpy(priv->nick, extra, wrqu->data.length); |
| IPW_DEBUG_TRACE("<<\n"); |
| return 0; |
| |
| } |
| |
| |
| static int ipw_wx_get_nick(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| IPW_DEBUG_WX("Getting nick\n"); |
| wrqu->data.length = strlen(priv->nick) + 1; |
| memcpy(extra, priv->nick, wrqu->data.length); |
| wrqu->data.flags = 1; /* active */ |
| return 0; |
| } |
| |
| |
| static int ipw_wx_set_rate(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); |
| return -EOPNOTSUPP; |
| } |
| |
| static int ipw_wx_get_rate(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv * priv = ieee80211_priv(dev); |
| wrqu->bitrate.value = priv->last_rate; |
| |
| IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value); |
| return 0; |
| } |
| |
| |
| static int ipw_wx_set_rts(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| if (wrqu->rts.disabled) |
| priv->rts_threshold = DEFAULT_RTS_THRESHOLD; |
| else { |
| if (wrqu->rts.value < MIN_RTS_THRESHOLD || |
| wrqu->rts.value > MAX_RTS_THRESHOLD) |
| return -EINVAL; |
| |
| priv->rts_threshold = wrqu->rts.value; |
| } |
| |
| ipw_send_rts_threshold(priv, priv->rts_threshold); |
| IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold); |
| return 0; |
| } |
| |
| static int ipw_wx_get_rts(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| wrqu->rts.value = priv->rts_threshold; |
| wrqu->rts.fixed = 0; /* no auto select */ |
| wrqu->rts.disabled = |
| (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); |
| |
| IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value); |
| return 0; |
| } |
| |
| |
| static int ipw_wx_set_txpow(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| struct ipw_tx_power tx_power; |
| int i; |
| |
| if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) |
| return -EINPROGRESS; |
| |
| if (wrqu->power.flags != IW_TXPOW_DBM) |
| return -EINVAL; |
| |
| if ((wrqu->power.value > 20) || |
| (wrqu->power.value < -12)) |
| return -EINVAL; |
| |
| priv->tx_power = wrqu->power.value; |
| |
| memset(&tx_power, 0, sizeof(tx_power)); |
| |
| /* configure device for 'G' band */ |
| tx_power.ieee_mode = IPW_G_MODE; |
| tx_power.num_channels = 11; |
| for (i = 0; i < 11; i++) { |
| tx_power.channels_tx_power[i].channel_number = i + 1; |
| tx_power.channels_tx_power[i].tx_power = priv->tx_power; |
| } |
| if (ipw_send_tx_power(priv, &tx_power)) |
| goto error; |
| |
| /* configure device to also handle 'B' band */ |
| tx_power.ieee_mode = IPW_B_MODE; |
| if (ipw_send_tx_power(priv, &tx_power)) |
| goto error; |
| |
| return 0; |
| |
| error: |
| return -EIO; |
| } |
| |
| |
| static int ipw_wx_get_txpow(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| wrqu->power.value = priv->tx_power; |
| wrqu->power.fixed = 1; |
| wrqu->power.flags = IW_TXPOW_DBM; |
| wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; |
| |
| IPW_DEBUG_WX("GET TX Power -> %s %d \n", |
| wrqu->power.disabled ? "ON" : "OFF", |
| wrqu->power.value); |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_frag(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| if (wrqu->frag.disabled) |
| priv->ieee->fts = DEFAULT_FTS; |
| else { |
| if (wrqu->frag.value < MIN_FRAG_THRESHOLD || |
| wrqu->frag.value > MAX_FRAG_THRESHOLD) |
| return -EINVAL; |
| |
| priv->ieee->fts = wrqu->frag.value & ~0x1; |
| } |
| |
| ipw_send_frag_threshold(priv, wrqu->frag.value); |
| IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value); |
| return 0; |
| } |
| |
| static int ipw_wx_get_frag(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| wrqu->frag.value = priv->ieee->fts; |
| wrqu->frag.fixed = 0; /* no auto select */ |
| wrqu->frag.disabled = |
| (wrqu->frag.value == DEFAULT_FTS); |
| |
| IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value); |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_retry(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); |
| return -EOPNOTSUPP; |
| } |
| |
| |
| static int ipw_wx_get_retry(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); |
| return -EOPNOTSUPP; |
| } |
| |
| |
| static int ipw_wx_set_scan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| IPW_DEBUG_WX("Start scan\n"); |
| if (ipw_request_scan(priv)) |
| return -EIO; |
| return 0; |
| } |
| |
| static int ipw_wx_get_scan(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra); |
| } |
| |
| static int ipw_wx_set_encode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *key) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key); |
| } |
| |
| static int ipw_wx_get_encode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *key) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key); |
| } |
| |
| static int ipw_wx_set_power(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int err; |
| |
| if (wrqu->power.disabled) { |
| priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); |
| err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); |
| if (err) { |
| IPW_DEBUG_WX("failed setting power mode.\n"); |
| return err; |
| } |
| |
| IPW_DEBUG_WX("SET Power Management Mode -> off\n"); |
| |
| return 0; |
| } |
| |
| switch (wrqu->power.flags & IW_POWER_MODE) { |
| case IW_POWER_ON: /* If not specified */ |
| case IW_POWER_MODE: /* If set all mask */ |
| case IW_POWER_ALL_R: /* If explicitely state all */ |
| break; |
| default: /* Otherwise we don't support it */ |
| IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", |
| wrqu->power.flags); |
| return -EOPNOTSUPP; |
| } |
| |
| /* If the user hasn't specified a power management mode yet, default |
| * to BATTERY */ |
| if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) |
| priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; |
| else |
| priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; |
| err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); |
| if (err) { |
| IPW_DEBUG_WX("failed setting power mode.\n"); |
| return err; |
| } |
| |
| IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", |
