| /* |
| * kernel/sched/core.c |
| * |
| * Kernel scheduler and related syscalls |
| * |
| * Copyright (C) 1991-2002 Linus Torvalds |
| * |
| * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
| * make semaphores SMP safe |
| * 1998-11-19 Implemented schedule_timeout() and related stuff |
| * by Andrea Arcangeli |
| * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
| * hybrid priority-list and round-robin design with |
| * an array-switch method of distributing timeslices |
| * and per-CPU runqueues. Cleanups and useful suggestions |
| * by Davide Libenzi, preemptible kernel bits by Robert Love. |
| * 2003-09-03 Interactivity tuning by Con Kolivas. |
| * 2004-04-02 Scheduler domains code by Nick Piggin |
| * 2007-04-15 Work begun on replacing all interactivity tuning with a |
| * fair scheduling design by Con Kolivas. |
| * 2007-05-05 Load balancing (smp-nice) and other improvements |
| * by Peter Williams |
| * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
| * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
| * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
| * Thomas Gleixner, Mike Kravetz |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/nmi.h> |
| #include <linux/init.h> |
| #include <linux/uaccess.h> |
| #include <linux/highmem.h> |
| #include <asm/mmu_context.h> |
| #include <linux/interrupt.h> |
| #include <linux/capability.h> |
| #include <linux/completion.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/debug_locks.h> |
| #include <linux/perf_event.h> |
| #include <linux/security.h> |
| #include <linux/notifier.h> |
| #include <linux/profile.h> |
| #include <linux/freezer.h> |
| #include <linux/vmalloc.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/smp.h> |
| #include <linux/threads.h> |
| #include <linux/timer.h> |
| #include <linux/rcupdate.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/percpu.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/sysctl.h> |
| #include <linux/syscalls.h> |
| #include <linux/times.h> |
| #include <linux/tsacct_kern.h> |
| #include <linux/kprobes.h> |
| #include <linux/delayacct.h> |
| #include <linux/unistd.h> |
| #include <linux/pagemap.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/debugfs.h> |
| #include <linux/ctype.h> |
| #include <linux/ftrace.h> |
| #include <linux/slab.h> |
| #include <linux/init_task.h> |
| #include <linux/binfmts.h> |
| #include <linux/context_tracking.h> |
| |
| #include <asm/switch_to.h> |
| #include <asm/tlb.h> |
| #include <asm/irq_regs.h> |
| #include <asm/mutex.h> |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/paravirt.h> |
| #endif |
| |
| #include "sched.h" |
| #include "../workqueue_internal.h" |
| #include "../smpboot.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/sched.h> |
| |
| void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) |
| { |
| unsigned long delta; |
| ktime_t soft, hard, now; |
| |
| for (;;) { |
| if (hrtimer_active(period_timer)) |
| break; |
| |
| now = hrtimer_cb_get_time(period_timer); |
| hrtimer_forward(period_timer, now, period); |
| |
| soft = hrtimer_get_softexpires(period_timer); |
| hard = hrtimer_get_expires(period_timer); |
| delta = ktime_to_ns(ktime_sub(hard, soft)); |
| __hrtimer_start_range_ns(period_timer, soft, delta, |
| HRTIMER_MODE_ABS_PINNED, 0); |
| } |
| } |
| |
| DEFINE_MUTEX(sched_domains_mutex); |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| |
| static void update_rq_clock_task(struct rq *rq, s64 delta); |
| |
| void update_rq_clock(struct rq *rq) |
| { |
| s64 delta; |
| |
| if (rq->skip_clock_update > 0) |
| return; |
| |
| delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
| rq->clock += delta; |
| update_rq_clock_task(rq, delta); |
| } |
| |
| /* |
| * Debugging: various feature bits |
| */ |
| |
| #define SCHED_FEAT(name, enabled) \ |
| (1UL << __SCHED_FEAT_##name) * enabled | |
| |
| const_debug unsigned int sysctl_sched_features = |
| #include "features.h" |
| 0; |
| |
| #undef SCHED_FEAT |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| #define SCHED_FEAT(name, enabled) \ |
| #name , |
| |
| static const char * const sched_feat_names[] = { |
| #include "features.h" |
| }; |
| |
| #undef SCHED_FEAT |
| |
| static int sched_feat_show(struct seq_file *m, void *v) |
| { |
| int i; |
| |
| for (i = 0; i < __SCHED_FEAT_NR; i++) { |
| if (!(sysctl_sched_features & (1UL << i))) |
| seq_puts(m, "NO_"); |
| seq_printf(m, "%s ", sched_feat_names[i]); |
| } |
| seq_puts(m, "\n"); |
| |
| return 0; |
| } |
| |
| #ifdef HAVE_JUMP_LABEL |
| |
| #define jump_label_key__true STATIC_KEY_INIT_TRUE |
| #define jump_label_key__false STATIC_KEY_INIT_FALSE |
| |
| #define SCHED_FEAT(name, enabled) \ |
| jump_label_key__##enabled , |
| |
| struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { |
| #include "features.h" |
| }; |
| |
| #undef SCHED_FEAT |
| |
| static void sched_feat_disable(int i) |
| { |
| if (static_key_enabled(&sched_feat_keys[i])) |
| static_key_slow_dec(&sched_feat_keys[i]); |
| } |
| |
| static void sched_feat_enable(int i) |
| { |
| if (!static_key_enabled(&sched_feat_keys[i])) |
| static_key_slow_inc(&sched_feat_keys[i]); |
| } |
| #else |
| static void sched_feat_disable(int i) { }; |
| static void sched_feat_enable(int i) { }; |
| #endif /* HAVE_JUMP_LABEL */ |
| |
| static int sched_feat_set(char *cmp) |
| { |
| int i; |
| int neg = 0; |
| |
| if (strncmp(cmp, "NO_", 3) == 0) { |
| neg = 1; |
| cmp += 3; |
| } |
| |
| for (i = 0; i < __SCHED_FEAT_NR; i++) { |
| if (strcmp(cmp, sched_feat_names[i]) == 0) { |
| if (neg) { |
| sysctl_sched_features &= ~(1UL << i); |
| sched_feat_disable(i); |
| } else { |
| sysctl_sched_features |= (1UL << i); |
| sched_feat_enable(i); |
| } |
| break; |
| } |
| } |
| |
| return i; |
| } |
| |
| static ssize_t |
| sched_feat_write(struct file *filp, const char __user *ubuf, |
| size_t cnt, loff_t *ppos) |
| { |
| char buf[64]; |
| char *cmp; |
| int i; |
| |
| if (cnt > 63) |
| cnt = 63; |
| |
| if (copy_from_user(&buf, ubuf, cnt)) |
| return -EFAULT; |
| |
| buf[cnt] = 0; |
| cmp = strstrip(buf); |
| |
| i = sched_feat_set(cmp); |
| if (i == __SCHED_FEAT_NR) |
| return -EINVAL; |
| |
| *ppos += cnt; |
| |
| return cnt; |
| } |
| |
| static int sched_feat_open(struct inode *inode, struct file *filp) |
| { |
| return single_open(filp, sched_feat_show, NULL); |
| } |
| |
| static const struct file_operations sched_feat_fops = { |
| .open = sched_feat_open, |
| .write = sched_feat_write, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static __init int sched_init_debug(void) |
| { |
| debugfs_create_file("sched_features", 0644, NULL, NULL, |
| &sched_feat_fops); |
| |
| return 0; |
| } |
| late_initcall(sched_init_debug); |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| /* |
| * Number of tasks to iterate in a single balance run. |
| * Limited because this is done with IRQs disabled. |
| */ |
| const_debug unsigned int sysctl_sched_nr_migrate = 32; |
| |
| /* |
| * period over which we average the RT time consumption, measured |
| * in ms. |
| * |
| * default: 1s |
| */ |
| const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; |
| |
| /* |
| * period over which we measure -rt task cpu usage in us. |
| * default: 1s |
| */ |
| unsigned int sysctl_sched_rt_period = 1000000; |
| |
| __read_mostly int scheduler_running; |
| |
| /* |
| * part of the period that we allow rt tasks to run in us. |
| * default: 0.95s |
| */ |
| int sysctl_sched_rt_runtime = 950000; |
| |
| |
| |
| /* |
| * __task_rq_lock - lock the rq @p resides on. |
| */ |
| static inline struct rq *__task_rq_lock(struct task_struct *p) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| lockdep_assert_held(&p->pi_lock); |
| |
| for (;;) { |
| rq = task_rq(p); |
| raw_spin_lock(&rq->lock); |
| if (likely(rq == task_rq(p))) |
| return rq; |
| raw_spin_unlock(&rq->lock); |
| } |
| } |
| |
| /* |
| * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. |
| */ |
| static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
| __acquires(p->pi_lock) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| for (;;) { |
| raw_spin_lock_irqsave(&p->pi_lock, *flags); |
| rq = task_rq(p); |
| raw_spin_lock(&rq->lock); |
| if (likely(rq == task_rq(p))) |
| return rq; |
| raw_spin_unlock(&rq->lock); |
| raw_spin_unlock_irqrestore(&p->pi_lock, *flags); |
| } |
| } |
| |
| static void __task_rq_unlock(struct rq *rq) |
| __releases(rq->lock) |
| { |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| static inline void |
| task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) |
| __releases(rq->lock) |
| __releases(p->pi_lock) |
| { |
| raw_spin_unlock(&rq->lock); |
| raw_spin_unlock_irqrestore(&p->pi_lock, *flags); |
| } |
| |
| /* |
| * this_rq_lock - lock this runqueue and disable interrupts. |
| */ |
| static struct rq *this_rq_lock(void) |
| __acquires(rq->lock) |
| { |
| struct rq *rq; |
| |
| local_irq_disable(); |
| rq = this_rq(); |
| raw_spin_lock(&rq->lock); |
| |
| return rq; |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| /* |
| * Use HR-timers to deliver accurate preemption points. |
| * |
| * Its all a bit involved since we cannot program an hrt while holding the |
| * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a |
| * reschedule event. |
| * |
| * When we get rescheduled we reprogram the hrtick_timer outside of the |
| * rq->lock. |
| */ |
| |
| static void hrtick_clear(struct rq *rq) |
| { |
| if (hrtimer_active(&rq->hrtick_timer)) |
| hrtimer_cancel(&rq->hrtick_timer); |
| } |
| |
| /* |
| * High-resolution timer tick. |
| * Runs from hardirq context with interrupts disabled. |
| */ |
| static enum hrtimer_restart hrtick(struct hrtimer *timer) |
| { |
| struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
| |
| WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
| |
| raw_spin_lock(&rq->lock); |
| update_rq_clock(rq); |
| rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
| raw_spin_unlock(&rq->lock); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * called from hardirq (IPI) context |
| */ |
| static void __hrtick_start(void *arg) |
| { |
| struct rq *rq = arg; |
| |
| raw_spin_lock(&rq->lock); |
| hrtimer_restart(&rq->hrtick_timer); |
| rq->hrtick_csd_pending = 0; |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| void hrtick_start(struct rq *rq, u64 delay) |
| { |
| struct hrtimer *timer = &rq->hrtick_timer; |
| ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
| |
| hrtimer_set_expires(timer, time); |
| |
| if (rq == this_rq()) { |
| hrtimer_restart(timer); |
| } else if (!rq->hrtick_csd_pending) { |
| __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
| rq->hrtick_csd_pending = 1; |
| } |
| } |
| |
| static int |
| hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| { |
| int cpu = (int)(long)hcpu; |
| |
| switch (action) { |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| hrtick_clear(cpu_rq(cpu)); |
| return NOTIFY_OK; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static __init void init_hrtick(void) |
| { |
| hotcpu_notifier(hotplug_hrtick, 0); |
| } |
| #else |
| /* |
| * Called to set the hrtick timer state. |
| * |
| * called with rq->lock held and irqs disabled |
| */ |
| void hrtick_start(struct rq *rq, u64 delay) |
| { |
| __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
| HRTIMER_MODE_REL_PINNED, 0); |
| } |
| |
| static inline void init_hrtick(void) |
| { |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void init_rq_hrtick(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| rq->hrtick_csd_pending = 0; |
| |
| rq->hrtick_csd.flags = 0; |
| rq->hrtick_csd.func = __hrtick_start; |
| rq->hrtick_csd.info = rq; |
| #endif |
| |
| hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| rq->hrtick_timer.function = hrtick; |
| } |
| #else /* CONFIG_SCHED_HRTICK */ |
| static inline void hrtick_clear(struct rq *rq) |
| { |
| } |
| |
| static inline void init_rq_hrtick(struct rq *rq) |
| { |
| } |
| |
| static inline void init_hrtick(void) |
| { |
| } |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| /* |
| * resched_task - mark a task 'to be rescheduled now'. |
| * |
| * On UP this means the setting of the need_resched flag, on SMP it |
| * might also involve a cross-CPU call to trigger the scheduler on |
| * the target CPU. |
| */ |
| #ifdef CONFIG_SMP |
| |
| #ifndef tsk_is_polling |
| #define tsk_is_polling(t) 0 |
| #endif |
| |
| void resched_task(struct task_struct *p) |
| { |
| int cpu; |
| |
| assert_raw_spin_locked(&task_rq(p)->lock); |
| |
| if (test_tsk_need_resched(p)) |
| return; |
| |
| set_tsk_need_resched(p); |
| |
| cpu = task_cpu(p); |
| if (cpu == smp_processor_id()) |
| return; |
| |
| /* NEED_RESCHED must be visible before we test polling */ |
| smp_mb(); |
| if (!tsk_is_polling(p)) |
| smp_send_reschedule(cpu); |
| } |
| |
| void resched_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
| return; |
| resched_task(cpu_curr(cpu)); |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * In the semi idle case, use the nearest busy cpu for migrating timers |
| * from an idle cpu. This is good for power-savings. |
| * |
| * We don't do similar optimization for completely idle system, as |
| * selecting an idle cpu will add more delays to the timers than intended |
| * (as that cpu's timer base may not be uptodate wrt jiffies etc). |
| */ |
| int get_nohz_timer_target(void) |
| { |
| int cpu = smp_processor_id(); |
| int i; |
| struct sched_domain *sd; |
| |
| rcu_read_lock(); |
| for_each_domain(cpu, sd) { |
| for_each_cpu(i, sched_domain_span(sd)) { |
| if (!idle_cpu(i)) { |
| cpu = i; |
| goto unlock; |
| } |
| } |
| } |
| unlock: |
| rcu_read_unlock(); |
| return cpu; |
| } |
| /* |
| * When add_timer_on() enqueues a timer into the timer wheel of an |
| * idle CPU then this timer might expire before the next timer event |
| * which is scheduled to wake up that CPU. In case of a completely |
| * idle system the next event might even be infinite time into the |
| * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
| * leaves the inner idle loop so the newly added timer is taken into |
| * account when the CPU goes back to idle and evaluates the timer |
| * wheel for the next timer event. |
| */ |
| void wake_up_idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (cpu == smp_processor_id()) |
| return; |
| |
| /* |
| * This is safe, as this function is called with the timer |
| * wheel base lock of (cpu) held. When the CPU is on the way |
| * to idle and has not yet set rq->curr to idle then it will |
| * be serialized on the timer wheel base lock and take the new |
| * timer into account automatically. |
| */ |
| if (rq->curr != rq->idle) |
| return; |
| |
| /* |
| * We can set TIF_RESCHED on the idle task of the other CPU |
| * lockless. The worst case is that the other CPU runs the |
| * idle task through an additional NOOP schedule() |
| */ |
| set_tsk_need_resched(rq->idle); |
| |
| /* NEED_RESCHED must be visible before we test polling */ |
| smp_mb(); |
| if (!tsk_is_polling(rq->idle)) |
| smp_send_reschedule(cpu); |
| } |
| |
| static inline bool got_nohz_idle_kick(void) |
| { |
| int cpu = smp_processor_id(); |
| return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); |
| } |
| |
| #else /* CONFIG_NO_HZ */ |
| |
| static inline bool got_nohz_idle_kick(void) |
| { |
| return false; |
| } |
| |
| #endif /* CONFIG_NO_HZ */ |
| |
| void sched_avg_update(struct rq *rq) |
| { |
| s64 period = sched_avg_period(); |
| |
| while ((s64)(rq->clock - rq->age_stamp) > period) { |
| /* |
| * Inline assembly required to prevent the compiler |
| * optimising this loop into a divmod call. |
| * See __iter_div_u64_rem() for another example of this. |
| */ |
| asm("" : "+rm" (rq->age_stamp)); |
| rq->age_stamp += period; |
| rq->rt_avg /= 2; |
| } |
| } |
| |
| #else /* !CONFIG_SMP */ |
| void resched_task(struct task_struct *p) |
| { |
| assert_raw_spin_locked(&task_rq(p)->lock); |
| set_tsk_need_resched(p); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ |
| (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) |
| /* |
| * Iterate task_group tree rooted at *from, calling @down when first entering a |
| * node and @up when leaving it for the final time. |
| * |
| * Caller must hold rcu_lock or sufficient equivalent. |
| */ |
| int walk_tg_tree_from(struct task_group *from, |
| tg_visitor down, tg_visitor up, void *data) |
| { |
| struct task_group *parent, *child; |
| int ret; |
| |
| parent = from; |
| |
| down: |
| ret = (*down)(parent, data); |
| if (ret) |
| goto out; |
| list_for_each_entry_rcu(child, &parent->children, siblings) { |
| parent = child; |
| goto down; |
| |
| up: |
| continue; |
| } |
| ret = (*up)(parent, data); |
