| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/dmi.h> |
| #include <linux/bootmem.h> |
| |
| |
| static char * __init dmi_string(struct dmi_header *dm, u8 s) |
| { |
| u8 *bp = ((u8 *) dm) + dm->length; |
| char *str = ""; |
| |
| if (s) { |
| s--; |
| while (s > 0 && *bp) { |
| bp += strlen(bp) + 1; |
| s--; |
| } |
| |
| if (*bp != 0) { |
| str = alloc_bootmem(strlen(bp) + 1); |
| if (str != NULL) |
| strcpy(str, bp); |
| else |
| printk(KERN_ERR "dmi_string: out of memory.\n"); |
| } |
| } |
| |
| return str; |
| } |
| |
| /* |
| * We have to be cautious here. We have seen BIOSes with DMI pointers |
| * pointing to completely the wrong place for example |
| */ |
| static int __init dmi_table(u32 base, int len, int num, |
| void (*decode)(struct dmi_header *)) |
| { |
| u8 *buf, *data; |
| int i = 0; |
| |
| buf = bt_ioremap(base, len); |
| if (buf == NULL) |
| return -1; |
| |
| data = buf; |
| |
| /* |
| * Stop when we see all the items the table claimed to have |
| * OR we run off the end of the table (also happens) |
| */ |
| while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { |
| struct dmi_header *dm = (struct dmi_header *)data; |
| /* |
| * We want to know the total length (formated area and strings) |
| * before decoding to make sure we won't run off the table in |
| * dmi_decode or dmi_string |
| */ |
| data += dm->length; |
| while ((data - buf < len - 1) && (data[0] || data[1])) |
| data++; |
| if (data - buf < len - 1) |
| decode(dm); |
| data += 2; |
| i++; |
| } |
| bt_iounmap(buf, len); |
| return 0; |
| } |
| |
| static int __init dmi_checksum(u8 *buf) |
| { |
| u8 sum = 0; |
| int a; |
| |
| for (a = 0; a < 15; a++) |
| sum += buf[a]; |
| |
| return sum == 0; |
| } |
| |
| static char *dmi_ident[DMI_STRING_MAX]; |
| static LIST_HEAD(dmi_devices); |
| |
| /* |
| * Save a DMI string |
| */ |
| static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) |
| { |
| char *p, *d = (char*) dm; |
| |
| if (dmi_ident[slot]) |
| return; |
| |
| p = dmi_string(dm, d[string]); |
| if (p == NULL) |
| return; |
| |
| dmi_ident[slot] = p; |
| } |
| |
| static void __init dmi_save_devices(struct dmi_header *dm) |
| { |
| int i, count = (dm->length - sizeof(struct dmi_header)) / 2; |
| struct dmi_device *dev; |
| |
| for (i = 0; i < count; i++) { |
| char *d = ((char *) dm) + (i * 2); |
| |
| /* Skip disabled device */ |
| if ((*d & 0x80) == 0) |
| continue; |
| |
| dev = alloc_bootmem(sizeof(*dev)); |
| if (!dev) { |
| printk(KERN_ERR "dmi_save_devices: out of memory.\n"); |
| break; |
| } |
| |
| dev->type = *d++ & 0x7f; |
| dev->name = dmi_string(dm, *d); |
| dev->device_data = NULL; |
| |
| list_add(&dev->list, &dmi_devices); |
| } |
| } |
| |
| static void __init dmi_save_ipmi_device(struct dmi_header *dm) |
| { |
| struct dmi_device *dev; |
| void * data; |
| |
| data = alloc_bootmem(dm->length); |
| if (data == NULL) { |
| printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); |
| return; |
| } |
| |
| memcpy(data, dm, dm->length); |
| |
| dev = alloc_bootmem(sizeof(*dev)); |
| if (!dev) { |
| printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); |
| return; |
| } |
| |
| dev->type = DMI_DEV_TYPE_IPMI; |
| dev->name = "IPMI controller"; |
| dev->device_data = data; |
| |
| list_add(&dev->list, &dmi_devices); |
| } |
| |
| /* |
| * Process a DMI table entry. Right now all we care about are the BIOS |
| * and machine entries. For 2.5 we should pull the smbus controller info |
| * out of here. |
| */ |
| static void __init dmi_decode(struct dmi_header *dm) |
| { |
| switch(dm->type) { |
| case 0: /* BIOS Information */ |
| dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); |
| dmi_save_ident(dm, DMI_BIOS_VERSION, 5); |
| dmi_save_ident(dm, DMI_BIOS_DATE, 8); |
| break; |
| case 1: /* System Information */ |
| dmi_save_ident(dm, DMI_SYS_VENDOR, 4); |
| dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); |
| dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); |
| dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); |
| break; |
| case 2: /* Base Board Information */ |
| dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); |
| dmi_save_ident(dm, DMI_BOARD_NAME, 5); |
| dmi_save_ident(dm, DMI_BOARD_VERSION, 6); |
| break; |
| case 10: /* Onboard Devices Information */ |
| dmi_save_devices(dm); |
| break; |
| case 38: /* IPMI Device Information */ |
| dmi_save_ipmi_device(dm); |
| } |
| } |
| |
| void __init dmi_scan_machine(void) |
| { |
| u8 buf[15]; |
| char __iomem *p, *q; |
| |
| /* |
| * no iounmap() for that ioremap(); it would be a no-op, but it's |
| * so early in setup that sucker gets confused into doing what |
| * it shouldn't if we actually call it. |
| */ |
| p = ioremap(0xF0000, 0x10000); |
| if (p == NULL) |
| goto out; |
| |
| for (q = p; q < p + 0x10000; q += 16) { |
| memcpy_fromio(buf, q, 15); |
| if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { |
| u16 num = (buf[13] << 8) | buf[12]; |
| u16 len = (buf[7] << 8) | buf[6]; |
| u32 base = (buf[11] << 24) | (buf[10] << 16) | |
| (buf[9] << 8) | buf[8]; |
| |
| /* |
| * DMI version 0.0 means that the real version is taken from |
| * the SMBIOS version, which we don't know at this point. |
| */ |
| if (buf[14] != 0) |
| printk(KERN_INFO "DMI %d.%d present.\n", |
| buf[14] >> 4, buf[14] & 0xF); |
| else |
| printk(KERN_INFO "DMI present.\n"); |
| |
| if (dmi_table(base,len, num, dmi_decode) == 0) |
| return; |
| } |
| } |
| |
| out: printk(KERN_INFO "DMI not present.\n"); |
| } |
| |
| |
| /** |
| * dmi_check_system - check system DMI data |
| * @list: array of dmi_system_id structures to match against |
| * |
| * Walk the blacklist table running matching functions until someone |
| * returns non zero or we hit the end. Callback function is called for |
| * each successfull match. Returns the number of matches. |
| */ |
| int dmi_check_system(struct dmi_system_id *list) |
| { |
| int i, count = 0; |
| struct dmi_system_id *d = list; |
| |
| while (d->ident) { |
| for (i = 0; i < ARRAY_SIZE(d->matches); i++) { |
| int s = d->matches[i].slot; |
| if (s == DMI_NONE) |
| continue; |
| if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) |
| continue; |
| /* No match */ |
| goto fail; |
| } |
| count++; |
| if (d->callback && d->callback(d)) |
| break; |
| fail: d++; |
| } |
| |
| return count; |
| } |
| EXPORT_SYMBOL(dmi_check_system); |
| |
| /** |
| * dmi_get_system_info - return DMI data value |
| * @field: data index (see enum dmi_filed) |
| * |
| * Returns one DMI data value, can be used to perform |
| * complex DMI data checks. |
| */ |
| char *dmi_get_system_info(int field) |
| { |
| return dmi_ident[field]; |
| } |
| EXPORT_SYMBOL(dmi_get_system_info); |
| |
| /** |
| * dmi_find_device - find onboard device by type/name |
| * @type: device type or %DMI_DEV_TYPE_ANY to match all device types |
| * @desc: device name string or %NULL to match all |
| * @from: previous device found in search, or %NULL for new search. |
| * |
| * Iterates through the list of known onboard devices. If a device is |
| * found with a matching @vendor and @device, a pointer to its device |
| * structure is returned. Otherwise, %NULL is returned. |
| * A new search is initiated by passing %NULL to the @from argument. |
| * If @from is not %NULL, searches continue from next device. |
| */ |
| struct dmi_device * dmi_find_device(int type, const char *name, |
| struct dmi_device *from) |
| { |
| struct list_head *d, *head = from ? &from->list : &dmi_devices; |
| |
| for(d = head->next; d != &dmi_devices; d = d->next) { |
| struct dmi_device *dev = list_entry(d, struct dmi_device, list); |
| |
| if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && |
| ((name == NULL) || (strcmp(dev->name, name) == 0))) |
| return dev; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dmi_find_device); |