| /* |
| * Copyright (C) 2009 ST-Ericsson SA |
| * Copyright (C) 2009 STMicroelectronics |
| * |
| * I2C master mode controller driver, used in Nomadik 8815 |
| * and Ux500 platforms. |
| * |
| * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com> |
| * Author: Sachin Verma <sachin.verma@st.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2, as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/amba/bus.h> |
| #include <linux/atomic.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/i2c.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/platform_data/i2c-nomadik.h> |
| #include <linux/of.h> |
| #include <linux/of_i2c.h> |
| |
| #define DRIVER_NAME "nmk-i2c" |
| |
| /* I2C Controller register offsets */ |
| #define I2C_CR (0x000) |
| #define I2C_SCR (0x004) |
| #define I2C_HSMCR (0x008) |
| #define I2C_MCR (0x00C) |
| #define I2C_TFR (0x010) |
| #define I2C_SR (0x014) |
| #define I2C_RFR (0x018) |
| #define I2C_TFTR (0x01C) |
| #define I2C_RFTR (0x020) |
| #define I2C_DMAR (0x024) |
| #define I2C_BRCR (0x028) |
| #define I2C_IMSCR (0x02C) |
| #define I2C_RISR (0x030) |
| #define I2C_MISR (0x034) |
| #define I2C_ICR (0x038) |
| |
| /* Control registers */ |
| #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */ |
| #define I2C_CR_OM (0x3 << 1) /* Operating mode */ |
| #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */ |
| #define I2C_CR_SM (0x3 << 4) /* Speed mode */ |
| #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */ |
| #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */ |
| #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */ |
| #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */ |
| #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */ |
| #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */ |
| #define I2C_CR_LM (0x1 << 12) /* Loopback mode */ |
| #define I2C_CR_FON (0x3 << 13) /* Filtering on */ |
| #define I2C_CR_FS (0x3 << 15) /* Force stop enable */ |
| |
| /* Master controller (MCR) register */ |
| #define I2C_MCR_OP (0x1 << 0) /* Operation */ |
| #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */ |
| #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */ |
| #define I2C_MCR_SB (0x1 << 11) /* Extended address */ |
| #define I2C_MCR_AM (0x3 << 12) /* Address type */ |
| #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */ |
| #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */ |
| |
| /* Status register (SR) */ |
| #define I2C_SR_OP (0x3 << 0) /* Operation */ |
| #define I2C_SR_STATUS (0x3 << 2) /* controller status */ |
| #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */ |
| #define I2C_SR_TYPE (0x3 << 7) /* Receive type */ |
| #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */ |
| |
| /* Interrupt mask set/clear (IMSCR) bits */ |
| #define I2C_IT_TXFE (0x1 << 0) |
| #define I2C_IT_TXFNE (0x1 << 1) |
| #define I2C_IT_TXFF (0x1 << 2) |
| #define I2C_IT_TXFOVR (0x1 << 3) |
| #define I2C_IT_RXFE (0x1 << 4) |
| #define I2C_IT_RXFNF (0x1 << 5) |
| #define I2C_IT_RXFF (0x1 << 6) |
| #define I2C_IT_RFSR (0x1 << 16) |
| #define I2C_IT_RFSE (0x1 << 17) |
| #define I2C_IT_WTSR (0x1 << 18) |
| #define I2C_IT_MTD (0x1 << 19) |
| #define I2C_IT_STD (0x1 << 20) |
| #define I2C_IT_MAL (0x1 << 24) |
| #define I2C_IT_BERR (0x1 << 25) |
| #define I2C_IT_MTDWS (0x1 << 28) |
| |
| #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask)) |
| |
| /* some bits in ICR are reserved */ |
| #define I2C_CLEAR_ALL_INTS 0x131f007f |
| |
| /* first three msb bits are reserved */ |
| #define IRQ_MASK(mask) (mask & 0x1fffffff) |
| |
| /* maximum threshold value */ |
| #define MAX_I2C_FIFO_THRESHOLD 15 |
| |
| enum i2c_status { |
| I2C_NOP, |
| I2C_ON_GOING, |
| I2C_OK, |
| I2C_ABORT |
| }; |
| |
| /* operation */ |
| enum i2c_operation { |
| I2C_NO_OPERATION = 0xff, |