| if (ret || parent == from) |
| goto out; |
| |
| child = parent; |
| parent = parent->parent; |
| if (parent) |
| goto up; |
| out: |
| return ret; |
| } |
| |
| int tg_nop(struct task_group *tg, void *data) |
| { |
| return 0; |
| } |
| #endif |
| |
| static void set_load_weight(struct task_struct *p) |
| { |
| int prio = p->static_prio - MAX_RT_PRIO; |
| struct load_weight *load = &p->se.load; |
| |
| /* |
| * SCHED_IDLE tasks get minimal weight: |
| */ |
| if (p->policy == SCHED_IDLE) { |
| load->weight = scale_load(WEIGHT_IDLEPRIO); |
| load->inv_weight = WMULT_IDLEPRIO; |
| return; |
| } |
| |
| load->weight = scale_load(prio_to_weight[prio]); |
| load->inv_weight = prio_to_wmult[prio]; |
| } |
| |
| static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| update_rq_clock(rq); |
| sched_info_queued(p); |
| p->sched_class->enqueue_task(rq, p, flags); |
| } |
| |
| static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| update_rq_clock(rq); |
| sched_info_dequeued(p); |
| p->sched_class->dequeue_task(rq, p, flags); |
| } |
| |
| void activate_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (task_contributes_to_load(p)) |
| rq->nr_uninterruptible--; |
| |
| enqueue_task(rq, p, flags); |
| } |
| |
| void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
| { |
| if (task_contributes_to_load(p)) |
| rq->nr_uninterruptible++; |
| |
| dequeue_task(rq, p, flags); |
| } |
| |
| static void update_rq_clock_task(struct rq *rq, s64 delta) |
| { |
| /* |
| * In theory, the compile should just see 0 here, and optimize out the call |
| * to sched_rt_avg_update. But I don't trust it... |
| */ |
| #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) |
| s64 steal = 0, irq_delta = 0; |
| #endif |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
| |
| /* |
| * Since irq_time is only updated on {soft,}irq_exit, we might run into |
| * this case when a previous update_rq_clock() happened inside a |
| * {soft,}irq region. |
| * |
| * When this happens, we stop ->clock_task and only update the |
| * prev_irq_time stamp to account for the part that fit, so that a next |
| * update will consume the rest. This ensures ->clock_task is |
| * monotonic. |
| * |
| * It does however cause some slight miss-attribution of {soft,}irq |
| * time, a more accurate solution would be to update the irq_time using |
| * the current rq->clock timestamp, except that would require using |
| * atomic ops. |
| */ |
| if (irq_delta > delta) |
| irq_delta = delta; |
| |
| rq->prev_irq_time += irq_delta; |
| delta -= irq_delta; |
| #endif |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| if (static_key_false((¶virt_steal_rq_enabled))) { |
| u64 st; |
| |
| steal = paravirt_steal_clock(cpu_of(rq)); |
| steal -= rq->prev_steal_time_rq; |
| |
| if (unlikely(steal > delta)) |
| steal = delta; |
| |
| st = steal_ticks(steal); |
| steal = st * TICK_NSEC; |
| |
| rq->prev_steal_time_rq += steal; |
| |
| delta -= steal; |
| } |
| #endif |
| |
| rq->clock_task += delta; |
| |
| #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) |
| if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) |
| sched_rt_avg_update(rq, irq_delta + steal); |
| #endif |
| } |
| |
| void sched_set_stop_task(int cpu, struct task_struct *stop) |
| { |
| struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
| struct task_struct *old_stop = cpu_rq(cpu)->stop; |
| |
| if (stop) { |
| /* |
| * Make it appear like a SCHED_FIFO task, its something |
| * userspace knows about and won't get confused about. |
| * |
| * Also, it will make PI more or less work without too |
| * much confusion -- but then, stop work should not |
| * rely on PI working anyway. |
| */ |
| sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); |
| |
| stop->sched_class = &stop_sched_class; |
| } |
| |
| cpu_rq(cpu)->stop = stop; |
| |
| if (old_stop) { |
| /* |
| * Reset it back to a normal scheduling class so that |
| * it can die in pieces. |
| */ |
| old_stop->sched_class = &rt_sched_class; |
| } |
| } |
| |
| /* |
| * __normal_prio - return the priority that is based on the static prio |
| */ |
| static inline int __normal_prio(struct task_struct *p) |
| { |
| return p->static_prio; |
| } |
| |
| /* |
| * Calculate the expected normal priority: i.e. priority |
| * without taking RT-inheritance into account. Might be |
| * boosted by interactivity modifiers. Changes upon fork, |
| * setprio syscalls, and whenever the interactivity |
| * estimator recalculates. |
| */ |
| static inline int normal_prio(struct task_struct *p) |
| { |
| int prio; |
| |
| if (task_has_rt_policy(p)) |
| prio = MAX_RT_PRIO-1 - p->rt_priority; |
| else |
| prio = __normal_prio(p); |
| return prio; |
| } |
| |
| /* |
| * Calculate the current priority, i.e. the priority |
| * taken into account by the scheduler. This value might |
| * be boosted by RT tasks, or might be boosted by |
| * interactivity modifiers. Will be RT if the task got |
| * RT-boosted. If not then it returns p->normal_prio. |
| */ |
| static int effective_prio(struct task_struct *p) |
| { |
| p->normal_prio = normal_prio(p); |
| /* |
| * If we are RT tasks or we were boosted to RT priority, |
| * keep the priority unchanged. Otherwise, update priority |
| * to the normal priority: |
| */ |
| if (!rt_prio(p->prio)) |
| return p->normal_prio; |
| return p->prio; |
| } |
| |
| /** |
| * task_curr - is this task currently executing on a CPU? |
| * @p: the task in question. |
| */ |
| inline int task_curr(const struct task_struct *p) |
| { |
| return cpu_curr(task_cpu(p)) == p; |
| } |
| |
| static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
| const struct sched_class *prev_class, |
| int oldprio) |
| { |
| if (prev_class != p->sched_class) { |
| if (prev_class->switched_from) |
| prev_class->switched_from(rq, p); |
| p->sched_class->switched_to(rq, p); |
| } else if (oldprio != p->prio) |
| p->sched_class->prio_changed(rq, p, oldprio); |
| } |
| |
| void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
| { |
| const struct sched_class *class; |
| |
| if (p->sched_class == rq->curr->sched_class) { |
| rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
| } else { |
| for_each_class(class) { |
| if (class == rq->curr->sched_class) |
| break; |
| if (class == p->sched_class) { |
| resched_task(rq->curr); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * A queue event has occurred, and we're going to schedule. In |
| * this case, we can save a useless back to back clock update. |
| */ |
| if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) |
| rq->skip_clock_update = 1; |
| } |
| |
| static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); |
| |
| void register_task_migration_notifier(struct notifier_block *n) |
| { |
| atomic_notifier_chain_register(&task_migration_notifier, n); |
| } |
| |
| #ifdef CONFIG_SMP |
| void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
| { |
| #ifdef CONFIG_SCHED_DEBUG |
| /* |
| * We should never call set_task_cpu() on a blocked task, |
| * ttwu() will sort out the placement. |
| */ |
| WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && |
| !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); |
| |
| #ifdef CONFIG_LOCKDEP |
| /* |
| * The caller should hold either p->pi_lock or rq->lock, when changing |
| * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. |
| * |
| * sched_move_task() holds both and thus holding either pins the cgroup, |
| * see task_group(). |
| * |
| * Furthermore, all task_rq users should acquire both locks, see |
| * task_rq_lock(). |
| */ |
| WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || |
| lockdep_is_held(&task_rq(p)->lock))); |
| #endif |
| #endif |
| |
| trace_sched_migrate_task(p, new_cpu); |
| |
| if (task_cpu(p) != new_cpu) { |
| struct task_migration_notifier tmn; |
| |
| if (p->sched_class->migrate_task_rq) |
| p->sched_class->migrate_task_rq(p, new_cpu); |
| p->se.nr_migrations++; |
| perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); |
| |
| tmn.task = p; |
| tmn.from_cpu = task_cpu(p); |
| tmn.to_cpu = new_cpu; |
| |
| atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); |
| } |
| |
| __set_task_cpu(p, new_cpu); |
| } |
| |
| struct migration_arg { |
| struct task_struct *task; |
| int dest_cpu; |
| }; |
| |
| static int migration_cpu_stop(void *data); |
| |
| /* |
| * wait_task_inactive - wait for a thread to unschedule. |
| * |
| * If @match_state is nonzero, it's the @p->state value just checked and |
| * not expected to change. If it changes, i.e. @p might have woken up, |
| * then return zero. When we succeed in waiting for @p to be off its CPU, |
| * we return a positive number (its total switch count). If a second call |
| * a short while later returns the same number, the caller can be sure that |
| * @p has remained unscheduled the whole time. |
| * |
| * The caller must ensure that the task *will* unschedule sometime soon, |
| * else this function might spin for a *long* time. This function can't |
| * be called with interrupts off, or it may introduce deadlock with |
| * smp_call_function() if an IPI is sent by the same process we are |
| * waiting to become inactive. |
| */ |
| unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
| { |
| unsigned long flags; |
| int running, on_rq; |
| unsigned long ncsw; |
| struct rq *rq; |
| |
| for (;;) { |
| /* |
| * We do the initial early heuristics without holding |
| * any task-queue locks at all. We'll only try to get |
| * the runqueue lock when things look like they will |
| * work out! |
| */ |
| rq = task_rq(p); |
| |
| /* |
| * If the task is actively running on another CPU |
| * still, just relax and busy-wait without holding |
| * any locks. |
| * |
| * NOTE! Since we don't hold any locks, it's not |
| * even sure that "rq" stays as the right runqueue! |
| * But we don't care, since "task_running()" will |
| * return false if the runqueue has changed and p |
| * is actually now running somewhere else! |
| */ |
| while (task_running(rq, p)) { |
| if (match_state && unlikely(p->state != match_state)) |
| return 0; |
| cpu_relax(); |
| } |
| |
| /* |
| * Ok, time to look more closely! We need the rq |
| * lock now, to be *sure*. If we're wrong, we'll |
| * just go back and repeat. |
| */ |
| rq = task_rq_lock(p, &flags); |
| trace_sched_wait_task(p); |
| running = task_running(rq, p); |
| on_rq = p->on_rq; |
| ncsw = 0; |
| if (!match_state || p->state == match_state) |
| ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
| task_rq_unlock(rq, p, &flags); |
| |
| /* |
| * If it changed from the expected state, bail out now. |
| */ |
| if (unlikely(!ncsw)) |
| break; |
| |
| /* |
| * Was it really running after all now that we |
| * checked with the proper locks actually held? |
| * |
| * Oops. Go back and try again.. |
| */ |
| if (unlikely(running)) { |
| cpu_relax(); |
| continue; |
| } |
| |
| /* |
| * It's not enough that it's not actively running, |
| * it must be off the runqueue _entirely_, and not |
| * preempted! |
| * |
| * So if it was still runnable (but just not actively |
| * running right now), it's preempted, and we should |
| * yield - it could be a while. |
| */ |
| if (unlikely(on_rq)) { |
| ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_hrtimeout(&to, HRTIMER_MODE_REL); |
| continue; |
| } |
| |
| /* |
| * Ahh, all good. It wasn't running, and it wasn't |
| * runnable, which means that it will never become |
| * running in the future either. We're all done! |
| */ |
| break; |
| } |
| |
| return ncsw; |
| } |
| |
| /*** |
| * kick_process - kick a running thread to enter/exit the kernel |
| * @p: the to-be-kicked thread |
| * |
| * Cause a process which is running on another CPU to enter |
| * kernel-mode, without any delay. (to get signals handled.) |
| * |
| * NOTE: this function doesn't have to take the runqueue lock, |
| * because all it wants to ensure is that the remote task enters |
| * the kernel. If the IPI races and the task has been migrated |
| * to another CPU then no harm is done and the purpose has been |
| * achieved as well. |
| */ |
| void kick_process(struct task_struct *p) |
| { |
| int cpu; |
| |
| preempt_disable(); |
| cpu = task_cpu(p); |
| if ((cpu != smp_processor_id()) && task_curr(p)) |
| smp_send_reschedule(cpu); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(kick_process); |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_SMP |
| /* |
| * ->cpus_allowed is protected by both rq->lock and p->pi_lock |
| */ |
| static int select_fallback_rq(int cpu, struct task_struct *p) |
| { |
| int nid = cpu_to_node(cpu); |
| const struct cpumask *nodemask = NULL; |
| enum { cpuset, possible, fail } state = cpuset; |
| int dest_cpu; |
| |
| /* |
| * If the node that the cpu is on has been offlined, cpu_to_node() |
| * will return -1. There is no cpu on the node, and we should |
| * select the cpu on the other node. |
| */ |
| if (nid != -1) { |
| nodemask = cpumask_of_node(nid); |
| |
| /* Look for allowed, online CPU in same node. */ |
| for_each_cpu(dest_cpu, nodemask) { |
| if (!cpu_online(dest_cpu)) |
| continue; |
| if (!cpu_active(dest_cpu)) |
| continue; |
| if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) |
| return dest_cpu; |
| } |
| } |
| |
| for (;;) { |
| /* Any allowed, online CPU? */ |
| for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { |
| if (!cpu_online(dest_cpu)) |
| continue; |
| if (!cpu_active(dest_cpu)) |
| continue; |
| goto out; |
| } |
| |
| switch (state) { |
| case cpuset: |
| /* No more Mr. Nice Guy. */ |
| cpuset_cpus_allowed_fallback(p); |
| state = possible; |
| break; |
| |
| case possible: |
| do_set_cpus_allowed(p, cpu_possible_mask); |
| state = fail; |
| break; |
| |
| case fail: |
| BUG(); |
| break; |
| } |
| } |
| |
| out: |
| if (state != cpuset) { |
| /* |
| * Don't tell them about moving exiting tasks or |
| * kernel threads (both mm NULL), since they never |
| * leave kernel. |
| */ |
| if (p->mm && printk_ratelimit()) { |
| printk_sched("process %d (%s) no longer affine to cpu%d\n", |
| task_pid_nr(p), p->comm, cpu); |
| } |
| } |
| |
| return dest_cpu; |
| } |
| |
| /* |
| * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. |
| */ |
| static inline |
| int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) |
| { |
| int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); |
| |
| /* |
| * In order not to call set_task_cpu() on a blocking task we need |
| * to rely on ttwu() to place the task on a valid ->cpus_allowed |
| * cpu. |
| * |
| * Since this is common to all placement strategies, this lives here. |
| * |
| * [ this allows ->select_task() to simply return task_cpu(p) and |
| * not worry about this generic constraint ] |
| */ |
| if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || |
| !cpu_online(cpu))) |
| cpu = select_fallback_rq(task_cpu(p), p); |
| |
| return cpu; |
| } |
| |
| static void update_avg(u64 *avg, u64 sample) |
| { |
| s64 diff = sample - *avg; |
| *avg += diff >> 3; |
| } |
| #endif |
| |
| static void |
| ttwu_stat(struct task_struct *p, int cpu, int wake_flags) |
| { |
| #ifdef CONFIG_SCHEDSTATS |
| struct rq *rq = this_rq(); |
| |
| #ifdef CONFIG_SMP |
| int this_cpu = smp_processor_id(); |
| |
| if (cpu == this_cpu) { |
| schedstat_inc(rq, ttwu_local); |
| schedstat_inc(p, se.statistics.nr_wakeups_local); |
| } else { |
| struct sched_domain *sd; |
| |
| schedstat_inc(p, se.statistics.nr_wakeups_remote); |
| rcu_read_lock(); |
| for_each_domain(this_cpu, sd) { |
| if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| schedstat_inc(sd, ttwu_wake_remote); |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| if (wake_flags & WF_MIGRATED) |
| schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
| |
| #endif /* CONFIG_SMP */ |
| |
| schedstat_inc(rq, ttwu_count); |
| schedstat_inc(p, se.statistics.nr_wakeups); |
| |
| if (wake_flags & WF_SYNC) |
| schedstat_inc(p, se.statistics.nr_wakeups_sync); |
| |
| #endif /* CONFIG_SCHEDSTATS */ |
| } |
| |
| static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) |
| { |
| activate_task(rq, p, en_flags); |
| p->on_rq = 1; |
| |
| /* if a worker is waking up, notify workqueue */ |
| if (p->flags & PF_WQ_WORKER) |
| wq_worker_waking_up(p, cpu_of(rq)); |
| } |
| |
| /* |
| * Mark the task runnable and perform wakeup-preemption. |
| */ |
| static void |
| ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
| { |
| trace_sched_wakeup(p, true); |
| check_preempt_curr(rq, p, wake_flags); |
| |
| p->state = TASK_RUNNING; |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_woken) |
| p->sched_class->task_woken(rq, p); |
| |
| if (rq->idle_stamp) { |
| u64 delta = rq->clock - rq->idle_stamp; |