| priv->power_mode); |
| |
| return 0; |
| } |
| |
| static int ipw_wx_get_power(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| if (!(priv->power_mode & IPW_POWER_ENABLED)) { |
| wrqu->power.disabled = 1; |
| } else { |
| wrqu->power.disabled = 0; |
| } |
| |
| IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_powermode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int mode = *(int *)extra; |
| int err; |
| |
| if ((mode < 1) || (mode > IPW_POWER_LIMIT)) { |
| mode = IPW_POWER_AC; |
| priv->power_mode = mode; |
| } else { |
| priv->power_mode = IPW_POWER_ENABLED | mode; |
| } |
| |
| if (priv->power_mode != mode) { |
| err = ipw_send_power_mode(priv, mode); |
| |
| if (err) { |
| IPW_DEBUG_WX("failed setting power mode.\n"); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define MAX_WX_STRING 80 |
| static int ipw_wx_get_powermode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int level = IPW_POWER_LEVEL(priv->power_mode); |
| char *p = extra; |
| |
| p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); |
| |
| switch (level) { |
| case IPW_POWER_AC: |
| p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); |
| break; |
| case IPW_POWER_BATTERY: |
| p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); |
| break; |
| default: |
| p += snprintf(p, MAX_WX_STRING - (p - extra), |
| "(Timeout %dms, Period %dms)", |
| timeout_duration[level - 1] / 1000, |
| period_duration[level - 1] / 1000); |
| } |
| |
| if (!(priv->power_mode & IPW_POWER_ENABLED)) |
| p += snprintf(p, MAX_WX_STRING - (p - extra)," OFF"); |
| |
| wrqu->data.length = p - extra + 1; |
| |
| return 0; |
| } |
| |
| static int ipw_wx_set_wireless_mode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int mode = *(int *)extra; |
| u8 band = 0, modulation = 0; |
| |
| if (mode == 0 || mode & ~IEEE_MODE_MASK) { |
| IPW_WARNING("Attempt to set invalid wireless mode: %d\n", |
| mode); |
| return -EINVAL; |
| } |
| |
| if (priv->adapter == IPW_2915ABG) { |
| priv->ieee->abg_ture = 1; |
| if (mode & IEEE_A) { |
| band |= IEEE80211_52GHZ_BAND; |
| modulation |= IEEE80211_OFDM_MODULATION; |
| } else |
| priv->ieee->abg_ture = 0; |
| } else { |
| if (mode & IEEE_A) { |
| IPW_WARNING("Attempt to set 2200BG into " |
| "802.11a mode\n"); |
| return -EINVAL; |
| } |
| |
| priv->ieee->abg_ture = 0; |
| } |
| |
| if (mode & IEEE_B) { |
| band |= IEEE80211_24GHZ_BAND; |
| modulation |= IEEE80211_CCK_MODULATION; |
| } else |
| priv->ieee->abg_ture = 0; |
| |
| if (mode & IEEE_G) { |
| band |= IEEE80211_24GHZ_BAND; |
| modulation |= IEEE80211_OFDM_MODULATION; |
| } else |
| priv->ieee->abg_ture = 0; |
| |
| priv->ieee->mode = mode; |
| priv->ieee->freq_band = band; |
| priv->ieee->modulation = modulation; |
| init_supported_rates(priv, &priv->rates); |
| |
| /* If we are currently associated, or trying to associate |
| * then see if this is a new configuration (causing us to |
| * disassociate) */ |
| if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { |
| /* The resulting association will trigger |
| * the new rates to be sent to the device */ |
| IPW_DEBUG_ASSOC("Disassociating due to mode change.\n"); |
| ipw_disassociate(priv); |
| } else |
| ipw_send_supported_rates(priv, &priv->rates); |
| |
| IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", |
| mode & IEEE_A ? 'a' : '.', |
| mode & IEEE_B ? 'b' : '.', |
| mode & IEEE_G ? 'g' : '.'); |
| return 0; |
| } |
| |
| static int ipw_wx_get_wireless_mode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| switch (priv->ieee->freq_band) { |
| case IEEE80211_24GHZ_BAND: |
| switch (priv->ieee->modulation) { |
| case IEEE80211_CCK_MODULATION: |
| strncpy(extra, "802.11b (2)", MAX_WX_STRING); |
| break; |
| case IEEE80211_OFDM_MODULATION: |
| strncpy(extra, "802.11g (4)", MAX_WX_STRING); |
| break; |
| default: |
| strncpy(extra, "802.11bg (6)", MAX_WX_STRING); |
| break; |
| } |
| break; |
| |
| case IEEE80211_52GHZ_BAND: |
| strncpy(extra, "802.11a (1)", MAX_WX_STRING); |
| break; |
| |
| default: /* Mixed Band */ |
| switch (priv->ieee->modulation) { |
| case IEEE80211_CCK_MODULATION: |
| strncpy(extra, "802.11ab (3)", MAX_WX_STRING); |
| break; |
| case IEEE80211_OFDM_MODULATION: |
| strncpy(extra, "802.11ag (5)", MAX_WX_STRING); |
| break; |
| default: |
| strncpy(extra, "802.11abg (7)", MAX_WX_STRING); |
| break; |
| } |
| break; |
| } |
| |
| IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); |
| |
| wrqu->data.length = strlen(extra) + 1; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_IPW_PROMISC |
| static int ipw_wx_set_promisc(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int *parms = (int *)extra; |
| int enable = (parms[0] > 0); |
| |
| IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]); |
| if (enable) { |
| if (priv->ieee->iw_mode != IW_MODE_MONITOR) { |
| priv->net_dev->type = ARPHRD_IEEE80211; |
| ipw_adapter_restart(priv); |
| } |
| |
| ipw_set_channel(priv, parms[1]); |
| } else { |
| if (priv->ieee->iw_mode != IW_MODE_MONITOR) |
| return 0; |
| priv->net_dev->type = ARPHRD_ETHER; |
| ipw_adapter_restart(priv); |
| } |
| return 0; |
| } |
| |
| |
| static int ipw_wx_reset(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, char *extra) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| IPW_DEBUG_WX("RESET\n"); |
| ipw_adapter_restart(priv); |
| return 0; |
| } |
| #endif // CONFIG_IPW_PROMISC |
| |
| /* Rebase the WE IOCTLs to zero for the handler array */ |
| #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT] |
| static iw_handler ipw_wx_handlers[] = |
| { |
| IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name, |
| IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq, |
| IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq, |
| IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode, |
| IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode, |
| IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range, |
| IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap, |
| IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap, |
| IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan, |
| IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan, |
| IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid, |
| IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid, |
| IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick, |
| IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick, |
| IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate, |
| IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate, |
| IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts, |
| IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts, |
| IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag, |
| IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag, |
| IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow, |
| IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow, |
| IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry, |
| IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry, |
| IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode, |
| IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode, |
| IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power, |
| IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power, |
| }; |
| |
| #define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV |
| #define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1 |
| #define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2 |
| #define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3 |
| #define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4 |
| #define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5 |
| |
| |
| static struct iw_priv_args ipw_priv_args[] = { |
| { |
| .cmd = IPW_PRIV_SET_POWER, |
| .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, |
| .name = "set_power" |
| }, |
| { |
| .cmd = IPW_PRIV_GET_POWER, |
| .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, |
| .name = "get_power" |
| }, |
| { |
| .cmd = IPW_PRIV_SET_MODE, |
| .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, |
| .name = "set_mode" |
| }, |
| { |
| .cmd = IPW_PRIV_GET_MODE, |
| .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, |
| .name = "get_mode" |
| }, |
| #ifdef CONFIG_IPW_PROMISC |
| { |
| IPW_PRIV_SET_PROMISC, |
| IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor" |
| }, |
| { |
| IPW_PRIV_RESET, |
| IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset" |
| }, |
| #endif /* CONFIG_IPW_PROMISC */ |
| }; |
| |
| static iw_handler ipw_priv_handler[] = { |
| ipw_wx_set_powermode, |
| ipw_wx_get_powermode, |
| ipw_wx_set_wireless_mode, |
| ipw_wx_get_wireless_mode, |
| #ifdef CONFIG_IPW_PROMISC |
| ipw_wx_set_promisc, |
| ipw_wx_reset, |
| #endif |
| }; |
| |
| static struct iw_handler_def ipw_wx_handler_def = |
| { |
| .standard = ipw_wx_handlers, |
| .num_standard = ARRAY_SIZE(ipw_wx_handlers), |
| .num_private = ARRAY_SIZE(ipw_priv_handler), |
| .num_private_args = ARRAY_SIZE(ipw_priv_args), |
| .private = ipw_priv_handler, |
| .private_args = ipw_priv_args, |
| }; |
| |
| |
| |
| |
| /* |
| * Get wireless statistics. |
| * Called by /proc/net/wireless |
| * Also called by SIOCGIWSTATS |
| */ |
| static struct iw_statistics *ipw_get_wireless_stats(struct net_device * dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| struct iw_statistics *wstats; |
| |
| wstats = &priv->wstats; |
| |
| /* if hw is disabled, then ipw2100_get_ordinal() can't be called. |
| * ipw2100_wx_wireless_stats seems to be called before fw is |
| * initialized. STATUS_ASSOCIATED will only be set if the hw is up |
| * and associated; if not associcated, the values are all meaningless |
| * anyway, so set them all to NULL and INVALID */ |
| if (!(priv->status & STATUS_ASSOCIATED)) { |
| wstats->miss.beacon = 0; |
| wstats->discard.retries = 0; |
| wstats->qual.qual = 0; |
| wstats->qual.level = 0; |
| wstats->qual.noise = 0; |
| wstats->qual.updated = 7; |
| wstats->qual.updated |= IW_QUAL_NOISE_INVALID | |
| IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; |
| return wstats; |
| } |
| |
| wstats->qual.qual = priv->quality; |
| wstats->qual.level = average_value(&priv->average_rssi); |
| wstats->qual.noise = average_value(&priv->average_noise); |
| wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | |
| IW_QUAL_NOISE_UPDATED; |
| |
| wstats->miss.beacon = average_value(&priv->average_missed_beacons); |
| wstats->discard.retries = priv->last_tx_failures; |
| wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; |
| |
| /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) |
| goto fail_get_ordinal; |
| wstats->discard.retries += tx_retry; */ |
| |
| return wstats; |
| } |
| |
| |
| /* net device stuff */ |
| |
| static inline void init_sys_config(struct ipw_sys_config *sys_config) |
| { |
| memset(sys_config, 0, sizeof(struct ipw_sys_config)); |
| sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */ |
| sys_config->answer_broadcast_ssid_probe = 0; |
| sys_config->accept_all_data_frames = 0; |
| sys_config->accept_non_directed_frames = 1; |
| sys_config->exclude_unicast_unencrypted = 0; |
| sys_config->disable_unicast_decryption = 1; |
| sys_config->exclude_multicast_unencrypted = 0; |
| sys_config->disable_multicast_decryption = 1; |
| sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH; |
| sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ |
| sys_config->dot11g_auto_detection = 0; |
| sys_config->enable_cts_to_self = 0; |
| sys_config->bt_coexist_collision_thr = 0; |
| sys_config->pass_noise_stats_to_host = 1; |
| } |
| |
| static int ipw_net_open(struct net_device *dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| IPW_DEBUG_INFO("dev->open\n"); |
| /* we should be verifying the device is ready to be opened */ |
| if (!(priv->status & STATUS_RF_KILL_MASK) && |