| I2C_WRITE = 0x00, |
| I2C_READ = 0x01 |
| }; |
| |
| /** |
| * struct i2c_nmk_client - client specific data |
| * @slave_adr: 7-bit slave address |
| * @count: no. bytes to be transferred |
| * @buffer: client data buffer |
| * @xfer_bytes: bytes transferred till now |
| * @operation: current I2C operation |
| */ |
| struct i2c_nmk_client { |
| unsigned short slave_adr; |
| unsigned long count; |
| unsigned char *buffer; |
| unsigned long xfer_bytes; |
| enum i2c_operation operation; |
| }; |
| |
| /** |
| * struct nmk_i2c_dev - private data structure of the controller. |
| * @adev: parent amba device. |
| * @adap: corresponding I2C adapter. |
| * @irq: interrupt line for the controller. |
| * @virtbase: virtual io memory area. |
| * @clk: hardware i2c block clock. |
| * @cfg: machine provided controller configuration. |
| * @cli: holder of client specific data. |
| * @stop: stop condition. |
| * @xfer_complete: acknowledge completion for a I2C message. |
| * @result: controller propogated result. |
| * @busy: Busy doing transfer. |
| */ |
| struct nmk_i2c_dev { |
| struct amba_device *adev; |
| struct i2c_adapter adap; |
| int irq; |
| void __iomem *virtbase; |
| struct clk *clk; |
| struct nmk_i2c_controller cfg; |
| struct i2c_nmk_client cli; |
| int stop; |
| struct completion xfer_complete; |
| int result; |
| bool busy; |
| }; |
| |
| /* controller's abort causes */ |
| static const char *abort_causes[] = { |
| "no ack received after address transmission", |
| "no ack received during data phase", |
| "ack received after xmission of master code", |
| "master lost arbitration", |
| "slave restarts", |
| "slave reset", |
| "overflow, maxsize is 2047 bytes", |
| }; |
| |
| static inline void i2c_set_bit(void __iomem *reg, u32 mask) |
| { |
| writel(readl(reg) | mask, reg); |
| } |
| |
| static inline void i2c_clr_bit(void __iomem *reg, u32 mask) |
| { |
| writel(readl(reg) & ~mask, reg); |
| } |
| |
| /** |
| * flush_i2c_fifo() - This function flushes the I2C FIFO |
| * @dev: private data of I2C Driver |
| * |
| * This function flushes the I2C Tx and Rx FIFOs. It returns |
| * 0 on successful flushing of FIFO |
| */ |
| static int flush_i2c_fifo(struct nmk_i2c_dev *dev) |
| { |
| #define LOOP_ATTEMPTS 10 |
| int i; |
| unsigned long timeout; |
| |
| /* |
| * flush the transmit and receive FIFO. The flushing |
| * operation takes several cycles before to be completed. |
| * On the completion, the I2C internal logic clears these |
| * bits, until then no one must access Tx, Rx FIFO and |
| * should poll on these bits waiting for the completion. |
| */ |
| writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR); |
| |
| for (i = 0; i < LOOP_ATTEMPTS; i++) { |
| timeout = jiffies + dev->adap.timeout; |
| |
| while (!time_after(jiffies, timeout)) { |
| if ((readl(dev->virtbase + I2C_CR) & |
| (I2C_CR_FTX | I2C_CR_FRX)) == 0) |
| return 0; |
| } |
| } |
| |
| dev_err(&dev->adev->dev, |
| "flushing operation timed out giving up after %d attempts", |
| LOOP_ATTEMPTS); |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * disable_all_interrupts() - Disable all interrupts of this I2c Bus |
| * @dev: private data of I2C Driver |
| */ |
| static void disable_all_interrupts(struct nmk_i2c_dev *dev) |
| { |
| u32 mask = IRQ_MASK(0); |
| writel(mask, dev->virtbase + I2C_IMSCR); |
| } |
| |
| /** |
| * clear_all_interrupts() - Clear all interrupts of I2C Controller |
| * @dev: private data of I2C Driver |
| */ |
| static void clear_all_interrupts(struct nmk_i2c_dev *dev) |
| { |
| u32 mask; |
| mask = IRQ_MASK(I2C_CLEAR_ALL_INTS); |
| writel(mask, dev->virtbase + I2C_ICR); |
| } |
| |
| /** |
| * init_hw() - initialize the I2C hardware |
| * @dev: private data of I2C Driver |
| */ |
| static int init_hw(struct nmk_i2c_dev *dev) |