| u64 max = 2*sysctl_sched_migration_cost; |
| |
| if (delta > max) |
| rq->avg_idle = max; |
| else |
| update_avg(&rq->avg_idle, delta); |
| rq->idle_stamp = 0; |
| } |
| #endif |
| } |
| |
| static void |
| ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) |
| { |
| #ifdef CONFIG_SMP |
| if (p->sched_contributes_to_load) |
| rq->nr_uninterruptible--; |
| #endif |
| |
| ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); |
| ttwu_do_wakeup(rq, p, wake_flags); |
| } |
| |
| /* |
| * Called in case the task @p isn't fully descheduled from its runqueue, |
| * in this case we must do a remote wakeup. Its a 'light' wakeup though, |
| * since all we need to do is flip p->state to TASK_RUNNING, since |
| * the task is still ->on_rq. |
| */ |
| static int ttwu_remote(struct task_struct *p, int wake_flags) |
| { |
| struct rq *rq; |
| int ret = 0; |
| |
| rq = __task_rq_lock(p); |
| if (p->on_rq) { |
| ttwu_do_wakeup(rq, p, wake_flags); |
| ret = 1; |
| } |
| __task_rq_unlock(rq); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| static void sched_ttwu_pending(void) |
| { |
| struct rq *rq = this_rq(); |
| struct llist_node *llist = llist_del_all(&rq->wake_list); |
| struct task_struct *p; |
| |
| raw_spin_lock(&rq->lock); |
| |
| while (llist) { |
| p = llist_entry(llist, struct task_struct, wake_entry); |
| llist = llist_next(llist); |
| ttwu_do_activate(rq, p, 0); |
| } |
| |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| void scheduler_ipi(void) |
| { |
| if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) |
| return; |
| |
| /* |
| * Not all reschedule IPI handlers call irq_enter/irq_exit, since |
| * traditionally all their work was done from the interrupt return |
| * path. Now that we actually do some work, we need to make sure |
| * we do call them. |
| * |
| * Some archs already do call them, luckily irq_enter/exit nest |
| * properly. |
| * |
| * Arguably we should visit all archs and update all handlers, |
| * however a fair share of IPIs are still resched only so this would |
| * somewhat pessimize the simple resched case. |
| */ |
| irq_enter(); |
| sched_ttwu_pending(); |
| |
| /* |
| * Check if someone kicked us for doing the nohz idle load balance. |
| */ |
| if (unlikely(got_nohz_idle_kick() && !need_resched())) { |
| this_rq()->idle_balance = 1; |
| raise_softirq_irqoff(SCHED_SOFTIRQ); |
| } |
| irq_exit(); |
| } |
| |
| static void ttwu_queue_remote(struct task_struct *p, int cpu) |
| { |
| if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) |
| smp_send_reschedule(cpu); |
| } |
| |
| bool cpus_share_cache(int this_cpu, int that_cpu) |
| { |
| return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void ttwu_queue(struct task_struct *p, int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| #if defined(CONFIG_SMP) |
| if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { |
| sched_clock_cpu(cpu); /* sync clocks x-cpu */ |
| ttwu_queue_remote(p, cpu); |
| return; |
| } |
| #endif |
| |
| raw_spin_lock(&rq->lock); |
| ttwu_do_activate(rq, p, 0); |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| /** |
| * try_to_wake_up - wake up a thread |
| * @p: the thread to be awakened |
| * @state: the mask of task states that can be woken |
| * @wake_flags: wake modifier flags (WF_*) |
| * |
| * Put it on the run-queue if it's not already there. The "current" |
| * thread is always on the run-queue (except when the actual |
| * re-schedule is in progress), and as such you're allowed to do |
| * the simpler "current->state = TASK_RUNNING" to mark yourself |
| * runnable without the overhead of this. |
| * |
| * Returns %true if @p was woken up, %false if it was already running |
| * or @state didn't match @p's state. |
| */ |
| static int |
| try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) |
| { |
| unsigned long flags; |
| int cpu, success = 0; |
| |
| smp_wmb(); |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| if (!(p->state & state)) |
| goto out; |
| |
| success = 1; /* we're going to change ->state */ |
| cpu = task_cpu(p); |
| |
| if (p->on_rq && ttwu_remote(p, wake_flags)) |
| goto stat; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * If the owning (remote) cpu is still in the middle of schedule() with |
| * this task as prev, wait until its done referencing the task. |
| */ |
| while (p->on_cpu) |
| cpu_relax(); |
| /* |
| * Pairs with the smp_wmb() in finish_lock_switch(). |
| */ |
| smp_rmb(); |
| |
| p->sched_contributes_to_load = !!task_contributes_to_load(p); |
| p->state = TASK_WAKING; |
| |
| if (p->sched_class->task_waking) |
| p->sched_class->task_waking(p); |
| |
| cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
| if (task_cpu(p) != cpu) { |
| wake_flags |= WF_MIGRATED; |
| set_task_cpu(p, cpu); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| ttwu_queue(p, cpu); |
| stat: |
| ttwu_stat(p, cpu, wake_flags); |
| out: |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| |
| return success; |
| } |
| |
| /** |
| * try_to_wake_up_local - try to wake up a local task with rq lock held |
| * @p: the thread to be awakened |
| * |
| * Put @p on the run-queue if it's not already there. The caller must |
| * ensure that this_rq() is locked, @p is bound to this_rq() and not |
| * the current task. |
| */ |
| static void try_to_wake_up_local(struct task_struct *p) |
| { |
| struct rq *rq = task_rq(p); |
| |
| if (WARN_ON_ONCE(rq != this_rq()) || |
| WARN_ON_ONCE(p == current)) |
| return; |
| |
| lockdep_assert_held(&rq->lock); |
| |
| if (!raw_spin_trylock(&p->pi_lock)) { |
| raw_spin_unlock(&rq->lock); |
| raw_spin_lock(&p->pi_lock); |
| raw_spin_lock(&rq->lock); |
| } |
| |
| if (!(p->state & TASK_NORMAL)) |
| goto out; |
| |
| if (!p->on_rq) |
| ttwu_activate(rq, p, ENQUEUE_WAKEUP); |
| |
| ttwu_do_wakeup(rq, p, 0); |
| ttwu_stat(p, smp_processor_id(), 0); |
| out: |
| raw_spin_unlock(&p->pi_lock); |
| } |
| |
| /** |
| * wake_up_process - Wake up a specific process |
| * @p: The process to be woken up. |
| * |
| * Attempt to wake up the nominated process and move it to the set of runnable |
| * processes. Returns 1 if the process was woken up, 0 if it was already |
| * running. |
| * |
| * It may be assumed that this function implies a write memory barrier before |
| * changing the task state if and only if any tasks are woken up. |
| */ |
| int wake_up_process(struct task_struct *p) |
| { |
| WARN_ON(task_is_stopped_or_traced(p)); |
| return try_to_wake_up(p, TASK_NORMAL, 0); |
| } |
| EXPORT_SYMBOL(wake_up_process); |
| |
| int wake_up_state(struct task_struct *p, unsigned int state) |
| { |
| return try_to_wake_up(p, state, 0); |
| } |
| |
| /* |
| * Perform scheduler related setup for a newly forked process p. |
| * p is forked by current. |
| * |
| * __sched_fork() is basic setup used by init_idle() too: |
| */ |
| static void __sched_fork(struct task_struct *p) |
| { |
| p->on_rq = 0; |
| |
| p->se.on_rq = 0; |
| p->se.exec_start = 0; |
| p->se.sum_exec_runtime = 0; |
| p->se.prev_sum_exec_runtime = 0; |
| p->se.nr_migrations = 0; |
| p->se.vruntime = 0; |
| INIT_LIST_HEAD(&p->se.group_node); |
| |
| /* |
| * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be |
| * removed when useful for applications beyond shares distribution (e.g. |
| * load-balance). |
| */ |
| #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) |
| p->se.avg.runnable_avg_period = 0; |
| p->se.avg.runnable_avg_sum = 0; |
| #endif |
| #ifdef CONFIG_SCHEDSTATS |
| memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
| #endif |
| |
| INIT_LIST_HEAD(&p->rt.run_list); |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| INIT_HLIST_HEAD(&p->preempt_notifiers); |
| #endif |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| if (p->mm && atomic_read(&p->mm->mm_users) == 1) { |
| p->mm->numa_next_scan = jiffies; |
| p->mm->numa_next_reset = jiffies; |
| p->mm->numa_scan_seq = 0; |
| } |
| |
| p->node_stamp = 0ULL; |
| p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; |
| p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; |
| p->numa_scan_period = sysctl_numa_balancing_scan_delay; |
| p->numa_work.next = &p->numa_work; |
| #endif /* CONFIG_NUMA_BALANCING */ |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| #ifdef CONFIG_SCHED_DEBUG |
| void set_numabalancing_state(bool enabled) |
| { |
| if (enabled) |
| sched_feat_set("NUMA"); |
| else |
| sched_feat_set("NO_NUMA"); |
| } |
| #else |
| __read_mostly bool numabalancing_enabled; |
| |
| void set_numabalancing_state(bool enabled) |
| { |
| numabalancing_enabled = enabled; |
| } |
| #endif /* CONFIG_SCHED_DEBUG */ |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| /* |
| * fork()/clone()-time setup: |
| */ |
| void sched_fork(struct task_struct *p) |
| { |
| unsigned long flags; |
| int cpu = get_cpu(); |
| |
| __sched_fork(p); |
| /* |
| * We mark the process as running here. This guarantees that |
| * nobody will actually run it, and a signal or other external |
| * event cannot wake it up and insert it on the runqueue either. |
| */ |
| p->state = TASK_RUNNING; |
| |
| /* |
| * Make sure we do not leak PI boosting priority to the child. |
| */ |
| p->prio = current->normal_prio; |
| |
| /* |
| * Revert to default priority/policy on fork if requested. |
| */ |
| if (unlikely(p->sched_reset_on_fork)) { |
| if (task_has_rt_policy(p)) { |
| p->policy = SCHED_NORMAL; |
| p->static_prio = NICE_TO_PRIO(0); |
| p->rt_priority = 0; |
| } else if (PRIO_TO_NICE(p->static_prio) < 0) |
| p->static_prio = NICE_TO_PRIO(0); |
| |
| p->prio = p->normal_prio = __normal_prio(p); |
| set_load_weight(p); |
| |
| /* |
| * We don't need the reset flag anymore after the fork. It has |
| * fulfilled its duty: |
| */ |
| p->sched_reset_on_fork = 0; |
| } |
| |
| if (!rt_prio(p->prio)) |
| p->sched_class = &fair_sched_class; |
| |
| if (p->sched_class->task_fork) |
| p->sched_class->task_fork(p); |
| |
| /* |
| * The child is not yet in the pid-hash so no cgroup attach races, |
| * and the cgroup is pinned to this child due to cgroup_fork() |
| * is ran before sched_fork(). |
| * |
| * Silence PROVE_RCU. |
| */ |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| set_task_cpu(p, cpu); |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| if (likely(sched_info_on())) |
| memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| #endif |
| #if defined(CONFIG_SMP) |
| p->on_cpu = 0; |
| #endif |
| #ifdef CONFIG_PREEMPT_COUNT |
| /* Want to start with kernel preemption disabled. */ |
| task_thread_info(p)->preempt_count = 1; |
| #endif |
| #ifdef CONFIG_SMP |
| plist_node_init(&p->pushable_tasks, MAX_PRIO); |
| #endif |
| |
| put_cpu(); |
| } |
| |
| /* |
| * wake_up_new_task - wake up a newly created task for the first time. |
| * |
| * This function will do some initial scheduler statistics housekeeping |
| * that must be done for every newly created context, then puts the task |
| * on the runqueue and wakes it. |
| */ |
| void wake_up_new_task(struct task_struct *p) |
| { |
| unsigned long flags; |
| struct rq *rq; |
| |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| #ifdef CONFIG_SMP |
| /* |
| * Fork balancing, do it here and not earlier because: |
| * - cpus_allowed can change in the fork path |
| * - any previously selected cpu might disappear through hotplug |
| */ |
| set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); |
| #endif |
| |
| rq = __task_rq_lock(p); |
| activate_task(rq, p, 0); |
| p->on_rq = 1; |
| trace_sched_wakeup_new(p, true); |
| check_preempt_curr(rq, p, WF_FORK); |
| #ifdef CONFIG_SMP |
| if (p->sched_class->task_woken) |
| p->sched_class->task_woken(rq, p); |
| #endif |
| task_rq_unlock(rq, p, &flags); |
| } |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| |
| /** |
| * preempt_notifier_register - tell me when current is being preempted & rescheduled |
| * @notifier: notifier struct to register |
| */ |
| void preempt_notifier_register(struct preempt_notifier *notifier) |
| { |
| hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_register); |
| |
| /** |
| * preempt_notifier_unregister - no longer interested in preemption notifications |
| * @notifier: notifier struct to unregister |
| * |
| * This is safe to call from within a preemption notifier. |
| */ |
| void preempt_notifier_unregister(struct preempt_notifier *notifier) |
| { |
| hlist_del(¬ifier->link); |
| } |
| EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
| |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| struct preempt_notifier *notifier; |
| |
| hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
| } |
| |
| static void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| struct preempt_notifier *notifier; |
| |
| hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) |
| notifier->ops->sched_out(notifier, next); |
| } |
| |
| #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
| |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
| { |
| } |
| |
| static void |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, |
| struct task_struct *next) |
| { |
| } |
| |
| #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
| |
| /** |
| * prepare_task_switch - prepare to switch tasks |
| * @rq: the runqueue preparing to switch |
| * @prev: the current task that is being switched out |
| * @next: the task we are going to switch to. |
| * |
| * This is called with the rq lock held and interrupts off. It must |
| * be paired with a subsequent finish_task_switch after the context |
| * switch. |
| * |
| * prepare_task_switch sets up locking and calls architecture specific |
| * hooks. |
| */ |
| static inline void |
| prepare_task_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next) |
| { |
| trace_sched_switch(prev, next); |
| sched_info_switch(prev, next); |
| perf_event_task_sched_out(prev, next); |
| fire_sched_out_preempt_notifiers(prev, next); |
| prepare_lock_switch(rq, next); |
| prepare_arch_switch(next); |
| } |
| |
| /** |
| * finish_task_switch - clean up after a task-switch |
| * @rq: runqueue associated with task-switch |
| * @prev: the thread we just switched away from. |
| * |
| * finish_task_switch must be called after the context switch, paired |
| * with a prepare_task_switch call before the context switch. |
| * finish_task_switch will reconcile locking set up by prepare_task_switch, |
| * and do any other architecture-specific cleanup actions. |
| * |
| * Note that we may have delayed dropping an mm in context_switch(). If |
| * so, we finish that here outside of the runqueue lock. (Doing it |
| * with the lock held can cause deadlocks; see schedule() for |
| * details.) |
| */ |
| static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| struct mm_struct *mm = rq->prev_mm; |
| long prev_state; |
| |
| rq->prev_mm = NULL; |
| |
| /* |
| * A task struct has one reference for the use as "current". |
| * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
| * schedule one last time. The schedule call will never return, and |
| * the scheduled task must drop that reference. |
| * The test for TASK_DEAD must occur while the runqueue locks are |
| * still held, otherwise prev could be scheduled on another cpu, die |
| * there before we look at prev->state, and then the reference would |
| * be dropped twice. |
| * Manfred Spraul <manfred@colorfullife.com> |
| */ |
| prev_state = prev->state; |
| vtime_task_switch(prev); |
| finish_arch_switch(prev); |
| perf_event_task_sched_in(prev, current); |
| finish_lock_switch(rq, prev); |
| finish_arch_post_lock_switch(); |
| |
| fire_sched_in_preempt_notifiers(current); |
| if (mm) |
| mmdrop(mm); |
| if (unlikely(prev_state == TASK_DEAD)) { |
| /* |
| * Remove function-return probe instances associated with this |
| * task and put them back on the free list. |
| */ |
| kprobe_flush_task(prev); |
| put_task_struct(prev); |
| } |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* assumes rq->lock is held */ |
| static inline void pre_schedule(struct rq *rq, struct task_struct *prev) |
| { |
| if (prev->sched_class->pre_schedule) |
| prev->sched_class->pre_schedule(rq, prev); |
| } |
| |
| /* rq->lock is NOT held, but preemption is disabled */ |
| static inline void post_schedule(struct rq *rq) |
| { |
| if (rq->post_schedule) { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&rq->lock, flags); |
| if (rq->curr->sched_class->post_schedule) |
| rq->curr->sched_class->post_schedule(rq); |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| |
| rq->post_schedule = 0; |
| } |
| } |
| |
| #else |
| |
| static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
| { |
| } |
| |
| static inline void post_schedule(struct rq *rq) |
| { |
| } |
| |
| #endif |
| |
| /** |