| (priv->status & STATUS_ASSOCIATED)) |
| netif_start_queue(dev); |
| return 0; |
| } |
| |
| static int ipw_net_stop(struct net_device *dev) |
| { |
| IPW_DEBUG_INFO("dev->close\n"); |
| netif_stop_queue(dev); |
| return 0; |
| } |
| |
| /* |
| todo: |
| |
| modify to send one tfd per fragment instead of using chunking. otherwise |
| we need to heavily modify the ieee80211_skb_to_txb. |
| */ |
| |
| static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) |
| txb->fragments[0]->data; |
| int i = 0; |
| struct tfd_frame *tfd; |
| struct clx2_tx_queue *txq = &priv->txq[0]; |
| struct clx2_queue *q = &txq->q; |
| u8 id, hdr_len, unicast; |
| u16 remaining_bytes; |
| |
| switch (priv->ieee->iw_mode) { |
| case IW_MODE_ADHOC: |
| hdr_len = IEEE80211_3ADDR_LEN; |
| unicast = !is_broadcast_ether_addr(hdr->addr1) && |
| !is_multicast_ether_addr(hdr->addr1); |
| id = ipw_find_station(priv, hdr->addr1); |
| if (id == IPW_INVALID_STATION) { |
| id = ipw_add_station(priv, hdr->addr1); |
| if (id == IPW_INVALID_STATION) { |
| IPW_WARNING("Attempt to send data to " |
| "invalid cell: " MAC_FMT "\n", |
| MAC_ARG(hdr->addr1)); |
| goto drop; |
| } |
| } |
| break; |
| |
| case IW_MODE_INFRA: |
| default: |
| unicast = !is_broadcast_ether_addr(hdr->addr3) && |
| !is_multicast_ether_addr(hdr->addr3); |
| hdr_len = IEEE80211_3ADDR_LEN; |
| id = 0; |
| break; |
| } |
| |
| tfd = &txq->bd[q->first_empty]; |
| txq->txb[q->first_empty] = txb; |
| memset(tfd, 0, sizeof(*tfd)); |
| tfd->u.data.station_number = id; |
| |
| tfd->control_flags.message_type = TX_FRAME_TYPE; |
| tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; |
| |
| tfd->u.data.cmd_id = DINO_CMD_TX; |
| tfd->u.data.len = txb->payload_size; |
| remaining_bytes = txb->payload_size; |
| if (unlikely(!unicast)) |
| tfd->u.data.tx_flags = DCT_FLAG_NO_WEP; |
| else |
| tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD; |
| |
| if (priv->assoc_request.ieee_mode == IPW_B_MODE) |
| tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK; |
| else |
| tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM; |
| |
| if (priv->config & CFG_PREAMBLE) |
| tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL; |
| |
| memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); |
| |
| /* payload */ |
| tfd->u.data.num_chunks = min((u8)(NUM_TFD_CHUNKS - 2), txb->nr_frags); |
| for (i = 0; i < tfd->u.data.num_chunks; i++) { |
| IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", |
| i, tfd->u.data.num_chunks, |
| txb->fragments[i]->len - hdr_len); |
| printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, |
| txb->fragments[i]->len - hdr_len); |
| |
| tfd->u.data.chunk_ptr[i] = pci_map_single( |
| priv->pci_dev, txb->fragments[i]->data + hdr_len, |
| txb->fragments[i]->len - hdr_len, PCI_DMA_TODEVICE); |
| tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len; |
| } |
| |
| if (i != txb->nr_frags) { |
| struct sk_buff *skb; |
| u16 remaining_bytes = 0; |
| int j; |
| |
| for (j = i; j < txb->nr_frags; j++) |
| remaining_bytes += txb->fragments[j]->len - hdr_len; |
| |
| printk(KERN_INFO "Trying to reallocate for %d bytes\n", |
| remaining_bytes); |
| skb = alloc_skb(remaining_bytes, GFP_ATOMIC); |
| if (skb != NULL) { |
| tfd->u.data.chunk_len[i] = remaining_bytes; |
| for (j = i; j < txb->nr_frags; j++) { |
| int size = txb->fragments[j]->len - hdr_len; |
| printk(KERN_INFO "Adding frag %d %d...\n", |
| j, size); |
| memcpy(skb_put(skb, size), |
| txb->fragments[j]->data + hdr_len, |
| size); |
| } |
| dev_kfree_skb_any(txb->fragments[i]); |
| txb->fragments[i] = skb; |
| tfd->u.data.chunk_ptr[i] = pci_map_single( |
| priv->pci_dev, skb->data, |
| tfd->u.data.chunk_len[i], PCI_DMA_TODEVICE); |
| tfd->u.data.num_chunks++; |
| } |
| } |
| |
| /* kick DMA */ |
| q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); |
| ipw_write32(priv, q->reg_w, q->first_empty); |
| |
| if (ipw_queue_space(q) < q->high_mark) |
| netif_stop_queue(priv->net_dev); |
| |
| return; |
| |
| drop: |
| IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); |
| ieee80211_txb_free(txb); |
| } |
| |
| static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb, |
| struct net_device *dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| unsigned long flags; |
| |
| IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| if (!(priv->status & STATUS_ASSOCIATED)) { |
| IPW_DEBUG_INFO("Tx attempt while not associated.\n"); |
| priv->ieee->stats.tx_carrier_errors++; |
| netif_stop_queue(dev); |
| goto fail_unlock; |
| } |
| |
| ipw_tx_skb(priv, txb); |
| |
| spin_unlock_irqrestore(&priv->lock, flags); |
| return 0; |
| |
| fail_unlock: |
| spin_unlock_irqrestore(&priv->lock, flags); |
| return 1; |
| } |
| |
| static struct net_device_stats *ipw_net_get_stats(struct net_device *dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| priv->ieee->stats.tx_packets = priv->tx_packets; |
| priv->ieee->stats.rx_packets = priv->rx_packets; |
| return &priv->ieee->stats; |
| } |
| |
| static void ipw_net_set_multicast_list(struct net_device *dev) |
| { |
| |
| } |
| |
| static int ipw_net_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| struct sockaddr *addr = p; |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| priv->config |= CFG_CUSTOM_MAC; |
| memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); |
| printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n", |
| priv->net_dev->name, MAC_ARG(priv->mac_addr)); |
| ipw_adapter_restart(priv); |
| return 0; |
| } |
| |
| static void ipw_ethtool_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct ipw_priv *p = ieee80211_priv(dev); |
| char vers[64]; |
| char date[32]; |
| u32 len; |
| |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| |
| len = sizeof(vers); |
| ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); |
| len = sizeof(date); |
| ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); |
| |
| snprintf(info->fw_version, sizeof(info->fw_version),"%s (%s)", |