| { |
| int stat; |
| |
| stat = flush_i2c_fifo(dev); |
| if (stat) |
| goto exit; |
| |
| /* disable the controller */ |
| i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE); |
| |
| disable_all_interrupts(dev); |
| |
| clear_all_interrupts(dev); |
| |
| dev->cli.operation = I2C_NO_OPERATION; |
| |
| exit: |
| return stat; |
| } |
| |
| /* enable peripheral, master mode operation */ |
| #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE) |
| |
| /** |
| * load_i2c_mcr_reg() - load the MCR register |
| * @dev: private data of controller |
| * @flags: message flags |
| */ |
| static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags) |
| { |
| u32 mcr = 0; |
| unsigned short slave_adr_3msb_bits; |
| |
| mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1); |
| |
| if (unlikely(flags & I2C_M_TEN)) { |
| /* 10-bit address transaction */ |
| mcr |= GEN_MASK(2, I2C_MCR_AM, 12); |
| /* |
| * Get the top 3 bits. |
| * EA10 represents extended address in MCR. This includes |
| * the extension (MSB bits) of the 7 bit address loaded |
| * in A7 |
| */ |
| slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7; |
| |
| mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8); |
| } else { |
| /* 7-bit address transaction */ |
| mcr |= GEN_MASK(1, I2C_MCR_AM, 12); |
| } |
| |
| /* start byte procedure not applied */ |
| mcr |= GEN_MASK(0, I2C_MCR_SB, 11); |
| |
| /* check the operation, master read/write? */ |
| if (dev->cli.operation == I2C_WRITE) |
| mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0); |
| else |
| mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0); |
| |
| /* stop or repeated start? */ |
| if (dev->stop) |
| mcr |= GEN_MASK(1, I2C_MCR_STOP, 14); |
| else |
| mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14)); |
| |
| mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15); |
| |
| return mcr; |
| } |
| |
| /** |
| * setup_i2c_controller() - setup the controller |
| * @dev: private data of controller |
| */ |
| static void setup_i2c_controller(struct nmk_i2c_dev *dev) |
| { |
| u32 brcr1, brcr2; |
| u32 i2c_clk, div; |
| |
| writel(0x0, dev->virtbase + I2C_CR); |
| writel(0x0, dev->virtbase + I2C_HSMCR); |
| writel(0x0, dev->virtbase + I2C_TFTR); |
| writel(0x0, dev->virtbase + I2C_RFTR); |
| writel(0x0, dev->virtbase + I2C_DMAR); |
| |
| /* |
| * set the slsu: |
| * |
| * slsu defines the data setup time after SCL clock |
| * stretching in terms of i2c clk cycles. The |
| * needed setup time for the three modes are 250ns, |
| * 100ns, 10ns respectively thus leading to the values |
| * of 14, 6, 2 for a 48 MHz i2c clk. |
| */ |
| writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR); |
| |
| i2c_clk = clk_get_rate(dev->clk); |
| |
| /* |
| * The spec says, in case of std. mode the divider is |
| * 2 whereas it is 3 for fast and fastplus mode of |
| * operation. TODO - high speed support. |
| */ |
| div = (dev->cfg.clk_freq > 100000) ? 3 : 2; |
| |
| /* |
| * generate the mask for baud rate counters. The controller |
| * has two baud rate counters. One is used for High speed |
| * operation, and the other is for std, fast mode, fast mode |
| * plus operation. Currently we do not supprt high speed mode |
| * so set brcr1 to 0. |
| */ |
| brcr1 = 0 << 16; |
| brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff; |
| |
| /* set the baud rate counter register */ |
| writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); |
| |
| /* |
| * set the speed mode. Currently we support |
| * only standard and fast mode of operation |
| * TODO - support for fast mode plus (up to 1Mb/s) |
| * and high speed (up to 3.4 Mb/s) |
| */ |
| if (dev->cfg.sm > I2C_FREQ_MODE_FAST) { |
| dev_err(&dev->adev->dev, |
| "do not support this mode defaulting to std. mode\n"); |