| * schedule_tail - first thing a freshly forked thread must call. |
| * @prev: the thread we just switched away from. |
| */ |
| asmlinkage void schedule_tail(struct task_struct *prev) |
| __releases(rq->lock) |
| { |
| struct rq *rq = this_rq(); |
| |
| finish_task_switch(rq, prev); |
| |
| /* |
| * FIXME: do we need to worry about rq being invalidated by the |
| * task_switch? |
| */ |
| post_schedule(rq); |
| |
| #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
| /* In this case, finish_task_switch does not reenable preemption */ |
| preempt_enable(); |
| #endif |
| if (current->set_child_tid) |
| put_user(task_pid_vnr(current), current->set_child_tid); |
| } |
| |
| /* |
| * context_switch - switch to the new MM and the new |
| * thread's register state. |
| */ |
| static inline void |
| context_switch(struct rq *rq, struct task_struct *prev, |
| struct task_struct *next) |
| { |
| struct mm_struct *mm, *oldmm; |
| |
| prepare_task_switch(rq, prev, next); |
| |
| mm = next->mm; |
| oldmm = prev->active_mm; |
| /* |
| * For paravirt, this is coupled with an exit in switch_to to |
| * combine the page table reload and the switch backend into |
| * one hypercall. |
| */ |
| arch_start_context_switch(prev); |
| |
| if (!mm) { |
| next->active_mm = oldmm; |
| atomic_inc(&oldmm->mm_count); |
| enter_lazy_tlb(oldmm, next); |
| } else |
| switch_mm(oldmm, mm, next); |
| |
| if (!prev->mm) { |
| prev->active_mm = NULL; |
| rq->prev_mm = oldmm; |
| } |
| /* |
| * Since the runqueue lock will be released by the next |
| * task (which is an invalid locking op but in the case |
| * of the scheduler it's an obvious special-case), so we |
| * do an early lockdep release here: |
| */ |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
| spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
| #endif |
| |
| context_tracking_task_switch(prev, next); |
| /* Here we just switch the register state and the stack. */ |
| switch_to(prev, next, prev); |
| |
| barrier(); |
| /* |
| * this_rq must be evaluated again because prev may have moved |
| * CPUs since it called schedule(), thus the 'rq' on its stack |
| * frame will be invalid. |
| */ |
| finish_task_switch(this_rq(), prev); |
| } |
| |
| /* |
| * nr_running and nr_context_switches: |
| * |
| * externally visible scheduler statistics: current number of runnable |
| * threads, total number of context switches performed since bootup. |
| */ |
| unsigned long nr_running(void) |
| { |
| unsigned long i, sum = 0; |
| |
| for_each_online_cpu(i) |
| sum += cpu_rq(i)->nr_running; |
| |
| return sum; |
| } |
| |
| unsigned long long nr_context_switches(void) |
| { |
| int i; |
| unsigned long long sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += cpu_rq(i)->nr_switches; |
| |
| return sum; |
| } |
| |
| unsigned long nr_iowait(void) |
| { |
| unsigned long i, sum = 0; |
| |
| for_each_possible_cpu(i) |
| sum += atomic_read(&cpu_rq(i)->nr_iowait); |
| |
| return sum; |
| } |
| |
| unsigned long nr_iowait_cpu(int cpu) |
| { |
| struct rq *this = cpu_rq(cpu); |
| return atomic_read(&this->nr_iowait); |
| } |
| |
| unsigned long this_cpu_load(void) |
| { |
| struct rq *this = this_rq(); |
| return this->cpu_load[0]; |
| } |
| |
| |
| /* |
| * Global load-average calculations |
| * |
| * We take a distributed and async approach to calculating the global load-avg |
| * in order to minimize overhead. |
| * |
| * The global load average is an exponentially decaying average of nr_running + |
| * nr_uninterruptible. |
| * |
| * Once every LOAD_FREQ: |
| * |
| * nr_active = 0; |
| * for_each_possible_cpu(cpu) |
| * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; |
| * |
| * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) |
| * |
| * Due to a number of reasons the above turns in the mess below: |
| * |
| * - for_each_possible_cpu() is prohibitively expensive on machines with |
| * serious number of cpus, therefore we need to take a distributed approach |
| * to calculating nr_active. |
| * |
| * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 |
| * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } |
| * |
| * So assuming nr_active := 0 when we start out -- true per definition, we |
| * can simply take per-cpu deltas and fold those into a global accumulate |
| * to obtain the same result. See calc_load_fold_active(). |
| * |
| * Furthermore, in order to avoid synchronizing all per-cpu delta folding |
| * across the machine, we assume 10 ticks is sufficient time for every |
| * cpu to have completed this task. |
| * |
| * This places an upper-bound on the IRQ-off latency of the machine. Then |
| * again, being late doesn't loose the delta, just wrecks the sample. |
| * |
| * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because |
| * this would add another cross-cpu cacheline miss and atomic operation |
| * to the wakeup path. Instead we increment on whatever cpu the task ran |
| * when it went into uninterruptible state and decrement on whatever cpu |
| * did the wakeup. This means that only the sum of nr_uninterruptible over |
| * all cpus yields the correct result. |
| * |
| * This covers the NO_HZ=n code, for extra head-aches, see the comment below. |
| */ |
| |
| /* Variables and functions for calc_load */ |
| static atomic_long_t calc_load_tasks; |
| static unsigned long calc_load_update; |
| unsigned long avenrun[3]; |
| EXPORT_SYMBOL(avenrun); /* should be removed */ |
| |
| /** |
| * get_avenrun - get the load average array |
| * @loads: pointer to dest load array |
| * @offset: offset to add |
| * @shift: shift count to shift the result left |
| * |
| * These values are estimates at best, so no need for locking. |
| */ |
| void get_avenrun(unsigned long *loads, unsigned long offset, int shift) |
| { |
| loads[0] = (avenrun[0] + offset) << shift; |
| loads[1] = (avenrun[1] + offset) << shift; |
| loads[2] = (avenrun[2] + offset) << shift; |
| } |
| |
| static long calc_load_fold_active(struct rq *this_rq) |
| { |
| long nr_active, delta = 0; |
| |
| nr_active = this_rq->nr_running; |
| nr_active += (long) this_rq->nr_uninterruptible; |
| |
| if (nr_active != this_rq->calc_load_active) { |
| delta = nr_active - this_rq->calc_load_active; |
| this_rq->calc_load_active = nr_active; |
| } |
| |
| return delta; |
| } |
| |
| /* |
| * a1 = a0 * e + a * (1 - e) |
| */ |
| static unsigned long |
| calc_load(unsigned long load, unsigned long exp, unsigned long active) |
| { |
| load *= exp; |
| load += active * (FIXED_1 - exp); |
| load += 1UL << (FSHIFT - 1); |
| return load >> FSHIFT; |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * Handle NO_HZ for the global load-average. |
| * |
| * Since the above described distributed algorithm to compute the global |
| * load-average relies on per-cpu sampling from the tick, it is affected by |
| * NO_HZ. |
| * |
| * The basic idea is to fold the nr_active delta into a global idle-delta upon |
| * entering NO_HZ state such that we can include this as an 'extra' cpu delta |
| * when we read the global state. |
| * |
| * Obviously reality has to ruin such a delightfully simple scheme: |
| * |
| * - When we go NO_HZ idle during the window, we can negate our sample |
| * contribution, causing under-accounting. |
| * |
| * We avoid this by keeping two idle-delta counters and flipping them |
| * when the window starts, thus separating old and new NO_HZ load. |
| * |
| * The only trick is the slight shift in index flip for read vs write. |
| * |
| * 0s 5s 10s 15s |
| * +10 +10 +10 +10 |
| * |-|-----------|-|-----------|-|-----------|-| |
| * r:0 0 1 1 0 0 1 1 0 |
| * w:0 1 1 0 0 1 1 0 0 |
| * |
| * This ensures we'll fold the old idle contribution in this window while |
| * accumlating the new one. |
| * |
| * - When we wake up from NO_HZ idle during the window, we push up our |
| * contribution, since we effectively move our sample point to a known |
| * busy state. |
| * |
| * This is solved by pushing the window forward, and thus skipping the |
| * sample, for this cpu (effectively using the idle-delta for this cpu which |
| * was in effect at the time the window opened). This also solves the issue |
| * of having to deal with a cpu having been in NOHZ idle for multiple |
| * LOAD_FREQ intervals. |
| * |
| * When making the ILB scale, we should try to pull this in as well. |
| */ |
| static atomic_long_t calc_load_idle[2]; |
| static int calc_load_idx; |
| |
| static inline int calc_load_write_idx(void) |
| { |
| int idx = calc_load_idx; |
| |
| /* |
| * See calc_global_nohz(), if we observe the new index, we also |
| * need to observe the new update time. |
| */ |
| smp_rmb(); |
| |
| /* |
| * If the folding window started, make sure we start writing in the |
| * next idle-delta. |
| */ |
| if (!time_before(jiffies, calc_load_update)) |
| idx++; |
| |
| return idx & 1; |
| } |
| |
| static inline int calc_load_read_idx(void) |
| { |
| return calc_load_idx & 1; |
| } |
| |
| void calc_load_enter_idle(void) |
| { |
| struct rq *this_rq = this_rq(); |
| long delta; |
| |
| /* |
| * We're going into NOHZ mode, if there's any pending delta, fold it |
| * into the pending idle delta. |
| */ |
| delta = calc_load_fold_active(this_rq); |
| if (delta) { |
| int idx = calc_load_write_idx(); |
| atomic_long_add(delta, &calc_load_idle[idx]); |
| } |
| } |
| |
| void calc_load_exit_idle(void) |
| { |
| struct rq *this_rq = this_rq(); |
| |
| /* |
| * If we're still before the sample window, we're done. |
| */ |
| if (time_before(jiffies, this_rq->calc_load_update)) |
| return; |
| |
| /* |
| * We woke inside or after the sample window, this means we're already |
| * accounted through the nohz accounting, so skip the entire deal and |
| * sync up for the next window. |
| */ |
| this_rq->calc_load_update = calc_load_update; |
| if (time_before(jiffies, this_rq->calc_load_update + 10)) |
| this_rq->calc_load_update += LOAD_FREQ; |
| } |
| |
| static long calc_load_fold_idle(void) |
| { |
| int idx = calc_load_read_idx(); |
| long delta = 0; |
| |
| if (atomic_long_read(&calc_load_idle[idx])) |
| delta = atomic_long_xchg(&calc_load_idle[idx], 0); |
| |
| return delta; |
| } |
| |
| /** |
| * fixed_power_int - compute: x^n, in O(log n) time |
| * |
| * @x: base of the power |
| * @frac_bits: fractional bits of @x |
| * @n: power to raise @x to. |
| * |
| * By exploiting the relation between the definition of the natural power |
| * function: x^n := x*x*...*x (x multiplied by itself for n times), and |
| * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, |
| * (where: n_i \elem {0, 1}, the binary vector representing n), |
| * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is |
| * of course trivially computable in O(log_2 n), the length of our binary |
| * vector. |
| */ |
| static unsigned long |
| fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) |
| { |
| unsigned long result = 1UL << frac_bits; |
| |
| if (n) for (;;) { |
| if (n & 1) { |
| result *= x; |
| result += 1UL << (frac_bits - 1); |
| result >>= frac_bits; |
| } |
| n >>= 1; |
| if (!n) |
| break; |
| x *= x; |
| x += 1UL << (frac_bits - 1); |
| x >>= frac_bits; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * a1 = a0 * e + a * (1 - e) |
| * |
| * a2 = a1 * e + a * (1 - e) |
| * = (a0 * e + a * (1 - e)) * e + a * (1 - e) |
| * = a0 * e^2 + a * (1 - e) * (1 + e) |
| * |
| * a3 = a2 * e + a * (1 - e) |
| * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) |
| * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) |
| * |
| * ... |
| * |
| * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] |
| * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) |
| * = a0 * e^n + a * (1 - e^n) |
| * |
| * [1] application of the geometric series: |
| * |
| * n 1 - x^(n+1) |
| * S_n := \Sum x^i = ------------- |
| * i=0 1 - x |
| */ |
| static unsigned long |
| calc_load_n(unsigned long load, unsigned long exp, |
| unsigned long active, unsigned int n) |
| { |
| |
| return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); |
| } |
| |
| /* |
| * NO_HZ can leave us missing all per-cpu ticks calling |
| * calc_load_account_active(), but since an idle CPU folds its delta into |
| * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold |
| * in the pending idle delta if our idle period crossed a load cycle boundary. |
| * |
| * Once we've updated the global active value, we need to apply the exponential |
| * weights adjusted to the number of cycles missed. |
| */ |
| static void calc_global_nohz(void) |
| { |
| long delta, active, n; |
| |
| if (!time_before(jiffies, calc_load_update + 10)) { |
| /* |
| * Catch-up, fold however many we are behind still |
| */ |
| delta = jiffies - calc_load_update - 10; |
| n = 1 + (delta / LOAD_FREQ); |
| |
| active = atomic_long_read(&calc_load_tasks); |
| active = active > 0 ? active * FIXED_1 : 0; |
| |
| avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); |
| avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); |
| avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); |
| |
| calc_load_update += n * LOAD_FREQ; |
| } |
| |
| /* |
| * Flip the idle index... |
| * |
| * Make sure we first write the new time then flip the index, so that |
| * calc_load_write_idx() will see the new time when it reads the new |
| * index, this avoids a double flip messing things up. |
| */ |
| smp_wmb(); |
| calc_load_idx++; |
| } |
| #else /* !CONFIG_NO_HZ */ |
| |
| static inline long calc_load_fold_idle(void) { return 0; } |
| static inline void calc_global_nohz(void) { } |
| |
| #endif /* CONFIG_NO_HZ */ |
| |
| /* |
| * calc_load - update the avenrun load estimates 10 ticks after the |
| * CPUs have updated calc_load_tasks. |
| */ |
| void calc_global_load(unsigned long ticks) |
| { |
| long active, delta; |
| |
| if (time_before(jiffies, calc_load_update + 10)) |
| return; |
| |
| /* |
| * Fold the 'old' idle-delta to include all NO_HZ cpus. |
| */ |
| delta = calc_load_fold_idle(); |
| if (delta) |
| atomic_long_add(delta, &calc_load_tasks); |
| |
| active = atomic_long_read(&calc_load_tasks); |
| active = active > 0 ? active * FIXED_1 : 0; |
| |
| avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
| avenrun[1] = calc_load(avenrun[1], EXP_5, active); |
| avenrun[2] = calc_load(avenrun[2], EXP_15, active); |
| |
| calc_load_update += LOAD_FREQ; |
| |
| /* |
| * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. |
| */ |
| calc_global_nohz(); |
| } |
| |
| /* |
| * Called from update_cpu_load() to periodically update this CPU's |
| * active count. |
| */ |
| static void calc_load_account_active(struct rq *this_rq) |
| { |
| long delta; |
| |
| if (time_before(jiffies, this_rq->calc_load_update)) |
| return; |
| |
| delta = calc_load_fold_active(this_rq); |
| if (delta) |
| atomic_long_add(delta, &calc_load_tasks); |
| |
| this_rq->calc_load_update += LOAD_FREQ; |
| } |
| |
| /* |
| * End of global load-average stuff |
| */ |
| |
| /* |
| * The exact cpuload at various idx values, calculated at every tick would be |
| * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load |
| * |
| * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called |
| * on nth tick when cpu may be busy, then we have: |
| * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
| * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load |
| * |
| * decay_load_missed() below does efficient calculation of |
| * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
| * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load |
| * |
| * The calculation is approximated on a 128 point scale. |
| * degrade_zero_ticks is the number of ticks after which load at any |
| * particular idx is approximated to be zero. |
| * degrade_factor is a precomputed table, a row for each load idx. |
| * Each column corresponds to degradation factor for a power of two ticks, |
| * based on 128 point scale. |
| * Example: |
| * row 2, col 3 (=12) says that the degradation at load idx 2 after |
| * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). |
| * |
| * With this power of 2 load factors, we can degrade the load n times |
| * by looking at 1 bits in n and doing as many mult/shift instead of |
| * n mult/shifts needed by the exact degradation. |
| */ |
| #define DEGRADE_SHIFT 7 |
| static const unsigned char |
| degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; |
| static const unsigned char |
| degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { |
| {0, 0, 0, 0, 0, 0, 0, 0}, |
| {64, 32, 8, 0, 0, 0, 0, 0}, |
| {96, 72, 40, 12, 1, 0, 0}, |
| {112, 98, 75, 43, 15, 1, 0}, |
| {120, 112, 98, 76, 45, 16, 2} }; |
| |
| /* |
| * Update cpu_load for any missed ticks, due to tickless idle. The backlog |