| vers, date); |
| strcpy(info->bus_info, pci_name(p->pci_dev)); |
| info->eedump_len = CX2_EEPROM_IMAGE_SIZE; |
| } |
| |
| static u32 ipw_ethtool_get_link(struct net_device *dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| return (priv->status & STATUS_ASSOCIATED) != 0; |
| } |
| |
| static int ipw_ethtool_get_eeprom_len(struct net_device *dev) |
| { |
| return CX2_EEPROM_IMAGE_SIZE; |
| } |
| |
| static int ipw_ethtool_get_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct ipw_priv *p = ieee80211_priv(dev); |
| |
| if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE) |
| return -EINVAL; |
| |
| memcpy(bytes, &((u8 *)p->eeprom)[eeprom->offset], eeprom->len); |
| return 0; |
| } |
| |
| static int ipw_ethtool_set_eeprom(struct net_device *dev, |
| struct ethtool_eeprom *eeprom, u8 *bytes) |
| { |
| struct ipw_priv *p = ieee80211_priv(dev); |
| int i; |
| |
| if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE) |
| return -EINVAL; |
| |
| memcpy(&((u8 *)p->eeprom)[eeprom->offset], bytes, eeprom->len); |
| for (i = IPW_EEPROM_DATA; |
| i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; |
| i++) |
| ipw_write8(p, i, p->eeprom[i]); |
| |
| return 0; |
| } |
| |
| static struct ethtool_ops ipw_ethtool_ops = { |
| .get_link = ipw_ethtool_get_link, |
| .get_drvinfo = ipw_ethtool_get_drvinfo, |
| .get_eeprom_len = ipw_ethtool_get_eeprom_len, |
| .get_eeprom = ipw_ethtool_get_eeprom, |
| .set_eeprom = ipw_ethtool_set_eeprom, |
| }; |
| |
| static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs) |
| { |
| struct ipw_priv *priv = data; |
| u32 inta, inta_mask; |
| |
| if (!priv) |
| return IRQ_NONE; |
| |
| spin_lock(&priv->lock); |
| |
| if (!(priv->status & STATUS_INT_ENABLED)) { |
| /* Shared IRQ */ |
| goto none; |
| } |
| |
| inta = ipw_read32(priv, CX2_INTA_RW); |
| inta_mask = ipw_read32(priv, CX2_INTA_MASK_R); |
| |
| if (inta == 0xFFFFFFFF) { |
| /* Hardware disappeared */ |
| IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); |
| goto none; |
| } |
| |
| if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) { |
| /* Shared interrupt */ |
| goto none; |
| } |
| |
| /* tell the device to stop sending interrupts */ |
| ipw_disable_interrupts(priv); |
| |
| /* ack current interrupts */ |
| inta &= (CX2_INTA_MASK_ALL & inta_mask); |
| ipw_write32(priv, CX2_INTA_RW, inta); |
| |
| /* Cache INTA value for our tasklet */ |
| priv->isr_inta = inta; |
| |
| tasklet_schedule(&priv->irq_tasklet); |
| |
| spin_unlock(&priv->lock); |
| |
| return IRQ_HANDLED; |
| none: |
| spin_unlock(&priv->lock); |
| return IRQ_NONE; |
| } |
| |
| static void ipw_rf_kill(void *adapter) |
| { |
| struct ipw_priv *priv = adapter; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| if (rf_kill_active(priv)) { |
| IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); |
| if (priv->workqueue) |
| queue_delayed_work(priv->workqueue, |
| &priv->rf_kill, 2 * HZ); |
| goto exit_unlock; |
| } |
| |
| /* RF Kill is now disabled, so bring the device back up */ |
| |
| if (!(priv->status & STATUS_RF_KILL_MASK)) { |
| IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " |
| "device\n"); |
| |
| /* we can not do an adapter restart while inside an irq lock */ |
| queue_work(priv->workqueue, &priv->adapter_restart); |
| } else |
| IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " |
| "enabled\n"); |
| |
| exit_unlock: |
| spin_unlock_irqrestore(&priv->lock, flags); |
| } |
| |
| static int ipw_setup_deferred_work(struct ipw_priv *priv) |
| { |
| int ret = 0; |
| |
| priv->workqueue = create_workqueue(DRV_NAME); |
| init_waitqueue_head(&priv->wait_command_queue); |
| |
| INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv); |
| INIT_WORK(&priv->associate, ipw_associate, priv); |
| INIT_WORK(&priv->disassociate, ipw_disassociate, priv); |
| INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv); |
| INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv); |
| INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv); |
| INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv); |
| INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv); |
| INIT_WORK(&priv->request_scan, |
| (void (*)(void *))ipw_request_scan, priv); |
| INIT_WORK(&priv->gather_stats, |
| (void (*)(void *))ipw_gather_stats, priv); |
| INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv); |
| INIT_WORK(&priv->roam, ipw_roam, priv); |
| INIT_WORK(&priv->scan_check, ipw_scan_check, priv); |
| |
| tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) |
| ipw_irq_tasklet, (unsigned long)priv); |
| |
| return ret; |
| } |
| |
| |
| static void shim__set_security(struct net_device *dev, |
| struct ieee80211_security *sec) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| if (sec->flags & (1 << i)) { |
| priv->sec.key_sizes[i] = sec->key_sizes[i]; |
| if (sec->key_sizes[i] == 0) |
| priv->sec.flags &= ~(1 << i); |
| else |
| memcpy(priv->sec.keys[i], sec->keys[i], |
| sec->key_sizes[i]); |
| priv->sec.flags |= (1 << i); |
| priv->status |= STATUS_SECURITY_UPDATED; |
| } |
| } |
| |
| if ((sec->flags & SEC_ACTIVE_KEY) && |
| priv->sec.active_key != sec->active_key) { |
| if (sec->active_key <= 3) { |
| priv->sec.active_key = sec->active_key; |
| priv->sec.flags |= SEC_ACTIVE_KEY; |
| } else |
| priv->sec.flags &= ~SEC_ACTIVE_KEY; |
| priv->status |= STATUS_SECURITY_UPDATED; |
| } |
| |
| if ((sec->flags & SEC_AUTH_MODE) && |
| (priv->sec.auth_mode != sec->auth_mode)) { |
| priv->sec.auth_mode = sec->auth_mode; |
| priv->sec.flags |= SEC_AUTH_MODE; |
| if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) |
| priv->capability |= CAP_SHARED_KEY; |
| else |
| priv->capability &= ~CAP_SHARED_KEY; |
| priv->status |= STATUS_SECURITY_UPDATED; |
| } |
| |
| if (sec->flags & SEC_ENABLED && |
| priv->sec.enabled != sec->enabled) { |
| priv->sec.flags |= SEC_ENABLED; |
| priv->sec.enabled = sec->enabled; |
| priv->status |= STATUS_SECURITY_UPDATED; |