| brcr2 = i2c_clk/(100000 * 2) & 0xffff; |
| writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); |
| writel(I2C_FREQ_MODE_STANDARD << 4, |
| dev->virtbase + I2C_CR); |
| } |
| writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR); |
| |
| /* set the Tx and Rx FIFO threshold */ |
| writel(dev->cfg.tft, dev->virtbase + I2C_TFTR); |
| writel(dev->cfg.rft, dev->virtbase + I2C_RFTR); |
| } |
| |
| /** |
| * read_i2c() - Read from I2C client device |
| * @dev: private data of I2C Driver |
| * @flags: message flags |
| * |
| * This function reads from i2c client device when controller is in |
| * master mode. There is a completion timeout. If there is no transfer |
| * before timeout error is returned. |
| */ |
| static int read_i2c(struct nmk_i2c_dev *dev, u16 flags) |
| { |
| u32 status = 0; |
| u32 mcr; |
| u32 irq_mask = 0; |
| int timeout; |
| |
| mcr = load_i2c_mcr_reg(dev, flags); |
| writel(mcr, dev->virtbase + I2C_MCR); |
| |
| /* load the current CR value */ |
| writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, |
| dev->virtbase + I2C_CR); |
| |
| /* enable the controller */ |
| i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE); |
| |
| init_completion(&dev->xfer_complete); |
| |
| /* enable interrupts by setting the mask */ |
| irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF | |
| I2C_IT_MAL | I2C_IT_BERR); |
| |
| if (dev->stop) |
| irq_mask |= I2C_IT_MTD; |
| else |
| irq_mask |= I2C_IT_MTDWS; |
| |
| irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); |
| |
| writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, |
| dev->virtbase + I2C_IMSCR); |
| |
| timeout = wait_for_completion_timeout( |
| &dev->xfer_complete, dev->adap.timeout); |
| |
| if (timeout == 0) { |
| /* Controller timed out */ |
| dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n", |
| dev->cli.slave_adr); |
| status = -ETIMEDOUT; |
| } |
| return status; |
| } |
| |
| static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes) |
| { |
| int count; |
| |
| for (count = (no_bytes - 2); |
| (count > 0) && |
| (dev->cli.count != 0); |
| count--) { |
| /* write to the Tx FIFO */ |
| writeb(*dev->cli.buffer, |
| dev->virtbase + I2C_TFR); |
| dev->cli.buffer++; |
| dev->cli.count--; |
| dev->cli.xfer_bytes++; |
| } |
| |
| } |
| |
| /** |
| * write_i2c() - Write data to I2C client. |
| * @dev: private data of I2C Driver |
| * @flags: message flags |
| * |
| * This function writes data to I2C client |
| */ |
| static int write_i2c(struct nmk_i2c_dev *dev, u16 flags) |
| { |
| u32 status = 0; |
| u32 mcr; |
| u32 irq_mask = 0; |
| int timeout; |
| |
| mcr = load_i2c_mcr_reg(dev, flags); |
| |
| writel(mcr, dev->virtbase + I2C_MCR); |
| |
| /* load the current CR value */ |
| writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, |
| dev->virtbase + I2C_CR); |
| |
| /* enable the controller */ |
| i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE); |
| |
| init_completion(&dev->xfer_complete); |
| |
| /* enable interrupts by settings the masks */ |
| irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR); |
| |
| /* Fill the TX FIFO with transmit data */ |
| fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD); |
| |
| if (dev->cli.count != 0) |
| irq_mask |= I2C_IT_TXFNE; |
| |
| /* |
| * check if we want to transfer a single or multiple bytes, if so |
| * set the MTDWS bit (Master Transaction Done Without Stop) |
| * to start repeated start operation |
| */ |
| if (dev->stop) |
| irq_mask |= I2C_IT_MTD; |
| else |
| irq_mask |= I2C_IT_MTDWS; |
| |
| irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); |
| |
| writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, |
| dev->virtbase + I2C_IMSCR); |
| |
| timeout = wait_for_completion_timeout( |