| * would be when CPU is idle and so we just decay the old load without |
| * adding any new load. |
| */ |
| static unsigned long |
| decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) |
| { |
| int j = 0; |
| |
| if (!missed_updates) |
| return load; |
| |
| if (missed_updates >= degrade_zero_ticks[idx]) |
| return 0; |
| |
| if (idx == 1) |
| return load >> missed_updates; |
| |
| while (missed_updates) { |
| if (missed_updates % 2) |
| load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; |
| |
| missed_updates >>= 1; |
| j++; |
| } |
| return load; |
| } |
| |
| /* |
| * Update rq->cpu_load[] statistics. This function is usually called every |
| * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
| * every tick. We fix it up based on jiffies. |
| */ |
| static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, |
| unsigned long pending_updates) |
| { |
| int i, scale; |
| |
| this_rq->nr_load_updates++; |
| |
| /* Update our load: */ |
| this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
| for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
| unsigned long old_load, new_load; |
| |
| /* scale is effectively 1 << i now, and >> i divides by scale */ |
| |
| old_load = this_rq->cpu_load[i]; |
| old_load = decay_load_missed(old_load, pending_updates - 1, i); |
| new_load = this_load; |
| /* |
| * Round up the averaging division if load is increasing. This |
| * prevents us from getting stuck on 9 if the load is 10, for |
| * example. |
| */ |
| if (new_load > old_load) |
| new_load += scale - 1; |
| |
| this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; |
| } |
| |
| sched_avg_update(this_rq); |
| } |
| |
| #ifdef CONFIG_NO_HZ |
| /* |
| * There is no sane way to deal with nohz on smp when using jiffies because the |
| * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading |
| * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. |
| * |
| * Therefore we cannot use the delta approach from the regular tick since that |
| * would seriously skew the load calculation. However we'll make do for those |
| * updates happening while idle (nohz_idle_balance) or coming out of idle |
| * (tick_nohz_idle_exit). |
| * |
| * This means we might still be one tick off for nohz periods. |
| */ |
| |
| /* |
| * Called from nohz_idle_balance() to update the load ratings before doing the |
| * idle balance. |
| */ |
| void update_idle_cpu_load(struct rq *this_rq) |
| { |
| unsigned long curr_jiffies = ACCESS_ONCE(jiffies); |
| unsigned long load = this_rq->load.weight; |
| unsigned long pending_updates; |
| |
| /* |
| * bail if there's load or we're actually up-to-date. |
| */ |
| if (load || curr_jiffies == this_rq->last_load_update_tick) |
| return; |
| |
| pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
| this_rq->last_load_update_tick = curr_jiffies; |
| |
| __update_cpu_load(this_rq, load, pending_updates); |
| } |
| |
| /* |
| * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. |
| */ |
| void update_cpu_load_nohz(void) |
| { |
| struct rq *this_rq = this_rq(); |
| unsigned long curr_jiffies = ACCESS_ONCE(jiffies); |
| unsigned long pending_updates; |
| |
| if (curr_jiffies == this_rq->last_load_update_tick) |
| return; |
| |
| raw_spin_lock(&this_rq->lock); |
| pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
| if (pending_updates) { |
| this_rq->last_load_update_tick = curr_jiffies; |
| /* |
| * We were idle, this means load 0, the current load might be |
| * !0 due to remote wakeups and the sort. |
| */ |
| __update_cpu_load(this_rq, 0, pending_updates); |
| } |
| raw_spin_unlock(&this_rq->lock); |
| } |
| #endif /* CONFIG_NO_HZ */ |
| |
| /* |
| * Called from scheduler_tick() |
| */ |
| static void update_cpu_load_active(struct rq *this_rq) |
| { |
| /* |
| * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). |
| */ |
| this_rq->last_load_update_tick = jiffies; |
| __update_cpu_load(this_rq, this_rq->load.weight, 1); |
| |
| calc_load_account_active(this_rq); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * sched_exec - execve() is a valuable balancing opportunity, because at |
| * this point the task has the smallest effective memory and cache footprint. |
| */ |
| void sched_exec(void) |
| { |
| struct task_struct *p = current; |
| unsigned long flags; |
| int dest_cpu; |
| |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); |
| if (dest_cpu == smp_processor_id()) |
| goto unlock; |
| |
| if (likely(cpu_active(dest_cpu))) { |
| struct migration_arg arg = { p, dest_cpu }; |
| |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); |
| return; |
| } |
| unlock: |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| } |
| |
| #endif |
| |
| DEFINE_PER_CPU(struct kernel_stat, kstat); |
| DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); |
| |
| EXPORT_PER_CPU_SYMBOL(kstat); |
| EXPORT_PER_CPU_SYMBOL(kernel_cpustat); |
| |
| /* |
| * Return any ns on the sched_clock that have not yet been accounted in |
| * @p in case that task is currently running. |
| * |
| * Called with task_rq_lock() held on @rq. |
| */ |
| static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
| { |
| u64 ns = 0; |
| |
| if (task_current(rq, p)) { |
| update_rq_clock(rq); |
| ns = rq->clock_task - p->se.exec_start; |
| if ((s64)ns < 0) |
| ns = 0; |
| } |
| |
| return ns; |
| } |
| |
| unsigned long long task_delta_exec(struct task_struct *p) |
| { |
| unsigned long flags; |
| struct rq *rq; |
| u64 ns = 0; |
| |
| rq = task_rq_lock(p, &flags); |
| ns = do_task_delta_exec(p, rq); |
| task_rq_unlock(rq, p, &flags); |
| |
| return ns; |
| } |
| |
| /* |
| * Return accounted runtime for the task. |
| * In case the task is currently running, return the runtime plus current's |
| * pending runtime that have not been accounted yet. |
| */ |
| unsigned long long task_sched_runtime(struct task_struct *p) |
| { |
| unsigned long flags; |
| struct rq *rq; |
| u64 ns = 0; |
| |
| rq = task_rq_lock(p, &flags); |
| ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); |
| task_rq_unlock(rq, p, &flags); |
| |
| return ns; |
| } |
| |
| /* |
| * This function gets called by the timer code, with HZ frequency. |
| * We call it with interrupts disabled. |
| */ |
| void scheduler_tick(void) |
| { |
| int cpu = smp_processor_id(); |
| struct rq *rq = cpu_rq(cpu); |
| struct task_struct *curr = rq->curr; |
| |
| sched_clock_tick(); |
| |
| raw_spin_lock(&rq->lock); |
| update_rq_clock(rq); |
| update_cpu_load_active(rq); |
| curr->sched_class->task_tick(rq, curr, 0); |
| raw_spin_unlock(&rq->lock); |
| |
| perf_event_task_tick(); |
| |
| #ifdef CONFIG_SMP |
| rq->idle_balance = idle_cpu(cpu); |
| trigger_load_balance(rq, cpu); |
| #endif |
| } |
| |
| notrace unsigned long get_parent_ip(unsigned long addr) |
| { |
| if (in_lock_functions(addr)) { |
| addr = CALLER_ADDR2; |
| if (in_lock_functions(addr)) |
| addr = CALLER_ADDR3; |
| } |
| return addr; |
| } |
| |
| #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
| defined(CONFIG_PREEMPT_TRACER)) |
| |
| void __kprobes add_preempt_count(int val) |
| { |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Underflow? |
| */ |
| if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
| return; |
| #endif |
| preempt_count() += val; |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Spinlock count overflowing soon? |
| */ |
| DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
| PREEMPT_MASK - 10); |
| #endif |
| if (preempt_count() == val) |
| trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
| } |
| EXPORT_SYMBOL(add_preempt_count); |
| |
| void __kprobes sub_preempt_count(int val) |
| { |
| #ifdef CONFIG_DEBUG_PREEMPT |
| /* |
| * Underflow? |
| */ |
| if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
| return; |
| /* |
| * Is the spinlock portion underflowing? |
| */ |
| if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
| !(preempt_count() & PREEMPT_MASK))) |
| return; |
| #endif |
| |
| if (preempt_count() == val) |
| trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
| preempt_count() -= val; |
| } |
| EXPORT_SYMBOL(sub_preempt_count); |
| |
| #endif |
| |
| /* |
| * Print scheduling while atomic bug: |
| */ |
| static noinline void __schedule_bug(struct task_struct *prev) |
| { |
| if (oops_in_progress) |
| return; |
| |
| printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
| prev->comm, prev->pid, preempt_count()); |
| |
| debug_show_held_locks(prev); |
| print_modules(); |
| if (irqs_disabled()) |
| print_irqtrace_events(prev); |
| dump_stack(); |
| add_taint(TAINT_WARN, LOCKDEP_STILL_OK); |
| } |
| |
| /* |
| * Various schedule()-time debugging checks and statistics: |
| */ |
| static inline void schedule_debug(struct task_struct *prev) |
| { |
| /* |
| * Test if we are atomic. Since do_exit() needs to call into |
| * schedule() atomically, we ignore that path for now. |
| * Otherwise, whine if we are scheduling when we should not be. |
| */ |
| if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
| __schedule_bug(prev); |
| rcu_sleep_check(); |
| |
| profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
| |
| schedstat_inc(this_rq(), sched_count); |
| } |
| |
| static void put_prev_task(struct rq *rq, struct task_struct *prev) |
| { |
| if (prev->on_rq || rq->skip_clock_update < 0) |
| update_rq_clock(rq); |
| prev->sched_class->put_prev_task(rq, prev); |
| } |
| |
| /* |
| * Pick up the highest-prio task: |
| */ |
| static inline struct task_struct * |
| pick_next_task(struct rq *rq) |
| { |
| const struct sched_class *class; |
| struct task_struct *p; |
| |
| /* |
| * Optimization: we know that if all tasks are in |
| * the fair class we can call that function directly: |
| */ |
| if (likely(rq->nr_running == rq->cfs.h_nr_running)) { |
| p = fair_sched_class.pick_next_task(rq); |
| if (likely(p)) |
| return p; |
| } |
| |
| for_each_class(class) { |
| p = class->pick_next_task(rq); |
| if (p) |
| return p; |
| } |
| |
| BUG(); /* the idle class will always have a runnable task */ |
| } |
| |
| /* |
| * __schedule() is the main scheduler function. |
| * |
| * The main means of driving the scheduler and thus entering this function are: |
| * |
| * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. |
| * |
| * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return |
| * paths. For example, see arch/x86/entry_64.S. |
| * |
| * To drive preemption between tasks, the scheduler sets the flag in timer |
| * interrupt handler scheduler_tick(). |
| * |
| * 3. Wakeups don't really cause entry into schedule(). They add a |
| * task to the run-queue and that's it. |
| * |
| * Now, if the new task added to the run-queue preempts the current |
| * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets |
| * called on the nearest possible occasion: |
| * |
| * - If the kernel is preemptible (CONFIG_PREEMPT=y): |
| * |
| * - in syscall or exception context, at the next outmost |
| * preempt_enable(). (this might be as soon as the wake_up()'s |
| * spin_unlock()!) |
| * |
| * - in IRQ context, return from interrupt-handler to |
| * preemptible context |
| * |
| * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) |
| * then at the next: |
| * |
| * - cond_resched() call |
| * - explicit schedule() call |
| * - return from syscall or exception to user-space |
| * - return from interrupt-handler to user-space |
| */ |
| static void __sched __schedule(void) |
| { |
| struct task_struct *prev, *next; |
| unsigned long *switch_count; |
| struct rq *rq; |
| int cpu; |
| |
| need_resched: |
| preempt_disable(); |
| cpu = smp_processor_id(); |
| rq = cpu_rq(cpu); |
| rcu_note_context_switch(cpu); |
| prev = rq->curr; |
| |
| schedule_debug(prev); |
| |
| if (sched_feat(HRTICK)) |
| hrtick_clear(rq); |
| |
| raw_spin_lock_irq(&rq->lock); |
| |
| switch_count = &prev->nivcsw; |
| if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
| if (unlikely(signal_pending_state(prev->state, prev))) { |
| prev->state = TASK_RUNNING; |
| } else { |
| deactivate_task(rq, prev, DEQUEUE_SLEEP); |
| prev->on_rq = 0; |
| |
| /* |
| * If a worker went to sleep, notify and ask workqueue |
| * whether it wants to wake up a task to maintain |
| * concurrency. |
| */ |
| if (prev->flags & PF_WQ_WORKER) { |
| struct task_struct *to_wakeup; |
| |
| to_wakeup = wq_worker_sleeping(prev, cpu); |
| if (to_wakeup) |
| try_to_wake_up_local(to_wakeup); |
| } |
| } |
| switch_count = &prev->nvcsw; |
| } |
| |
| pre_schedule(rq, prev); |
| |
| if (unlikely(!rq->nr_running)) |
| idle_balance(cpu, rq); |
| |
| put_prev_task(rq, prev); |
| next = pick_next_task(rq); |
| clear_tsk_need_resched(prev); |
| rq->skip_clock_update = 0; |
| |
| if (likely(prev != next)) { |
| rq->nr_switches++; |
| rq->curr = next; |
| ++*switch_count; |
| |
| context_switch(rq, prev, next); /* unlocks the rq */ |
| /* |
| * The context switch have flipped the stack from under us |
| * and restored the local variables which were saved when |
| * this task called schedule() in the past. prev == current |
| * is still correct, but it can be moved to another cpu/rq. |
| */ |
| cpu = smp_processor_id(); |
| rq = cpu_rq(cpu); |
| } else |
| raw_spin_unlock_irq(&rq->lock); |
| |
| post_schedule(rq); |
| |
| sched_preempt_enable_no_resched(); |
| if (need_resched()) |
| goto need_resched; |
| } |
| |
| static inline void sched_submit_work(struct task_struct *tsk) |
| { |
| if (!tsk->state || tsk_is_pi_blocked(tsk)) |
| return; |
| /* |
| * If we are going to sleep and we have plugged IO queued, |
| * make sure to submit it to avoid deadlocks. |
| */ |
| if (blk_needs_flush_plug(tsk)) |
| blk_schedule_flush_plug(tsk); |
| } |
| |
| asmlinkage void __sched schedule(void) |
| { |
| struct task_struct *tsk = current; |
| |
| sched_submit_work(tsk); |
| __schedule(); |
| } |
| EXPORT_SYMBOL(schedule); |
| |
| #ifdef CONFIG_CONTEXT_TRACKING |
| asmlinkage void __sched schedule_user(void) |
| { |
| /* |
| * If we come here after a random call to set_need_resched(), |
| * or we have been woken up remotely but the IPI has not yet arrived, |
| * we haven't yet exited the RCU idle mode. Do it here manually until |
| * we find a better solution. |
| */ |
| user_exit(); |
| schedule(); |
| user_enter(); |
| } |
| #endif |
| |
| /** |
| * schedule_preempt_disabled - called with preemption disabled |
| * |
| * Returns with preemption disabled. Note: preempt_count must be 1 |
| */ |
| void __sched schedule_preempt_disabled(void) |
| { |
| sched_preempt_enable_no_resched(); |
| schedule(); |
| preempt_disable(); |
| } |
| |
| #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
| |
| static inline bool owner_running(struct mutex *lock, struct task_struct *owner) |
| { |
| if (lock->owner != owner) |
| return false; |
| |
| /* |
| * Ensure we emit the owner->on_cpu, dereference _after_ checking |
| * lock->owner still matches owner, if that fails, owner might |
| * point to free()d memory, if it still matches, the rcu_read_lock() |
| * ensures the memory stays valid. |
| */ |
| barrier(); |
| |
| return owner->on_cpu; |
| } |
| |
| /* |
| * Look out! "owner" is an entirely speculative pointer |
| * access and not reliable. |
| */ |
| int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) |
| { |
| if (!sched_feat(OWNER_SPIN)) |
| return 0; |
| |
| rcu_read_lock(); |
| while (owner_running(lock, owner)) { |
| if (need_resched()) |
| break; |
| |
| arch_mutex_cpu_relax(); |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * We break out the loop above on need_resched() and when the |
| * owner changed, which is a sign for heavy contention. Return |
| * success only when lock->owner is NULL. |
| */ |
| return lock->owner == NULL; |
| } |
| #endif |
| |
| #ifdef CONFIG_PREEMPT |
| /* |
| * this is the entry point to schedule() from in-kernel preemption |
| * off of preempt_enable. Kernel preemptions off return from interrupt |
| * occur there and call schedule directly. |
| */ |
| asmlinkage void __sched notrace preempt_schedule(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| |
| /* |
| * If there is a non-zero preempt_count or interrupts are disabled, |
| * we do not want to preempt the current task. Just return.. |
| */ |
| if (likely(ti->preempt_count || irqs_disabled())) |
| return; |
| |
| do { |
| add_preempt_count_notrace(PREEMPT_ACTIVE); |
| __schedule(); |
| sub_preempt_count_notrace(PREEMPT_ACTIVE); |
| |
| /* |
| * Check again in case we missed a preemption opportunity |
| * between schedule and now. |
| */ |
| barrier(); |
| } while (need_resched()); |
| } |
| EXPORT_SYMBOL(preempt_schedule); |
| |
| /* |
| * this is the entry point to schedule() from kernel preemption |
| * off of irq context. |
| * Note, that this is called and return with irqs disabled. This will |