| if (sec->enabled) |
| priv->capability |= CAP_PRIVACY_ON; |
| else |
| priv->capability &= ~CAP_PRIVACY_ON; |
| } |
| |
| if (sec->flags & SEC_LEVEL && |
| priv->sec.level != sec->level) { |
| priv->sec.level = sec->level; |
| priv->sec.flags |= SEC_LEVEL; |
| priv->status |= STATUS_SECURITY_UPDATED; |
| } |
| |
| /* To match current functionality of ipw2100 (which works well w/ |
| * various supplicants, we don't force a disassociate if the |
| * privacy capability changes ... */ |
| #if 0 |
| if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && |
| (((priv->assoc_request.capability & |
| WLAN_CAPABILITY_PRIVACY) && !sec->enabled) || |
| (!(priv->assoc_request.capability & |
| WLAN_CAPABILITY_PRIVACY) && sec->enabled))) { |
| IPW_DEBUG_ASSOC("Disassociating due to capability " |
| "change.\n"); |
| ipw_disassociate(priv); |
| } |
| #endif |
| } |
| |
| static int init_supported_rates(struct ipw_priv *priv, |
| struct ipw_supported_rates *rates) |
| { |
| /* TODO: Mask out rates based on priv->rates_mask */ |
| |
| memset(rates, 0, sizeof(*rates)); |
| /* configure supported rates */ |
| switch (priv->ieee->freq_band) { |
| case IEEE80211_52GHZ_BAND: |
| rates->ieee_mode = IPW_A_MODE; |
| rates->purpose = IPW_RATE_CAPABILITIES; |
| ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION, |
| IEEE80211_OFDM_DEFAULT_RATES_MASK); |
| break; |
| |
| default: /* Mixed or 2.4Ghz */ |
| rates->ieee_mode = IPW_G_MODE; |
| rates->purpose = IPW_RATE_CAPABILITIES; |
| ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION, |
| IEEE80211_CCK_DEFAULT_RATES_MASK); |
| if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) { |
| ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION, |
| IEEE80211_OFDM_DEFAULT_RATES_MASK); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int ipw_config(struct ipw_priv *priv) |
| { |
| int i; |
| struct ipw_tx_power tx_power; |
| |
| memset(&priv->sys_config, 0, sizeof(priv->sys_config)); |
| memset(&tx_power, 0, sizeof(tx_power)); |
| |
| /* This is only called from ipw_up, which resets/reloads the firmware |
| so, we don't need to first disable the card before we configure |
| it */ |
| |
| /* configure device for 'G' band */ |
| tx_power.ieee_mode = IPW_G_MODE; |
| tx_power.num_channels = 11; |
| for (i = 0; i < 11; i++) { |
| tx_power.channels_tx_power[i].channel_number = i + 1; |
| tx_power.channels_tx_power[i].tx_power = priv->tx_power; |
| } |
| if (ipw_send_tx_power(priv, &tx_power)) |
| goto error; |
| |
| /* configure device to also handle 'B' band */ |
| tx_power.ieee_mode = IPW_B_MODE; |
| if (ipw_send_tx_power(priv, &tx_power)) |
| goto error; |
| |
| /* initialize adapter address */ |
| if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) |
| goto error; |
| |
| /* set basic system config settings */ |
| init_sys_config(&priv->sys_config); |
| if (ipw_send_system_config(priv, &priv->sys_config)) |
| goto error; |
| |
| init_supported_rates(priv, &priv->rates); |
| if (ipw_send_supported_rates(priv, &priv->rates)) |
| goto error; |
| |
| /* Set request-to-send threshold */ |
| if (priv->rts_threshold) { |
| if (ipw_send_rts_threshold(priv, priv->rts_threshold)) |
| goto error; |
| } |
| |
| if (ipw_set_random_seed(priv)) |
| goto error; |
| |
| /* final state transition to the RUN state */ |
| if (ipw_send_host_complete(priv)) |
| goto error; |
| |
| /* If configured to try and auto-associate, kick off a scan */ |
| if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv)) |
| goto error; |
| |
| return 0; |
| |
| error: |
| return -EIO; |
| } |
| |
| #define MAX_HW_RESTARTS 5 |
| static int ipw_up(struct ipw_priv *priv) |
| { |
| int rc, i; |
| |
| if (priv->status & STATUS_EXIT_PENDING) |
| return -EIO; |
| |
| for (i = 0; i < MAX_HW_RESTARTS; i++ ) { |
| /* Load the microcode, firmware, and eeprom. |
| * Also start the clocks. */ |
| rc = ipw_load(priv); |
| if (rc) { |
| IPW_ERROR("Unable to load firmware: 0x%08X\n", |
| rc); |
| return rc; |
| } |
| |
| ipw_init_ordinals(priv); |
| if (!(priv->config & CFG_CUSTOM_MAC)) |
| eeprom_parse_mac(priv, priv->mac_addr); |
| memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); |
| |
| if (priv->status & STATUS_RF_KILL_MASK) |
| return 0; |
| |
| rc = ipw_config(priv); |
| if (!rc) { |
| IPW_DEBUG_INFO("Configured device on count %i\n", i); |
| priv->notif_missed_beacons = 0; |
| netif_start_queue(priv->net_dev); |
| return 0; |
| } else { |
| IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", |
| rc); |
| } |
| |
| IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", |
| i, MAX_HW_RESTARTS); |
| |
| /* We had an error bringing up the hardware, so take it |
| * all the way back down so we can try again */ |
| ipw_down(priv); |
| } |
| |
| /* tried to restart and config the device for as long as our |
| * patience could withstand */ |
| IPW_ERROR("Unable to initialize device after %d attempts.\n", |
| i); |
| return -EIO; |
| } |
| |
| static void ipw_down(struct ipw_priv *priv) |
| { |
| /* Attempt to disable the card */ |
| #if 0 |
| ipw_send_card_disable(priv, 0); |
| #endif |
| |
| /* tell the device to stop sending interrupts */ |
| ipw_disable_interrupts(priv); |
| |
| /* Clear all bits but the RF Kill */ |
| priv->status &= STATUS_RF_KILL_MASK; |
| |
| netif_carrier_off(priv->net_dev); |
| netif_stop_queue(priv->net_dev); |
| |
| ipw_stop_nic(priv); |
| } |
| |
| /* Called by register_netdev() */ |
| static int ipw_net_init(struct net_device *dev) |
| { |
| struct ipw_priv *priv = ieee80211_priv(dev); |
| |
| if (priv->status & STATUS_RF_KILL_SW) { |
| IPW_WARNING("Radio disabled by module parameter.\n"); |
| return 0; |
| } else if (rf_kill_active(priv)) { |
| IPW_WARNING("Radio Frequency Kill Switch is On:\n" |
| "Kill switch must be turned off for " |
| "wireless networking to work.\n"); |
| queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); |
| return 0; |
| } |
| |
| if (ipw_up(priv)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* PCI driver stuff */ |