| &dev->xfer_complete, dev->adap.timeout); |
| |
| if (timeout == 0) { |
| /* Controller timed out */ |
| dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n", |
| dev->cli.slave_adr); |
| status = -ETIMEDOUT; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * nmk_i2c_xfer_one() - transmit a single I2C message |
| * @dev: device with a message encoded into it |
| * @flags: message flags |
| */ |
| static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags) |
| { |
| int status; |
| |
| if (flags & I2C_M_RD) { |
| /* read operation */ |
| dev->cli.operation = I2C_READ; |
| status = read_i2c(dev, flags); |
| } else { |
| /* write operation */ |
| dev->cli.operation = I2C_WRITE; |
| status = write_i2c(dev, flags); |
| } |
| |
| if (status || (dev->result)) { |
| u32 i2c_sr; |
| u32 cause; |
| |
| i2c_sr = readl(dev->virtbase + I2C_SR); |
| /* |
| * Check if the controller I2C operation status |
| * is set to ABORT(11b). |
| */ |
| if (((i2c_sr >> 2) & 0x3) == 0x3) { |
| /* get the abort cause */ |
| cause = (i2c_sr >> 4) & 0x7; |
| dev_err(&dev->adev->dev, "%s\n", |
| cause >= ARRAY_SIZE(abort_causes) ? |
| "unknown reason" : |
| abort_causes[cause]); |
| } |
| |
| (void) init_hw(dev); |
| |
| status = status ? status : dev->result; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * nmk_i2c_xfer() - I2C transfer function used by kernel framework |
| * @i2c_adap: Adapter pointer to the controller |
| * @msgs: Pointer to data to be written. |
| * @num_msgs: Number of messages to be executed |
| * |
| * This is the function called by the generic kernel i2c_transfer() |
| * or i2c_smbus...() API calls. Note that this code is protected by the |
| * semaphore set in the kernel i2c_transfer() function. |
| * |
| * NOTE: |
| * READ TRANSFER : We impose a restriction of the first message to be the |
| * index message for any read transaction. |
| * - a no index is coded as '0', |
| * - 2byte big endian index is coded as '3' |
| * !!! msg[0].buf holds the actual index. |
| * This is compatible with generic messages of smbus emulator |
| * that send a one byte index. |
| * eg. a I2C transation to read 2 bytes from index 0 |
| * idx = 0; |
| * msg[0].addr = client->addr; |
| * msg[0].flags = 0x0; |
| * msg[0].len = 1; |
| * msg[0].buf = &idx; |
| * |
| * msg[1].addr = client->addr; |
| * msg[1].flags = I2C_M_RD; |
| * msg[1].len = 2; |
| * msg[1].buf = rd_buff |
| * i2c_transfer(adap, msg, 2); |
| * |
| * WRITE TRANSFER : The I2C standard interface interprets all data as payload. |
| * If you want to emulate an SMBUS write transaction put the |
| * index as first byte(or first and second) in the payload. |
| * eg. a I2C transation to write 2 bytes from index 1 |
| * wr_buff[0] = 0x1; |
| * wr_buff[1] = 0x23; |
| * wr_buff[2] = 0x46; |
| * msg[0].flags = 0x0; |
| * msg[0].len = 3; |
| * msg[0].buf = wr_buff; |
| * i2c_transfer(adap, msg, 1); |
| * |
| * To read or write a block of data (multiple bytes) using SMBUS emulation |
| * please use the i2c_smbus_read_i2c_block_data() |
| * or i2c_smbus_write_i2c_block_data() API |
| */ |
| static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msgs[], int num_msgs) |
| { |
| int status; |
| int i; |
| struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap); |
| int j; |
| |
| dev->busy = true; |
| |
| pm_runtime_get_sync(&dev->adev->dev); |
| |
| status = clk_prepare_enable(dev->clk); |
| if (status) { |
| dev_err(&dev->adev->dev, "can't prepare_enable clock\n"); |
| goto out_clk; |
| } |
| |
| status = init_hw(dev); |
| if (status) |
| goto out; |
| |
| /* Attempt three times to send the message queue */ |
| for (j = 0; j < 3; j++) { |
| /* setup the i2c controller */ |
| setup_i2c_controller(dev); |
| |
| for (i = 0; i < num_msgs; i++) { |
| dev->cli.slave_adr = msgs[i].addr; |