| * protect us against recursive calling from irq. |
| */ |
| asmlinkage void __sched preempt_schedule_irq(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| |
| /* Catch callers which need to be fixed */ |
| BUG_ON(ti->preempt_count || !irqs_disabled()); |
| |
| user_exit(); |
| do { |
| add_preempt_count(PREEMPT_ACTIVE); |
| local_irq_enable(); |
| __schedule(); |
| local_irq_disable(); |
| sub_preempt_count(PREEMPT_ACTIVE); |
| |
| /* |
| * Check again in case we missed a preemption opportunity |
| * between schedule and now. |
| */ |
| barrier(); |
| } while (need_resched()); |
| } |
| |
| #endif /* CONFIG_PREEMPT */ |
| |
| int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
| void *key) |
| { |
| return try_to_wake_up(curr->private, mode, wake_flags); |
| } |
| EXPORT_SYMBOL(default_wake_function); |
| |
| /* |
| * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
| * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
| * number) then we wake all the non-exclusive tasks and one exclusive task. |
| * |
| * There are circumstances in which we can try to wake a task which has already |
| * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
| * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| */ |
| static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| int nr_exclusive, int wake_flags, void *key) |
| { |
| wait_queue_t *curr, *next; |
| |
| list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
| unsigned flags = curr->flags; |
| |
| if (curr->func(curr, mode, wake_flags, key) && |
| (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| break; |
| } |
| } |
| |
| /** |
| * __wake_up - wake up threads blocked on a waitqueue. |
| * @q: the waitqueue |
| * @mode: which threads |
| * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| * @key: is directly passed to the wakeup function |
| * |
| * It may be assumed that this function implies a write memory barrier before |
| * changing the task state if and only if any tasks are woken up. |
| */ |
| void __wake_up(wait_queue_head_t *q, unsigned int mode, |
| int nr_exclusive, void *key) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&q->lock, flags); |
| __wake_up_common(q, mode, nr_exclusive, 0, key); |
| spin_unlock_irqrestore(&q->lock, flags); |
| } |
| EXPORT_SYMBOL(__wake_up); |
| |
| /* |
| * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
| */ |
| void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) |
| { |
| __wake_up_common(q, mode, nr, 0, NULL); |
| } |
| EXPORT_SYMBOL_GPL(__wake_up_locked); |
| |
| void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
| { |
| __wake_up_common(q, mode, 1, 0, key); |
| } |
| EXPORT_SYMBOL_GPL(__wake_up_locked_key); |
| |
| /** |
| * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
| * @q: the waitqueue |
| * @mode: which threads |
| * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| * @key: opaque value to be passed to wakeup targets |
| * |
| * The sync wakeup differs that the waker knows that it will schedule |
| * away soon, so while the target thread will be woken up, it will not |
| * be migrated to another CPU - ie. the two threads are 'synchronized' |
| * with each other. This can prevent needless bouncing between CPUs. |
| * |
| * On UP it can prevent extra preemption. |
| * |
| * It may be assumed that this function implies a write memory barrier before |
| * changing the task state if and only if any tasks are woken up. |
| */ |
| void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
| int nr_exclusive, void *key) |
| { |
| unsigned long flags; |
| int wake_flags = WF_SYNC; |
| |
| if (unlikely(!q)) |
| return; |
| |
| if (unlikely(!nr_exclusive)) |
| wake_flags = 0; |
| |
| spin_lock_irqsave(&q->lock, flags); |
| __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
| spin_unlock_irqrestore(&q->lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| |
| /* |
| * __wake_up_sync - see __wake_up_sync_key() |
| */ |
| void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
| { |
| __wake_up_sync_key(q, mode, nr_exclusive, NULL); |
| } |
| EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
| |
| /** |
| * complete: - signals a single thread waiting on this completion |
| * @x: holds the state of this particular completion |
| * |
| * This will wake up a single thread waiting on this completion. Threads will be |
| * awakened in the same order in which they were queued. |
| * |
| * See also complete_all(), wait_for_completion() and related routines. |
| * |
| * It may be assumed that this function implies a write memory barrier before |
| * changing the task state if and only if any tasks are woken up. |
| */ |
| void complete(struct completion *x) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&x->wait.lock, flags); |
| x->done++; |
| __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| } |
| EXPORT_SYMBOL(complete); |
| |
| /** |
| * complete_all: - signals all threads waiting on this completion |
| * @x: holds the state of this particular completion |
| * |
| * This will wake up all threads waiting on this particular completion event. |
| * |
| * It may be assumed that this function implies a write memory barrier before |
| * changing the task state if and only if any tasks are woken up. |
| */ |
| void complete_all(struct completion *x) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&x->wait.lock, flags); |
| x->done += UINT_MAX/2; |
| __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| } |
| EXPORT_SYMBOL(complete_all); |
| |
| static inline long __sched |
| do_wait_for_common(struct completion *x, |
| long (*action)(long), long timeout, int state) |
| { |
| if (!x->done) { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| __add_wait_queue_tail_exclusive(&x->wait, &wait); |
| do { |
| if (signal_pending_state(state, current)) { |
| timeout = -ERESTARTSYS; |
| break; |
| } |
| __set_current_state(state); |
| spin_unlock_irq(&x->wait.lock); |
| timeout = action(timeout); |
| spin_lock_irq(&x->wait.lock); |
| } while (!x->done && timeout); |
| __remove_wait_queue(&x->wait, &wait); |
| if (!x->done) |
| return timeout; |
| } |
| x->done--; |
| return timeout ?: 1; |
| } |
| |
| static inline long __sched |
| __wait_for_common(struct completion *x, |
| long (*action)(long), long timeout, int state) |
| { |
| might_sleep(); |
| |
| spin_lock_irq(&x->wait.lock); |
| timeout = do_wait_for_common(x, action, timeout, state); |
| spin_unlock_irq(&x->wait.lock); |
| return timeout; |
| } |
| |
| static long __sched |
| wait_for_common(struct completion *x, long timeout, int state) |
| { |
| return __wait_for_common(x, schedule_timeout, timeout, state); |
| } |
| |
| static long __sched |
| wait_for_common_io(struct completion *x, long timeout, int state) |
| { |
| return __wait_for_common(x, io_schedule_timeout, timeout, state); |
| } |
| |
| /** |
| * wait_for_completion: - waits for completion of a task |
| * @x: holds the state of this particular completion |
| * |
| * This waits to be signaled for completion of a specific task. It is NOT |
| * interruptible and there is no timeout. |
| * |
| * See also similar routines (i.e. wait_for_completion_timeout()) with timeout |
| * and interrupt capability. Also see complete(). |
| */ |
| void __sched wait_for_completion(struct completion *x) |
| { |
| wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion); |
| |
| /** |
| * wait_for_completion_timeout: - waits for completion of a task (w/timeout) |
| * @x: holds the state of this particular completion |
| * @timeout: timeout value in jiffies |
| * |
| * This waits for either a completion of a specific task to be signaled or for a |
| * specified timeout to expire. The timeout is in jiffies. It is not |
| * interruptible. |
| * |
| * The return value is 0 if timed out, and positive (at least 1, or number of |
| * jiffies left till timeout) if completed. |
| */ |
| unsigned long __sched |
| wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
| { |
| return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion_timeout); |
| |
| /** |
| * wait_for_completion_io: - waits for completion of a task |
| * @x: holds the state of this particular completion |
| * |
| * This waits to be signaled for completion of a specific task. It is NOT |
| * interruptible and there is no timeout. The caller is accounted as waiting |
| * for IO. |
| */ |
| void __sched wait_for_completion_io(struct completion *x) |
| { |
| wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion_io); |
| |
| /** |
| * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) |
| * @x: holds the state of this particular completion |
| * @timeout: timeout value in jiffies |
| * |
| * This waits for either a completion of a specific task to be signaled or for a |
| * specified timeout to expire. The timeout is in jiffies. It is not |
| * interruptible. The caller is accounted as waiting for IO. |
| * |
| * The return value is 0 if timed out, and positive (at least 1, or number of |
| * jiffies left till timeout) if completed. |
| */ |
| unsigned long __sched |
| wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) |
| { |
| return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion_io_timeout); |
| |
| /** |
| * wait_for_completion_interruptible: - waits for completion of a task (w/intr) |
| * @x: holds the state of this particular completion |
| * |
| * This waits for completion of a specific task to be signaled. It is |
| * interruptible. |
| * |
| * The return value is -ERESTARTSYS if interrupted, 0 if completed. |
| */ |
| int __sched wait_for_completion_interruptible(struct completion *x) |
| { |
| long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
| if (t == -ERESTARTSYS) |
| return t; |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_for_completion_interruptible); |
| |
| /** |
| * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) |
| * @x: holds the state of this particular completion |
| * @timeout: timeout value in jiffies |
| * |
| * This waits for either a completion of a specific task to be signaled or for a |
| * specified timeout to expire. It is interruptible. The timeout is in jiffies. |
| * |
| * The return value is -ERESTARTSYS if interrupted, 0 if timed out, |
| * positive (at least 1, or number of jiffies left till timeout) if completed. |
| */ |
| long __sched |
| wait_for_completion_interruptible_timeout(struct completion *x, |
| unsigned long timeout) |
| { |
| return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
| |
| /** |
| * wait_for_completion_killable: - waits for completion of a task (killable) |
| * @x: holds the state of this particular completion |
| * |
| * This waits to be signaled for completion of a specific task. It can be |
| * interrupted by a kill signal. |
| * |
| * The return value is -ERESTARTSYS if interrupted, 0 if completed. |
| */ |
| int __sched wait_for_completion_killable(struct completion *x) |
| { |
| long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); |
| if (t == -ERESTARTSYS) |
| return t; |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_for_completion_killable); |
| |
| /** |
| * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) |
| * @x: holds the state of this particular completion |
| * @timeout: timeout value in jiffies |
| * |
| * This waits for either a completion of a specific task to be |
| * signaled or for a specified timeout to expire. It can be |
| * interrupted by a kill signal. The timeout is in jiffies. |
| * |
| * The return value is -ERESTARTSYS if interrupted, 0 if timed out, |
| * positive (at least 1, or number of jiffies left till timeout) if completed. |
| */ |
| long __sched |
| wait_for_completion_killable_timeout(struct completion *x, |
| unsigned long timeout) |
| { |
| return wait_for_common(x, timeout, TASK_KILLABLE); |
| } |
| EXPORT_SYMBOL(wait_for_completion_killable_timeout); |
| |
| /** |
| * try_wait_for_completion - try to decrement a completion without blocking |
| * @x: completion structure |
| * |
| * Returns: 0 if a decrement cannot be done without blocking |
| * 1 if a decrement succeeded. |
| * |
| * If a completion is being used as a counting completion, |
| * attempt to decrement the counter without blocking. This |
| * enables us to avoid waiting if the resource the completion |
| * is protecting is not available. |
| */ |
| bool try_wait_for_completion(struct completion *x) |
| { |
| unsigned long flags; |
| int ret = 1; |
| |
| spin_lock_irqsave(&x->wait.lock, flags); |
| if (!x->done) |
| ret = 0; |
| else |
| x->done--; |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(try_wait_for_completion); |
| |
| /** |
| * completion_done - Test to see if a completion has any waiters |
| * @x: completion structure |
| * |
| * Returns: 0 if there are waiters (wait_for_completion() in progress) |
| * 1 if there are no waiters. |
| * |
| */ |
| bool completion_done(struct completion *x) |
| { |
| unsigned long flags; |
| int ret = 1; |
| |
| spin_lock_irqsave(&x->wait.lock, flags); |
| if (!x->done) |
| ret = 0; |
| spin_unlock_irqrestore(&x->wait.lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(completion_done); |
| |
| static long __sched |
| sleep_on_common(wait_queue_head_t *q, int state, long timeout) |
| { |
| unsigned long flags; |
| wait_queue_t wait; |
| |
| init_waitqueue_entry(&wait, current); |
| |
| __set_current_state(state); |
| |
| spin_lock_irqsave(&q->lock, flags); |
| __add_wait_queue(q, &wait); |
| spin_unlock(&q->lock); |
| timeout = schedule_timeout(timeout); |
| spin_lock_irq(&q->lock); |
| __remove_wait_queue(q, &wait); |
| spin_unlock_irqrestore(&q->lock, flags); |
| |
| return timeout; |
| } |
| |
| void __sched interruptible_sleep_on(wait_queue_head_t *q) |
| { |
| sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
| } |
| EXPORT_SYMBOL(interruptible_sleep_on); |
| |
| long __sched |
| interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
| { |
| return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
| } |
| EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
| |
| void __sched sleep_on(wait_queue_head_t *q) |
| { |
| sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
| } |
| EXPORT_SYMBOL(sleep_on); |
| |
| long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
| { |
| return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
| } |
| EXPORT_SYMBOL(sleep_on_timeout); |
| |
| #ifdef CONFIG_RT_MUTEXES |
| |
| /* |
| * rt_mutex_setprio - set the current priority of a task |
| * @p: task |
| * @prio: prio value (kernel-internal form) |
| * |
| * This function changes the 'effective' priority of a task. It does |
| * not touch ->normal_prio like __setscheduler(). |
| * |
| * Used by the rt_mutex code to implement priority inheritance logic. |
| */ |
| void rt_mutex_setprio(struct task_struct *p, int prio) |
| { |
| int oldprio, on_rq, running; |
| struct rq *rq; |
| const struct sched_class *prev_class; |
| |
| BUG_ON(prio < 0 || prio > MAX_PRIO); |
| |
| rq = __task_rq_lock(p); |
| |
| /* |
| * Idle task boosting is a nono in general. There is one |
| * exception, when PREEMPT_RT and NOHZ is active: |
| * |
| * The idle task calls get_next_timer_interrupt() and holds |
| * the timer wheel base->lock on the CPU and another CPU wants |
| * to access the timer (probably to cancel it). We can safely |
| * ignore the boosting request, as the idle CPU runs this code |
| * with interrupts disabled and will complete the lock |
| * protected section without being interrupted. So there is no |
| * real need to boost. |
| */ |
| if (unlikely(p == rq->idle)) { |
| WARN_ON(p != rq->curr); |
| WARN_ON(p->pi_blocked_on); |
| goto out_unlock; |
| } |
| |
| trace_sched_pi_setprio(p, prio); |
| oldprio = p->prio; |
| prev_class = p->sched_class; |
| on_rq = p->on_rq; |
| running = task_current(rq, p); |
| if (on_rq) |
| dequeue_task(rq, p, 0); |
| if (running) |
| p->sched_class->put_prev_task(rq, p); |
| |
| if (rt_prio(prio)) |
| p->sched_class = &rt_sched_class; |
| else |
| p->sched_class = &fair_sched_class; |
| |
| p->prio = prio; |
| |
| if (running) |
| p->sched_class->set_curr_task(rq); |
| if (on_rq) |
| enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
| |
| check_class_changed(rq, p, prev_class, oldprio); |
| out_unlock: |
| __task_rq_unlock(rq); |
| } |
| #endif |
| void set_user_nice(struct task_struct *p, long nice) |
| { |
| int old_prio, delta, on_rq; |
| unsigned long flags; |
| struct rq *rq; |
| |
| if (TASK_NICE(p) == nice || nice < -20 || nice > 19) |
| return; |
| /* |
| * We have to be careful, if called from sys_setpriority(), |
| * the task might be in the middle of scheduling on another CPU. |
| */ |
| rq = task_rq_lock(p, &flags); |