| static struct pci_device_id card_ids[] = { |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */ |
| {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */ |
| {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */ |
| {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */ |
| |
| /* required last entry */ |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, card_ids); |
| |
| static struct attribute *ipw_sysfs_entries[] = { |
| &dev_attr_rf_kill.attr, |
| &dev_attr_direct_dword.attr, |
| &dev_attr_indirect_byte.attr, |
| &dev_attr_indirect_dword.attr, |
| &dev_attr_mem_gpio_reg.attr, |
| &dev_attr_command_event_reg.attr, |
| &dev_attr_nic_type.attr, |
| &dev_attr_status.attr, |
| &dev_attr_cfg.attr, |
| &dev_attr_dump_errors.attr, |
| &dev_attr_dump_events.attr, |
| &dev_attr_eeprom_delay.attr, |
| &dev_attr_ucode_version.attr, |
| &dev_attr_rtc.attr, |
| NULL |
| }; |
| |
| static struct attribute_group ipw_attribute_group = { |
| .name = NULL, /* put in device directory */ |
| .attrs = ipw_sysfs_entries, |
| }; |
| |
| static int ipw_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int err = 0; |
| struct net_device *net_dev; |
| void __iomem *base; |
| u32 length, val; |
| struct ipw_priv *priv; |
| int band, modulation; |
| |
| net_dev = alloc_ieee80211(sizeof(struct ipw_priv)); |
| if (net_dev == NULL) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| priv = ieee80211_priv(net_dev); |
| priv->ieee = netdev_priv(net_dev); |
| priv->net_dev = net_dev; |
| priv->pci_dev = pdev; |
| #ifdef CONFIG_IPW_DEBUG |
| ipw_debug_level = debug; |
| #endif |
| spin_lock_init(&priv->lock); |
| |
| if (pci_enable_device(pdev)) { |
| err = -ENODEV; |
| goto out_free_ieee80211; |
| } |
| |
| pci_set_master(pdev); |
| |
| err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (!err) |
| err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| if (err) { |
| printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); |
| goto out_pci_disable_device; |
| } |
| |
| pci_set_drvdata(pdev, priv); |
| |
| err = pci_request_regions(pdev, DRV_NAME); |
| if (err) |
| goto out_pci_disable_device; |
| |
| /* We disable the RETRY_TIMEOUT register (0x41) to keep |
| * PCI Tx retries from interfering with C3 CPU state */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); |
| |
| length = pci_resource_len(pdev, 0); |
| priv->hw_len = length; |
| |
| base = ioremap_nocache(pci_resource_start(pdev, 0), length); |
| if (!base) { |
| err = -ENODEV; |
| goto out_pci_release_regions; |
| } |
| |
| priv->hw_base = base; |
| IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); |
| IPW_DEBUG_INFO("pci_resource_base = %p\n", base); |
| |
| err = ipw_setup_deferred_work(priv); |
| if (err) { |
| IPW_ERROR("Unable to setup deferred work\n"); |
| goto out_iounmap; |
| } |
| |
| /* Initialize module parameter values here */ |
| if (ifname) |
| strncpy(net_dev->name, ifname, IFNAMSIZ); |
| |
| if (associate) |
| priv->config |= CFG_ASSOCIATE; |
| else |
| IPW_DEBUG_INFO("Auto associate disabled.\n"); |
| |
| if (auto_create) |
| priv->config |= CFG_ADHOC_CREATE; |
| else |
| IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); |
| |
| if (disable) { |
| priv->status |= STATUS_RF_KILL_SW; |
| IPW_DEBUG_INFO("Radio disabled.\n"); |
| } |
| |
| if (channel != 0) { |
| priv->config |= CFG_STATIC_CHANNEL; |
| priv->channel = channel; |
| IPW_DEBUG_INFO("Bind to static channel %d\n", channel); |
| IPW_DEBUG_INFO("Bind to static channel %d\n", channel); |
| /* TODO: Validate that provided channel is in range */ |
| } |
| |
| switch (mode) { |
| case 1: |
| priv->ieee->iw_mode = IW_MODE_ADHOC; |
| break; |
| #ifdef CONFIG_IPW_PROMISC |
| case 2: |
| priv->ieee->iw_mode = IW_MODE_MONITOR; |
| break; |
| #endif |
| default: |
| case 0: |
| priv->ieee->iw_mode = IW_MODE_INFRA; |
| break; |
| } |
| |
| if ((priv->pci_dev->device == 0x4223) || |
| (priv->pci_dev->device == 0x4224)) { |
| printk(KERN_INFO DRV_NAME |
| ": Detected Intel PRO/Wireless 2915ABG Network " |
| "Connection\n"); |
| priv->ieee->abg_ture = 1; |
| band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND; |
| modulation = IEEE80211_OFDM_MODULATION | |
| IEEE80211_CCK_MODULATION; |
| priv->adapter = IPW_2915ABG; |
| priv->ieee->mode = IEEE_A|IEEE_G|IEEE_B; |
| } else { |
| if (priv->pci_dev->device == 0x4221) |
| printk(KERN_INFO DRV_NAME |
| ": Detected Intel PRO/Wireless 2225BG Network " |
| "Connection\n"); |
| else |
| printk(KERN_INFO DRV_NAME |
| ": Detected Intel PRO/Wireless 2200BG Network " |
| "Connection\n"); |
| |
| priv->ieee->abg_ture = 0; |
| band = IEEE80211_24GHZ_BAND; |
| modulation = IEEE80211_OFDM_MODULATION | |
| IEEE80211_CCK_MODULATION; |
| priv->adapter = IPW_2200BG; |
| priv->ieee->mode = IEEE_G|IEEE_B; |
| } |
| |
| priv->ieee->freq_band = band; |
| priv->ieee->modulation = modulation; |
| |
| priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK; |
| |
| priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; |
| priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; |
| |
| priv->rts_threshold = DEFAULT_RTS_THRESHOLD; |
| |
| /* If power management is turned on, default to AC mode */ |
| priv->power_mode = IPW_POWER_AC; |
| priv->tx_power = IPW_DEFAULT_TX_POWER; |
| |
| err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, |
| priv); |
| if (err) { |
| IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); |
| goto out_destroy_workqueue; |
| } |
| |
| SET_MODULE_OWNER(net_dev); |
| SET_NETDEV_DEV(net_dev, &pdev->dev); |
| |
| priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; |
| priv->ieee->set_security = shim__set_security; |
| |
| net_dev->open = ipw_net_open; |
| net_dev->stop = ipw_net_stop; |
| net_dev->init = ipw_net_init; |
| net_dev->get_stats = ipw_net_get_stats; |
| net_dev->set_multicast_list = ipw_net_set_multicast_list; |
| net_dev->set_mac_address = ipw_net_set_mac_address; |