| dev->cli.buffer = msgs[i].buf; |
| dev->cli.count = msgs[i].len; |
| dev->stop = (i < (num_msgs - 1)) ? 0 : 1; |
| dev->result = 0; |
| |
| status = nmk_i2c_xfer_one(dev, msgs[i].flags); |
| if (status != 0) |
| break; |
| } |
| if (status == 0) |
| break; |
| } |
| |
| out: |
| clk_disable_unprepare(dev->clk); |
| out_clk: |
| pm_runtime_put_sync(&dev->adev->dev); |
| |
| dev->busy = false; |
| |
| /* return the no. messages processed */ |
| if (status) |
| return status; |
| else |
| return num_msgs; |
| } |
| |
| /** |
| * disable_interrupts() - disable the interrupts |
| * @dev: private data of controller |
| * @irq: interrupt number |
| */ |
| static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq) |
| { |
| irq = IRQ_MASK(irq); |
| writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq), |
| dev->virtbase + I2C_IMSCR); |
| return 0; |
| } |
| |
| /** |
| * i2c_irq_handler() - interrupt routine |
| * @irq: interrupt number |
| * @arg: data passed to the handler |
| * |
| * This is the interrupt handler for the i2c driver. Currently |
| * it handles the major interrupts like Rx & Tx FIFO management |
| * interrupts, master transaction interrupts, arbitration and |
| * bus error interrupts. The rest of the interrupts are treated as |
| * unhandled. |
| */ |
| static irqreturn_t i2c_irq_handler(int irq, void *arg) |
| { |
| struct nmk_i2c_dev *dev = arg; |
| u32 tft, rft; |
| u32 count; |
| u32 misr; |
| u32 src = 0; |
| |
| /* load Tx FIFO and Rx FIFO threshold values */ |
| tft = readl(dev->virtbase + I2C_TFTR); |
| rft = readl(dev->virtbase + I2C_RFTR); |
| |
| /* read interrupt status register */ |
| misr = readl(dev->virtbase + I2C_MISR); |
| |
| src = __ffs(misr); |
| switch ((1 << src)) { |
| |
| /* Transmit FIFO nearly empty interrupt */ |
| case I2C_IT_TXFNE: |
| { |
| if (dev->cli.operation == I2C_READ) { |
| /* |
| * in read operation why do we care for writing? |
| * so disable the Transmit FIFO interrupt |
| */ |
| disable_interrupts(dev, I2C_IT_TXFNE); |
| } else { |
| fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft)); |
| /* |
| * if done, close the transfer by disabling the |
| * corresponding TXFNE interrupt |
| */ |
| if (dev->cli.count == 0) |
| disable_interrupts(dev, I2C_IT_TXFNE); |
| } |
| } |
| break; |
| |
| /* |
| * Rx FIFO nearly full interrupt. |
| * This is set when the numer of entries in Rx FIFO is |
| * greater or equal than the threshold value programmed |
| * in RFT |
| */ |
| case I2C_IT_RXFNF: |
| for (count = rft; count > 0; count--) { |
| /* Read the Rx FIFO */ |
| *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); |
| dev->cli.buffer++; |
| } |
| dev->cli.count -= rft; |
| dev->cli.xfer_bytes += rft; |
| break; |
| |
| /* Rx FIFO full */ |
| case I2C_IT_RXFF: |
| for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) { |
| *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); |
| dev->cli.buffer++; |
| } |
| dev->cli.count -= MAX_I2C_FIFO_THRESHOLD; |
| dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD; |
| break; |
| |
| /* Master Transaction Done with/without stop */ |
| case I2C_IT_MTD: |
| case I2C_IT_MTDWS: |
| if (dev->cli.operation == I2C_READ) { |
| while (!(readl(dev->virtbase + I2C_RISR) |
| & I2C_IT_RXFE)) { |
| if (dev->cli.count == 0) |
| break; |
| *dev->cli.buffer = |
| readb(dev->virtbase + I2C_RFR); |
| dev->cli.buffer++; |
| dev->cli.count--; |
| dev->cli.xfer_bytes++; |
| } |
| } |
| |
| disable_all_interrupts(dev); |
| clear_all_interrupts(dev); |
| |
| if (dev->cli.count) { |
| dev->result = -EIO; |
| dev_err(&dev->adev->dev, |
| "%lu bytes still remain to be xfered\n", |
| dev->cli.count); |
| (void) init_hw(dev); |
| } |
| complete(&dev->xfer_complete); |
| |
| break; |
| |
| /* Master Arbitration lost interrupt */ |