| /* |
| * The RT priorities are set via sched_setscheduler(), but we still |
| * allow the 'normal' nice value to be set - but as expected |
| * it wont have any effect on scheduling until the task is |
| * SCHED_FIFO/SCHED_RR: |
| */ |
| if (task_has_rt_policy(p)) { |
| p->static_prio = NICE_TO_PRIO(nice); |
| goto out_unlock; |
| } |
| on_rq = p->on_rq; |
| if (on_rq) |
| dequeue_task(rq, p, 0); |
| |
| p->static_prio = NICE_TO_PRIO(nice); |
| set_load_weight(p); |
| old_prio = p->prio; |
| p->prio = effective_prio(p); |
| delta = p->prio - old_prio; |
| |
| if (on_rq) { |
| enqueue_task(rq, p, 0); |
| /* |
| * If the task increased its priority or is running and |
| * lowered its priority, then reschedule its CPU: |
| */ |
| if (delta < 0 || (delta > 0 && task_running(rq, p))) |
| resched_task(rq->curr); |
| } |
| out_unlock: |
| task_rq_unlock(rq, p, &flags); |
| } |
| EXPORT_SYMBOL(set_user_nice); |
| |
| /* |
| * can_nice - check if a task can reduce its nice value |
| * @p: task |
| * @nice: nice value |
| */ |
| int can_nice(const struct task_struct *p, const int nice) |
| { |
| /* convert nice value [19,-20] to rlimit style value [1,40] */ |
| int nice_rlim = 20 - nice; |
| |
| return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
| capable(CAP_SYS_NICE)); |
| } |
| |
| #ifdef __ARCH_WANT_SYS_NICE |
| |
| /* |
| * sys_nice - change the priority of the current process. |
| * @increment: priority increment |
| * |
| * sys_setpriority is a more generic, but much slower function that |
| * does similar things. |
| */ |
| SYSCALL_DEFINE1(nice, int, increment) |
| { |
| long nice, retval; |
| |
| /* |
| * Setpriority might change our priority at the same moment. |
| * We don't have to worry. Conceptually one call occurs first |
| * and we have a single winner. |
| */ |
| if (increment < -40) |
| increment = -40; |
| if (increment > 40) |
| increment = 40; |
| |
| nice = TASK_NICE(current) + increment; |
| if (nice < -20) |
| nice = -20; |
| if (nice > 19) |
| nice = 19; |
| |
| if (increment < 0 && !can_nice(current, nice)) |
| return -EPERM; |
| |
| retval = security_task_setnice(current, nice); |
| if (retval) |
| return retval; |
| |
| set_user_nice(current, nice); |
| return 0; |
| } |
| |
| #endif |
| |
| /** |
| * task_prio - return the priority value of a given task. |
| * @p: the task in question. |
| * |
| * This is the priority value as seen by users in /proc. |
| * RT tasks are offset by -200. Normal tasks are centered |
| * around 0, value goes from -16 to +15. |
| */ |
| int task_prio(const struct task_struct *p) |
| { |
| return p->prio - MAX_RT_PRIO; |
| } |
| |
| /** |
| * task_nice - return the nice value of a given task. |
| * @p: the task in question. |
| */ |
| int task_nice(const struct task_struct *p) |
| { |
| return TASK_NICE(p); |
| } |
| EXPORT_SYMBOL(task_nice); |
| |
| /** |
| * idle_cpu - is a given cpu idle currently? |
| * @cpu: the processor in question. |
| */ |
| int idle_cpu(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| if (rq->curr != rq->idle) |
| return 0; |
| |
| if (rq->nr_running) |
| return 0; |
| |
| #ifdef CONFIG_SMP |
| if (!llist_empty(&rq->wake_list)) |
| return 0; |
| #endif |
| |
| return 1; |
| } |
| |
| /** |
| * idle_task - return the idle task for a given cpu. |
| * @cpu: the processor in question. |
| */ |
| struct task_struct *idle_task(int cpu) |
| { |
| return cpu_rq(cpu)->idle; |
| } |
| |
| /** |
| * find_process_by_pid - find a process with a matching PID value. |
| * @pid: the pid in question. |
| */ |
| static struct task_struct *find_process_by_pid(pid_t pid) |
| { |
| return pid ? find_task_by_vpid(pid) : current; |
| } |
| |
| /* Actually do priority change: must hold rq lock. */ |
| static void |
| __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) |
| { |
| p->policy = policy; |
| p->rt_priority = prio; |
| p->normal_prio = normal_prio(p); |
| /* we are holding p->pi_lock already */ |
| p->prio = rt_mutex_getprio(p); |
| if (rt_prio(p->prio)) |
| p->sched_class = &rt_sched_class; |
| else |
| p->sched_class = &fair_sched_class; |
| set_load_weight(p); |
| } |
| |
| /* |
| * check the target process has a UID that matches the current process's |
| */ |
| static bool check_same_owner(struct task_struct *p) |
| { |
| const struct cred *cred = current_cred(), *pcred; |
| bool match; |
| |
| rcu_read_lock(); |
| pcred = __task_cred(p); |
| match = (uid_eq(cred->euid, pcred->euid) || |
| uid_eq(cred->euid, pcred->uid)); |
| rcu_read_unlock(); |
| return match; |
| } |
| |
| static int __sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param, bool user) |
| { |
| int retval, oldprio, oldpolicy = -1, on_rq, running; |
| unsigned long flags; |
| const struct sched_class *prev_class; |
| struct rq *rq; |
| int reset_on_fork; |
| |
| /* may grab non-irq protected spin_locks */ |
| BUG_ON(in_interrupt()); |
| recheck: |
| /* double check policy once rq lock held */ |
| if (policy < 0) { |
| reset_on_fork = p->sched_reset_on_fork; |
| policy = oldpolicy = p->policy; |
| } else { |
| reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); |
| policy &= ~SCHED_RESET_ON_FORK; |
| |
| if (policy != SCHED_FIFO && policy != SCHED_RR && |
| policy != SCHED_NORMAL && policy != SCHED_BATCH && |
| policy != SCHED_IDLE) |
| return -EINVAL; |
| } |
| |
| /* |
| * Valid priorities for SCHED_FIFO and SCHED_RR are |
| * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
| * SCHED_BATCH and SCHED_IDLE is 0. |
| */ |
| if (param->sched_priority < 0 || |
| (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
| (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
| return -EINVAL; |
| if (rt_policy(policy) != (param->sched_priority != 0)) |
| return -EINVAL; |
| |
| /* |
| * Allow unprivileged RT tasks to decrease priority: |
| */ |
| if (user && !capable(CAP_SYS_NICE)) { |
| if (rt_policy(policy)) { |
| unsigned long rlim_rtprio = |
| task_rlimit(p, RLIMIT_RTPRIO); |
| |
| /* can't set/change the rt policy */ |
| if (policy != p->policy && !rlim_rtprio) |
| return -EPERM; |
| |
| /* can't increase priority */ |
| if (param->sched_priority > p->rt_priority && |
| param->sched_priority > rlim_rtprio) |
| return -EPERM; |
| } |
| |
| /* |
| * Treat SCHED_IDLE as nice 20. Only allow a switch to |
| * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. |
| */ |
| if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { |
| if (!can_nice(p, TASK_NICE(p))) |
| return -EPERM; |
| } |
| |
| /* can't change other user's priorities */ |
| if (!check_same_owner(p)) |
| return -EPERM; |
| |
| /* Normal users shall not reset the sched_reset_on_fork flag */ |
| if (p->sched_reset_on_fork && !reset_on_fork) |
| return -EPERM; |
| } |
| |
| if (user) { |
| retval = security_task_setscheduler(p); |
| if (retval) |
| return retval; |
| } |
| |
| /* |
| * make sure no PI-waiters arrive (or leave) while we are |
| * changing the priority of the task: |
| * |
| * To be able to change p->policy safely, the appropriate |
| * runqueue lock must be held. |
| */ |
| rq = task_rq_lock(p, &flags); |
| |
| /* |
| * Changing the policy of the stop threads its a very bad idea |
| */ |
| if (p == rq->stop) { |
| task_rq_unlock(rq, p, &flags); |
| return -EINVAL; |
| } |
| |
| /* |
| * If not changing anything there's no need to proceed further: |
| */ |
| if (unlikely(policy == p->policy && (!rt_policy(policy) || |
| param->sched_priority == p->rt_priority))) { |
| task_rq_unlock(rq, p, &flags); |
| return 0; |
| } |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| if (user) { |
| /* |
| * Do not allow realtime tasks into groups that have no runtime |
| * assigned. |
| */ |
| if (rt_bandwidth_enabled() && rt_policy(policy) && |
| task_group(p)->rt_bandwidth.rt_runtime == 0 && |
| !task_group_is_autogroup(task_group(p))) { |
| task_rq_unlock(rq, p, &flags); |
| return -EPERM; |
| } |
| } |
| #endif |
| |
| /* recheck policy now with rq lock held */ |
| if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
| policy = oldpolicy = -1; |
| task_rq_unlock(rq, p, &flags); |
| goto recheck; |
| } |
| on_rq = p->on_rq; |
| running = task_current(rq, p); |
| if (on_rq) |
| dequeue_task(rq, p, 0); |
| if (running) |
| p->sched_class->put_prev_task(rq, p); |
| |
| p->sched_reset_on_fork = reset_on_fork; |
| |
| oldprio = p->prio; |
| prev_class = p->sched_class; |
| __setscheduler(rq, p, policy, param->sched_priority); |
| |
| if (running) |
| p->sched_class->set_curr_task(rq); |
| if (on_rq) |
| enqueue_task(rq, p, 0); |
| |
| check_class_changed(rq, p, prev_class, oldprio); |
| task_rq_unlock(rq, p, &flags); |
| |
| rt_mutex_adjust_pi(p); |
| |
| return 0; |
| } |
| |
| /** |
| * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * NOTE that the task may be already dead. |
| */ |
| int sched_setscheduler(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return __sched_setscheduler(p, policy, param, true); |
| } |
| EXPORT_SYMBOL_GPL(sched_setscheduler); |
| |
| /** |
| * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
| * @p: the task in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| * |
| * Just like sched_setscheduler, only don't bother checking if the |
| * current context has permission. For example, this is needed in |
| * stop_machine(): we create temporary high priority worker threads, |
| * but our caller might not have that capability. |
| */ |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
| const struct sched_param *param) |
| { |
| return __sched_setscheduler(p, policy, param, false); |
| } |
| |
| static int |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
| { |
| struct sched_param lparam; |
| struct task_struct *p; |
| int retval; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
| return -EFAULT; |
| |
| rcu_read_lock(); |
| retval = -ESRCH; |
| p = find_process_by_pid(pid); |
| if (p != NULL) |
| retval = sched_setscheduler(p, policy, &lparam); |
| rcu_read_unlock(); |
| |
| return retval; |
| } |
| |
| /** |
| * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
| * @pid: the pid in question. |
| * @policy: new policy. |
| * @param: structure containing the new RT priority. |
| */ |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
| struct sched_param __user *, param) |
| { |
| /* negative values for policy are not valid */ |
| if (policy < 0) |
| return -EINVAL; |
| |
| return do_sched_setscheduler(pid, policy, param); |
| } |
| |
| /** |
| * sys_sched_setparam - set/change the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the new RT priority. |
| */ |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| return do_sched_setscheduler(pid, -1, param); |
| } |
| |
| /** |
| * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
| * @pid: the pid in question. |
| */ |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
| { |
| struct task_struct *p; |
| int retval; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| retval = -ESRCH; |
| rcu_read_lock(); |
| p = find_process_by_pid(pid); |
| if (p) { |
| retval = security_task_getscheduler(p); |
| if (!retval) |
| retval = p->policy |
| | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
| } |
| rcu_read_unlock(); |
| return retval; |
| } |
| |
| /** |
| * sys_sched_getparam - get the RT priority of a thread |
| * @pid: the pid in question. |
| * @param: structure containing the RT priority. |
| */ |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
| { |
| struct sched_param lp; |
| struct task_struct *p; |
| int retval; |
| |
| if (!param || pid < 0) |
| return -EINVAL; |
| |
| rcu_read_lock(); |
| p = find_process_by_pid(pid); |
| retval = -ESRCH; |
| if (!p) |
| goto out_unlock; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| goto out_unlock; |
| |
| lp.sched_priority = p->rt_priority; |
| rcu_read_unlock(); |
| |
| /* |
| * This one might sleep, we cannot do it with a spinlock held ... |
| */ |
| retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
| |
| return retval; |
| |
| out_unlock: |
| rcu_read_unlock(); |
| return retval; |
| } |
| |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
| { |
| cpumask_var_t cpus_allowed, new_mask; |
| struct task_struct *p; |
| int retval; |
| |
| get_online_cpus(); |
| rcu_read_lock(); |
| |
| p = find_process_by_pid(pid); |
| if (!p) { |
| rcu_read_unlock(); |
| put_online_cpus(); |
| return -ESRCH; |
| } |
| |
| /* Prevent p going away */ |
| get_task_struct(p); |
| rcu_read_unlock(); |
| |
| if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
| retval = -ENOMEM; |
| goto out_put_task; |
| } |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
| retval = -ENOMEM; |
| goto out_free_cpus_allowed; |
| } |
| retval = -EPERM; |
| if (!check_same_owner(p)) { |
| rcu_read_lock(); |
| if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { |
| rcu_read_unlock(); |
| goto out_unlock; |
| } |
| rcu_read_unlock(); |
| } |
| |
| retval = security_task_setscheduler(p); |
| if (retval) |
| goto out_unlock; |
| |
| cpuset_cpus_allowed(p, cpus_allowed); |
| cpumask_and(new_mask, in_mask, cpus_allowed); |
| again: |
| retval = set_cpus_allowed_ptr(p, new_mask); |
| |
| if (!retval) { |
| cpuset_cpus_allowed(p, cpus_allowed); |
| if (!cpumask_subset(new_mask, cpus_allowed)) { |
| /* |
| * We must have raced with a concurrent cpuset |
| * update. Just reset the cpus_allowed to the |
| * cpuset's cpus_allowed |
| */ |
| cpumask_copy(new_mask, cpus_allowed); |
| goto again; |
| } |
| } |
| out_unlock: |
| free_cpumask_var(new_mask); |
| out_free_cpus_allowed: |
| free_cpumask_var(cpus_allowed); |
| out_put_task: |
| put_task_struct(p); |
| put_online_cpus(); |
| return retval; |
| } |
| |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
| struct cpumask *new_mask) |
| { |
| if (len < cpumask_size()) |
| cpumask_clear(new_mask); |
| else if (len > cpumask_size()) |
| len = cpumask_size(); |
| |
| return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
| } |
| |
| /** |
| * sys_sched_setaffinity - set the cpu affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to the new cpu mask |
| */ |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| cpumask_var_t new_mask; |
| int retval; |
| |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
| if (retval == 0) |
| retval = sched_setaffinity(pid, new_mask); |
| free_cpumask_var(new_mask); |
| return retval; |
| } |
| |
| long sched_getaffinity(pid_t pid, struct cpumask *mask) |
| { |
| struct task_struct *p; |
| unsigned long flags; |
| int retval; |
| |
| get_online_cpus(); |
| rcu_read_lock(); |
| |
| retval = -ESRCH; |
| p = find_process_by_pid(pid); |
| if (!p) |
| goto out_unlock; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| goto out_unlock; |
| |
| raw_spin_lock_irqsave(&p->pi_lock, flags); |
| cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
| |
| out_unlock: |
| rcu_read_unlock(); |
| put_online_cpus(); |
| |
| return retval; |
| } |
| |
| /** |
| * sys_sched_getaffinity - get the cpu affinity of a process |
| * @pid: pid of the process |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
| * @user_mask_ptr: user-space pointer to hold the current cpu mask |
| */ |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
| unsigned long __user *, user_mask_ptr) |
| { |
| int ret; |
| cpumask_var_t mask; |
| |
| if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
| return -EINVAL; |
| if (len & (sizeof(unsigned long)-1)) |
| return -EINVAL; |
| |
| if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| ret = sched_getaffinity(pid, mask); |
| if (ret == 0) { |
| size_t retlen = min_t(size_t, len, cpumask_size()); |
| |
| if (copy_to_user(user_mask_ptr, mask, retlen)) |
| ret = -EFAULT; |
| else |
| ret = retlen; |
| } |
| free_cpumask_var(mask); |
| |
| return ret; |
| } |
| |
| /** |
| * sys_sched_yield - yield the current processor to other threads. |
| * |
| * This function yields the current CPU to other tasks. If there are no |
| * other threads running on this CPU then this function will return. |
| */ |
| SYSCALL_DEFINE0(sched_yield) |
| { |
| struct rq *rq = this_rq_lock(); |
| |
| schedstat_inc(rq, yld_count); |
| current->sched_class->yield_task(rq); |
| |
| /* |
| * Since we are going to call schedule() anyway, there's |
| * no need to preempt or enable interrupts: |
| */ |
| __release(rq->lock); |
| spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
| do_raw_spin_unlock(&rq->lock); |
| sched_preempt_enable_no_resched(); |
| |
| schedule(); |
| |
| return 0; |
| } |
| |
| static inline int should_resched(void) |
| { |
| return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); |
| } |
| |
| static void __cond_resched(void) |
| { |
| add_preempt_count(PREEMPT_ACTIVE); |
| __schedule(); |