| net_dev->get_wireless_stats = ipw_get_wireless_stats; |
| net_dev->wireless_handlers = &ipw_wx_handler_def; |
| net_dev->ethtool_ops = &ipw_ethtool_ops; |
| net_dev->irq = pdev->irq; |
| net_dev->base_addr = (unsigned long )priv->hw_base; |
| net_dev->mem_start = pci_resource_start(pdev, 0); |
| net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1; |
| |
| err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); |
| if (err) { |
| IPW_ERROR("failed to create sysfs device attributes\n"); |
| goto out_release_irq; |
| } |
| |
| err = register_netdev(net_dev); |
| if (err) { |
| IPW_ERROR("failed to register network device\n"); |
| goto out_remove_group; |
| } |
| |
| return 0; |
| |
| out_remove_group: |
| sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); |
| out_release_irq: |
| free_irq(pdev->irq, priv); |
| out_destroy_workqueue: |
| destroy_workqueue(priv->workqueue); |
| priv->workqueue = NULL; |
| out_iounmap: |
| iounmap(priv->hw_base); |
| out_pci_release_regions: |
| pci_release_regions(pdev); |
| out_pci_disable_device: |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| out_free_ieee80211: |
| free_ieee80211(priv->net_dev); |
| out: |
| return err; |
| } |
| |
| static void ipw_pci_remove(struct pci_dev *pdev) |
| { |
| struct ipw_priv *priv = pci_get_drvdata(pdev); |
| if (!priv) |
| return; |
| |
| priv->status |= STATUS_EXIT_PENDING; |
| |
| sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); |
| |
| ipw_down(priv); |
| |
| unregister_netdev(priv->net_dev); |
| |
| if (priv->rxq) { |
| ipw_rx_queue_free(priv, priv->rxq); |
| priv->rxq = NULL; |
| } |
| ipw_tx_queue_free(priv); |
| |
| /* ipw_down will ensure that there is no more pending work |
| * in the workqueue's, so we can safely remove them now. */ |
| if (priv->workqueue) { |
| cancel_delayed_work(&priv->adhoc_check); |
| cancel_delayed_work(&priv->gather_stats); |
| cancel_delayed_work(&priv->request_scan); |
| cancel_delayed_work(&priv->rf_kill); |
| cancel_delayed_work(&priv->scan_check); |
| destroy_workqueue(priv->workqueue); |
| priv->workqueue = NULL; |
| } |
| |
| free_irq(pdev->irq, priv); |
| iounmap(priv->hw_base); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_ieee80211(priv->net_dev); |
| |
| #ifdef CONFIG_PM |
| if (fw_loaded) { |
| release_firmware(bootfw); |
| release_firmware(ucode); |
| release_firmware(firmware); |
| fw_loaded = 0; |
| } |
| #endif |
| } |
| |
| |
| #ifdef CONFIG_PM |
| static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct ipw_priv *priv = pci_get_drvdata(pdev); |
| struct net_device *dev = priv->net_dev; |
| |
| printk(KERN_INFO "%s: Going into suspend...\n", dev->name); |
| |
| /* Take down the device; powers it off, etc. */ |
| ipw_down(priv); |
| |
| /* Remove the PRESENT state of the device */ |
| netif_device_detach(dev); |
| |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| |
| return 0; |
| } |
| |
| static int ipw_pci_resume(struct pci_dev *pdev) |
| { |
| struct ipw_priv *priv = pci_get_drvdata(pdev); |
| struct net_device *dev = priv->net_dev; |
| u32 val; |
| |
| printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); |
| |
| pci_set_power_state(pdev, 0); |
| pci_enable_device(pdev); |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) |
| pci_restore_state(pdev, priv->pm_state); |
| #else |
| pci_restore_state(pdev); |
| #endif |
| /* |
| * Suspend/Resume resets the PCI configuration space, so we have to |
| * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries |
| * from interfering with C3 CPU state. pci_restore_state won't help |
| * here since it only restores the first 64 bytes pci config header. |
| */ |
| pci_read_config_dword(pdev, 0x40, &val); |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); |
| |
| /* Set the device back into the PRESENT state; this will also wake |
| * the queue of needed */ |
| netif_device_attach(dev); |
| |
| /* Bring the device back up */ |
| queue_work(priv->workqueue, &priv->up); |
| |
| return 0; |
| } |
| #endif |
| |
| /* driver initialization stuff */ |
| static struct pci_driver ipw_driver = { |
| .name = DRV_NAME, |
| .id_table = card_ids, |
| .probe = ipw_pci_probe, |
| .remove = __devexit_p(ipw_pci_remove), |
| #ifdef CONFIG_PM |
| .suspend = ipw_pci_suspend, |
| .resume = ipw_pci_resume, |
| #endif |
| }; |
| |
| static int __init ipw_init(void) |
| { |
| int ret; |
| |
| printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); |
| printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); |
| |
| ret = pci_module_init(&ipw_driver); |
| if (ret) { |
| IPW_ERROR("Unable to initialize PCI module\n"); |
| return ret; |
| } |
| |
| ret = driver_create_file(&ipw_driver.driver, |
| &driver_attr_debug_level); |
| if (ret) { |
| IPW_ERROR("Unable to create driver sysfs file\n"); |
| pci_unregister_driver(&ipw_driver); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static void __exit ipw_exit(void) |
| { |
| driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); |
| pci_unregister_driver(&ipw_driver); |
| } |
| |
| module_param(disable, int, 0444); |
| MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); |
| |
| module_param(associate, int, 0444); |
| MODULE_PARM_DESC(associate, "auto associate when scanning (default on)"); |
| |
| module_param(auto_create, int, 0444); |
| MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); |
| |
| module_param(debug, int, 0444); |
| MODULE_PARM_DESC(debug, "debug output mask"); |
| |
| module_param(channel, int, 0444); |
| MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); |
| |
| module_param(ifname, charp, 0444); |
| MODULE_PARM_DESC(ifname, "network device name (default eth%d)"); |
| |
| #ifdef CONFIG_IPW_PROMISC |
| module_param(mode, int, 0444); |
| MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); |
| #else |
| module_param(mode, int, 0444); |
| MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); |
| #endif |
| |
| module_exit(ipw_exit); |
| module_init(ipw_init); |