| case I2C_IT_MAL: |
| dev->result = -EIO; |
| (void) init_hw(dev); |
| |
| i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL); |
| complete(&dev->xfer_complete); |
| |
| break; |
| |
| /* |
| * Bus Error interrupt. |
| * This happens when an unexpected start/stop condition occurs |
| * during the transaction. |
| */ |
| case I2C_IT_BERR: |
| dev->result = -EIO; |
| /* get the status */ |
| if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT) |
| (void) init_hw(dev); |
| |
| i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR); |
| complete(&dev->xfer_complete); |
| |
| break; |
| |
| /* |
| * Tx FIFO overrun interrupt. |
| * This is set when a write operation in Tx FIFO is performed and |
| * the Tx FIFO is full. |
| */ |
| case I2C_IT_TXFOVR: |
| dev->result = -EIO; |
| (void) init_hw(dev); |
| |
| dev_err(&dev->adev->dev, "Tx Fifo Over run\n"); |
| complete(&dev->xfer_complete); |
| |
| break; |
| |
| /* unhandled interrupts by this driver - TODO*/ |
| case I2C_IT_TXFE: |
| case I2C_IT_TXFF: |
| case I2C_IT_RXFE: |
| case I2C_IT_RFSR: |
| case I2C_IT_RFSE: |
| case I2C_IT_WTSR: |
| case I2C_IT_STD: |
| dev_err(&dev->adev->dev, "unhandled Interrupt\n"); |
| break; |
| default: |
| dev_err(&dev->adev->dev, "spurious Interrupt..\n"); |
| break; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| #ifdef CONFIG_PM |
| static int nmk_i2c_suspend(struct device *dev) |
| { |
| struct amba_device *adev = to_amba_device(dev); |
| struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev); |
| |
| if (nmk_i2c->busy) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static int nmk_i2c_resume(struct device *dev) |
| { |
| return 0; |
| } |
| #else |
| #define nmk_i2c_suspend NULL |
| #define nmk_i2c_resume NULL |
| #endif |
| |
| /* |
| * We use noirq so that we suspend late and resume before the wakeup interrupt |
| * to ensure that we do the !pm_runtime_suspended() check in resume before |
| * there has been a regular pm runtime resume (via pm_runtime_get_sync()). |
| */ |
| static const struct dev_pm_ops nmk_i2c_pm = { |
| .suspend_noirq = nmk_i2c_suspend, |
| .resume_noirq = nmk_i2c_resume, |
| }; |
| |
| static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR; |
| } |
| |
| static const struct i2c_algorithm nmk_i2c_algo = { |
| .master_xfer = nmk_i2c_xfer, |
| .functionality = nmk_i2c_functionality |
| }; |
| |
| static struct nmk_i2c_controller u8500_i2c = { |
| /* |
| * Slave data setup time; 250ns, 100ns, and 10ns, which |
| * is 14, 6 and 2 respectively for a 48Mhz i2c clock. |
| */ |
| .slsu = 0xe, |
| .tft = 1, /* Tx FIFO threshold */ |
| .rft = 8, /* Rx FIFO threshold */ |
| .clk_freq = 400000, /* fast mode operation */ |
| .timeout = 200, /* Slave response timeout(ms) */ |
| .sm = I2C_FREQ_MODE_FAST, |
| }; |
| |
| static void nmk_i2c_of_probe(struct device_node *np, |
| struct nmk_i2c_controller *pdata) |
| { |
| of_property_read_u32(np, "clock-frequency", &pdata->clk_freq); |
| |
| /* This driver only supports 'standard' and 'fast' modes of operation. */ |
| if (pdata->clk_freq <= 100000) |
| pdata->sm = I2C_FREQ_MODE_STANDARD; |
| else |
| pdata->sm = I2C_FREQ_MODE_FAST; |
| } |
| |
| static atomic_t adapter_id = ATOMIC_INIT(0); |
| |
| static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id) |
| { |
| int ret = 0; |
| struct nmk_i2c_controller *pdata = adev->dev.platform_data; |
| struct device_node *np = adev->dev.of_node; |
| struct nmk_i2c_dev *dev; |
| struct i2c_adapter *adap; |
| |
| if (!pdata) { |
| if (np) { |
| pdata = devm_kzalloc(&adev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) { |
| ret = -ENOMEM; |
| goto err_no_mem; |
| } |
| /* Provide the default configuration as a base. */ |
| memcpy(pdata, &u8500_i2c, sizeof(struct nmk_i2c_controller)); |
| nmk_i2c_of_probe(np, pdata); |
| } else |
| /* No i2c configuration found, using the default. */ |
| pdata = &u8500_i2c; |
| } |
| |
| dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL); |
| if (!dev) { |
| dev_err(&adev->dev, "cannot allocate memory\n"); |
| ret = -ENOMEM; |
| goto err_no_mem; |
| } |
| dev->busy = false; |
| dev->adev = adev; |
| amba_set_drvdata(adev, dev); |
| |
| dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res)); |
| if (!dev->virtbase) { |
| ret = -ENOMEM; |
| goto err_no_ioremap; |
| } |
| |
| dev->irq = adev->irq[0]; |
| ret = request_irq(dev->irq, i2c_irq_handler, 0, |
| DRIVER_NAME, dev); |
| if (ret) { |
| dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq); |
| goto err_irq; |
| } |
| |
| pm_suspend_ignore_children(&adev->dev, true); |
| |
| dev->clk = clk_get(&adev->dev, NULL); |
| if (IS_ERR(dev->clk)) { |
| dev_err(&adev->dev, "could not get i2c clock\n"); |
| ret = PTR_ERR(dev->clk); |
| goto err_no_clk; |
| } |
| |
| adap = &dev->adap; |
| adap->dev.of_node = np; |
| adap->dev.parent = &adev->dev; |
| adap->owner = THIS_MODULE; |
| adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD; |
| adap->algo = &nmk_i2c_algo; |
| adap->timeout = msecs_to_jiffies(pdata->timeout); |
| adap->nr = atomic_read(&adapter_id); |
| snprintf(adap->name, sizeof(adap->name), |
| "Nomadik I2C%d at %pR", adap->nr, &adev->res); |
| atomic_inc(&adapter_id); |
| |
| /* fetch the controller configuration from machine */ |
| dev->cfg.clk_freq = pdata->clk_freq; |
| dev->cfg.slsu = pdata->slsu; |
| dev->cfg.tft = pdata->tft; |
| dev->cfg.rft = pdata->rft; |
| dev->cfg.sm = pdata->sm; |
| |
| i2c_set_adapdata(adap, dev); |
| |
| dev_info(&adev->dev, |
| "initialize %s on virtual base %p\n", |
| adap->name, dev->virtbase); |
| |
| ret = i2c_add_numbered_adapter(adap); |
| if (ret) { |
| dev_err(&adev->dev, "failed to add adapter\n"); |
| goto err_add_adap; |
| } |
| |
| of_i2c_register_devices(adap); |
| |
| pm_runtime_put(&adev->dev); |
| |
| return 0; |
| |
| err_add_adap: |
| clk_put(dev->clk); |
| err_no_clk: |
| free_irq(dev->irq, dev); |
| err_irq: |
| iounmap(dev->virtbase); |
| err_no_ioremap: |
| amba_set_drvdata(adev, NULL); |
| kfree(dev); |
| err_no_mem: |
| |
| return ret; |
| } |
| |
| static int nmk_i2c_remove(struct amba_device *adev) |
| { |
| struct resource *res = &adev->res; |
| struct nmk_i2c_dev *dev = amba_get_drvdata(adev); |
| |
| i2c_del_adapter(&dev->adap); |
| flush_i2c_fifo(dev); |
| disable_all_interrupts(dev); |
| clear_all_interrupts(dev); |
| /* disable the controller */ |
| i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE); |
| free_irq(dev->irq, dev); |
| iounmap(dev->virtbase); |
| if (res) |
| release_mem_region(res->start, resource_size(res)); |
| clk_put(dev->clk); |
| pm_runtime_disable(&adev->dev); |
| amba_set_drvdata(adev, NULL); |
| kfree(dev); |
| |
| return 0; |
| } |
| |
| static struct amba_id nmk_i2c_ids[] = { |
| { |
| .id = 0x00180024, |
| .mask = 0x00ffffff, |
| }, |
| { |
| .id = 0x00380024, |
| .mask = 0x00ffffff, |
| }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, nmk_i2c_ids); |
| |
| static struct amba_driver nmk_i2c_driver = { |
| .drv = { |
| .owner = THIS_MODULE, |
| .name = DRIVER_NAME, |
| .pm = &nmk_i2c_pm, |
| }, |
| .id_table = nmk_i2c_ids, |
| .probe = nmk_i2c_probe, |
| .remove = nmk_i2c_remove, |
| }; |
| |
| static int __init nmk_i2c_init(void) |
| { |
| return amba_driver_register(&nmk_i2c_driver); |
| } |
| |
| static void __exit nmk_i2c_exit(void) |
| { |
| amba_driver_unregister(&nmk_i2c_driver); |
| } |
| |
| subsys_initcall(nmk_i2c_init); |
| module_exit(nmk_i2c_exit); |
| |
| MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR"); |
| MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver"); |
| MODULE_LICENSE("GPL"); |