| sub_preempt_count(PREEMPT_ACTIVE); |
| } |
| |
| int __sched _cond_resched(void) |
| { |
| if (should_resched()) { |
| __cond_resched(); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(_cond_resched); |
| |
| /* |
| * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
| * call schedule, and on return reacquire the lock. |
| * |
| * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
| * operations here to prevent schedule() from being called twice (once via |
| * spin_unlock(), once by hand). |
| */ |
| int __cond_resched_lock(spinlock_t *lock) |
| { |
| int resched = should_resched(); |
| int ret = 0; |
| |
| lockdep_assert_held(lock); |
| |
| if (spin_needbreak(lock) || resched) { |
| spin_unlock(lock); |
| if (resched) |
| __cond_resched(); |
| else |
| cpu_relax(); |
| ret = 1; |
| spin_lock(lock); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__cond_resched_lock); |
| |
| int __sched __cond_resched_softirq(void) |
| { |
| BUG_ON(!in_softirq()); |
| |
| if (should_resched()) { |
| local_bh_enable(); |
| __cond_resched(); |
| local_bh_disable(); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(__cond_resched_softirq); |
| |
| /** |
| * yield - yield the current processor to other threads. |
| * |
| * Do not ever use this function, there's a 99% chance you're doing it wrong. |
| * |
| * The scheduler is at all times free to pick the calling task as the most |
| * eligible task to run, if removing the yield() call from your code breaks |
| * it, its already broken. |
| * |
| * Typical broken usage is: |
| * |
| * while (!event) |
| * yield(); |
| * |
| * where one assumes that yield() will let 'the other' process run that will |
| * make event true. If the current task is a SCHED_FIFO task that will never |
| * happen. Never use yield() as a progress guarantee!! |
| * |
| * If you want to use yield() to wait for something, use wait_event(). |
| * If you want to use yield() to be 'nice' for others, use cond_resched(). |
| * If you still want to use yield(), do not! |
| */ |
| void __sched yield(void) |
| { |
| set_current_state(TASK_RUNNING); |
| sys_sched_yield(); |
| } |
| EXPORT_SYMBOL(yield); |
| |
| /** |
| * yield_to - yield the current processor to another thread in |
| * your thread group, or accelerate that thread toward the |
| * processor it's on. |
| * @p: target task |
| * @preempt: whether task preemption is allowed or not |
| * |
| * It's the caller's job to ensure that the target task struct |
| * can't go away on us before we can do any checks. |
| * |
| * Returns: |
| * true (>0) if we indeed boosted the target task. |
| * false (0) if we failed to boost the target. |
| * -ESRCH if there's no task to yield to. |
| */ |
| bool __sched yield_to(struct task_struct *p, bool preempt) |
| { |
| struct task_struct *curr = current; |
| struct rq *rq, *p_rq; |
| unsigned long flags; |
| int yielded = 0; |
| |
| local_irq_save(flags); |
| rq = this_rq(); |
| |
| again: |
| p_rq = task_rq(p); |
| /* |
| * If we're the only runnable task on the rq and target rq also |
| * has only one task, there's absolutely no point in yielding. |
| */ |
| if (rq->nr_running == 1 && p_rq->nr_running == 1) { |
| yielded = -ESRCH; |
| goto out_irq; |
| } |
| |
| double_rq_lock(rq, p_rq); |
| while (task_rq(p) != p_rq) { |
| double_rq_unlock(rq, p_rq); |
| goto again; |
| } |
| |
| if (!curr->sched_class->yield_to_task) |
| goto out_unlock; |
| |
| if (curr->sched_class != p->sched_class) |
| goto out_unlock; |
| |
| if (task_running(p_rq, p) || p->state) |
| goto out_unlock; |
| |
| yielded = curr->sched_class->yield_to_task(rq, p, preempt); |
| if (yielded) { |
| schedstat_inc(rq, yld_count); |
| /* |
| * Make p's CPU reschedule; pick_next_entity takes care of |
| * fairness. |
| */ |
| if (preempt && rq != p_rq) |
| resched_task(p_rq->curr); |
| } |
| |
| out_unlock: |
| double_rq_unlock(rq, p_rq); |
| out_irq: |
| local_irq_restore(flags); |
| |
| if (yielded > 0) |
| schedule(); |
| |
| return yielded; |
| } |
| EXPORT_SYMBOL_GPL(yield_to); |
| |
| /* |
| * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
| * that process accounting knows that this is a task in IO wait state. |
| */ |
| void __sched io_schedule(void) |
| { |
| struct rq *rq = raw_rq(); |
| |
| delayacct_blkio_start(); |
| atomic_inc(&rq->nr_iowait); |
| blk_flush_plug(current); |
| current->in_iowait = 1; |
| schedule(); |
| current->in_iowait = 0; |
| atomic_dec(&rq->nr_iowait); |
| delayacct_blkio_end(); |
| } |
| EXPORT_SYMBOL(io_schedule); |
| |
| long __sched io_schedule_timeout(long timeout) |
| { |
| struct rq *rq = raw_rq(); |
| long ret; |
| |
| delayacct_blkio_start(); |
| atomic_inc(&rq->nr_iowait); |
| blk_flush_plug(current); |
| current->in_iowait = 1; |
| ret = schedule_timeout(timeout); |
| current->in_iowait = 0; |
| atomic_dec(&rq->nr_iowait); |
| delayacct_blkio_end(); |
| return ret; |
| } |
| |
| /** |
| * sys_sched_get_priority_max - return maximum RT priority. |
| * @policy: scheduling class. |
| * |
| * this syscall returns the maximum rt_priority that can be used |
| * by a given scheduling class. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = MAX_USER_RT_PRIO-1; |
| break; |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| /** |
| * sys_sched_get_priority_min - return minimum RT priority. |
| * @policy: scheduling class. |
| * |
| * this syscall returns the minimum rt_priority that can be used |
| * by a given scheduling class. |
| */ |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
| { |
| int ret = -EINVAL; |
| |
| switch (policy) { |
| case SCHED_FIFO: |
| case SCHED_RR: |
| ret = 1; |
| break; |
| case SCHED_NORMAL: |
| case SCHED_BATCH: |
| case SCHED_IDLE: |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| /** |
| * sys_sched_rr_get_interval - return the default timeslice of a process. |
| * @pid: pid of the process. |
| * @interval: userspace pointer to the timeslice value. |
| * |
| * this syscall writes the default timeslice value of a given process |
| * into the user-space timespec buffer. A value of '0' means infinity. |
| */ |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
| struct timespec __user *, interval) |
| { |
| struct task_struct *p; |
| unsigned int time_slice; |
| unsigned long flags; |
| struct rq *rq; |
| int retval; |
| struct timespec t; |
| |
| if (pid < 0) |
| return -EINVAL; |
| |
| retval = -ESRCH; |
| rcu_read_lock(); |
| p = find_process_by_pid(pid); |
| if (!p) |
| goto out_unlock; |
| |
| retval = security_task_getscheduler(p); |
| if (retval) |
| goto out_unlock; |
| |
| rq = task_rq_lock(p, &flags); |
| time_slice = p->sched_class->get_rr_interval(rq, p); |
| task_rq_unlock(rq, p, &flags); |
| |
| rcu_read_unlock(); |
| jiffies_to_timespec(time_slice, &t); |
| retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| return retval; |
| |
| out_unlock: |
| rcu_read_unlock(); |
| return retval; |
| } |
| |
| static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
| |
| void sched_show_task(struct task_struct *p) |
| { |
| unsigned long free = 0; |
| int ppid; |
| unsigned state; |
| |
| state = p->state ? __ffs(p->state) + 1 : 0; |
| printk(KERN_INFO "%-15.15s %c", p->comm, |
| state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
| #if BITS_PER_LONG == 32 |
| if (state == TASK_RUNNING) |
| printk(KERN_CONT " running "); |
| else |
| printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
| #else |
| if (state == TASK_RUNNING) |
| printk(KERN_CONT " running task "); |
| else |
| printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
| #endif |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| free = stack_not_used(p); |
| #endif |
| rcu_read_lock(); |
| ppid = task_pid_nr(rcu_dereference(p->real_parent)); |
| rcu_read_unlock(); |
| printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
| task_pid_nr(p), ppid, |
| (unsigned long)task_thread_info(p)->flags); |
| |
| show_stack(p, NULL); |
| } |
| |
| void show_state_filter(unsigned long state_filter) |
| { |
| struct task_struct *g, *p; |
| |
| #if BITS_PER_LONG == 32 |
| printk(KERN_INFO |
| " task PC stack pid father\n"); |
| #else |
| printk(KERN_INFO |
| " task PC stack pid father\n"); |
| #endif |
| rcu_read_lock(); |
| do_each_thread(g, p) { |
| /* |
| * reset the NMI-timeout, listing all files on a slow |
| * console might take a lot of time: |
| */ |
| touch_nmi_watchdog(); |
| if (!state_filter || (p->state & state_filter)) |
| sched_show_task(p); |
| } while_each_thread(g, p); |
| |
| touch_all_softlockup_watchdogs(); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| sysrq_sched_debug_show(); |
| #endif |
| rcu_read_unlock(); |
| /* |
| * Only show locks if all tasks are dumped: |
| */ |
| if (!state_filter) |
| debug_show_all_locks(); |
| } |
| |
| void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
| { |
| idle->sched_class = &idle_sched_class; |
| } |
| |
| /** |
| * init_idle - set up an idle thread for a given CPU |
| * @idle: task in question |
| * @cpu: cpu the idle task belongs to |
| * |
| * NOTE: this function does not set the idle thread's NEED_RESCHED |
| * flag, to make booting more robust. |
| */ |
| void __cpuinit init_idle(struct task_struct *idle, int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&rq->lock, flags); |
| |
| __sched_fork(idle); |
| idle->state = TASK_RUNNING; |
| idle->se.exec_start = sched_clock(); |
| |
| do_set_cpus_allowed(idle, cpumask_of(cpu)); |
| /* |
| * We're having a chicken and egg problem, even though we are |
| * holding rq->lock, the cpu isn't yet set to this cpu so the |
| * lockdep check in task_group() will fail. |
| * |
| * Similar case to sched_fork(). / Alternatively we could |
| * use task_rq_lock() here and obtain the other rq->lock. |
| * |
| * Silence PROVE_RCU |
| */ |
| rcu_read_lock(); |
| __set_task_cpu(idle, cpu); |
| rcu_read_unlock(); |
| |
| rq->curr = rq->idle = idle; |
| #if defined(CONFIG_SMP) |
| idle->on_cpu = 1; |
| #endif |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| |
| /* Set the preempt count _outside_ the spinlocks! */ |
| task_thread_info(idle)->preempt_count = 0; |
| |
| /* |
| * The idle tasks have their own, simple scheduling class: |
| */ |
| idle->sched_class = &idle_sched_class; |
| ftrace_graph_init_idle_task(idle, cpu); |
| vtime_init_idle(idle); |
| #if defined(CONFIG_SMP) |
| sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| if (p->sched_class && p->sched_class->set_cpus_allowed) |
| p->sched_class->set_cpus_allowed(p, new_mask); |
| |
| cpumask_copy(&p->cpus_allowed, new_mask); |
| p->nr_cpus_allowed = cpumask_weight(new_mask); |
| } |
| |
| /* |
| * This is how migration works: |
| * |
| * 1) we invoke migration_cpu_stop() on the target CPU using |
| * stop_one_cpu(). |
| * 2) stopper starts to run (implicitly forcing the migrated thread |
| * off the CPU) |
| * 3) it checks whether the migrated task is still in the wrong runqueue. |
| * 4) if it's in the wrong runqueue then the migration thread removes |
| * it and puts it into the right queue. |
| * 5) stopper completes and stop_one_cpu() returns and the migration |
| * is done. |
| */ |
| |
| /* |
| * Change a given task's CPU affinity. Migrate the thread to a |
| * proper CPU and schedule it away if the CPU it's executing on |
| * is removed from the allowed bitmask. |
| * |
| * NOTE: the caller must have a valid reference to the task, the |
| * task must not exit() & deallocate itself prematurely. The |
| * call is not atomic; no spinlocks may be held. |
| */ |
| int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| { |
| unsigned long flags; |
| struct rq *rq; |
| unsigned int dest_cpu; |
| int ret = 0; |
| |
| rq = task_rq_lock(p, &flags); |
| |
| if (cpumask_equal(&p->cpus_allowed, new_mask)) |
| goto out; |
| |
| if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| do_set_cpus_allowed(p, new_mask); |
| |
| /* Can the task run on the task's current CPU? If so, we're done */ |
| if (cpumask_test_cpu(task_cpu(p), new_mask)) |
| goto out; |
| |
| dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
| if (p->on_rq) { |
| struct migration_arg arg = { p, dest_cpu }; |
| /* Need help from migration thread: drop lock and wait. */ |
| task_rq_unlock(rq, p, &flags); |
| stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
| tlb_migrate_finish(p->mm); |
| return 0; |
| } |
| out: |
| task_rq_unlock(rq, p, &flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
| |
| /* |
| * Move (not current) task off this cpu, onto dest cpu. We're doing |
| * this because either it can't run here any more (set_cpus_allowed() |
| * away from this CPU, or CPU going down), or because we're |
| * attempting to rebalance this task on exec (sched_exec). |
| * |
| * So we race with normal scheduler movements, but that's OK, as long |
| * as the task is no longer on this CPU. |
| * |
| * Returns non-zero if task was successfully migrated. |
| */ |
| static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
| { |
| struct rq *rq_dest, *rq_src; |
| int ret = 0; |
| |
| if (unlikely(!cpu_active(dest_cpu))) |
| return ret; |
| |
| rq_src = cpu_rq(src_cpu); |
| rq_dest = cpu_rq(dest_cpu); |
| |
| raw_spin_lock(&p->pi_lock); |
| double_rq_lock(rq_src, rq_dest); |
| /* Already moved. */ |
| if (task_cpu(p) != src_cpu) |
| goto done; |
| /* Affinity changed (again). */ |
| if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) |
| goto fail; |
| |
| /* |
| * If we're not on a rq, the next wake-up will ensure we're |
| * placed properly. |
| */ |
| if (p->on_rq) { |
| dequeue_task(rq_src, p, 0); |
| set_task_cpu(p, dest_cpu); |
| enqueue_task(rq_dest, p, 0); |
| check_preempt_curr(rq_dest, p, 0); |
| } |
| done: |
| ret = 1; |
| fail: |
| double_rq_unlock(rq_src, rq_dest); |
| raw_spin_unlock(&p->pi_lock); |
| return ret; |
| } |
| |
| /* |
| * migration_cpu_stop - this will be executed by a highprio stopper thread |
| * and performs thread migration by bumping thread off CPU then |
| * 'pushing' onto another runqueue. |
| */ |
| static int migration_cpu_stop(void *data) |
| { |
| struct migration_arg *arg = data; |
| |
| /* |
| * The original target cpu might have gone down and we might |
| * be on another cpu but it doesn't matter. |
| */ |
| local_irq_disable(); |
| __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
| local_irq_enable(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* |
| * Ensures that the idle task is using init_mm right before its cpu goes |
| * offline. |
| */ |
| void idle_task_exit(void) |
| { |
| struct mm_struct *mm = current->active_mm; |
| |
| BUG_ON(cpu_online(smp_processor_id())); |
| |
| if (mm != &init_mm) |
| switch_mm(mm, &init_mm, current); |
| mmdrop(mm); |
| } |
| |
| /* |
| * Since this CPU is going 'away' for a while, fold any nr_active delta |
| * we might have. Assumes we're called after migrate_tasks() so that the |
| * nr_active count is stable. |
| * |
| * Also see the comment "Global load-average calculations". |
| */ |
| static void calc_load_migrate(struct rq *rq) |
| { |
| long delta = calc_load_fold_active(rq); |
| if (delta) |
| atomic_long_add(delta, &calc_load_tasks); |
| } |
| |
| /* |
| * Migrate all tasks from the rq, sleeping tasks will be migrated by |
| * try_to_wake_up()->select_task_rq(). |
| * |
| * Called with rq->lock held even though we'er in stop_machine() and |
| * there's no concurrency possible, we hold the required locks anyway |
| * because of lock validation efforts. |
| */ |
| static void migrate_tasks(unsigned int dead_cpu) |
| { |
| struct rq *rq = cpu_rq(dead_cpu); |
| struct task_struct *next, *stop = rq->stop; |
| int dest_cpu; |
| |
| /* |
| * Fudge the rq selection such that the below task selection loop |
| * doesn't get stuck on the currently eligible stop task. |
| * |
| * We're currently inside stop_machine() and the rq is either stuck |
| * in the stop_machine_cpu_stop() loop, or we're executing this code, |
| * either way we should never end up calling schedule() until we're |
| * done here. |
| */ |
| rq->stop = NULL; |
| |
| for ( ; ; ) { |
| /* |
| * There's this thread running, bail when that's the only |
| * remaining thread. |
| */ |
| if (rq->nr_running == 1) |
| break; |
| |
| next = pick_next_task(rq); |
| BUG_ON(!next); |
| next->sched_class->put_prev_task(rq, next); |
| |
| /* Find suitable destination for @next, with force if needed. */ |
| dest_cpu = select_fallback_rq(dead_cpu, next); |
| raw_spin_unlock(&rq->lock); |
| |
| __migrate_task(next, dead_cpu, dest_cpu); |
| |
| raw_spin_lock(&rq->lock); |
| } |
| |
| rq->stop = stop; |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
| |
| static struct ctl_table sd_ctl_dir[] = { |
| { |
| .procname = "sched_domain", |
| .mode = 0555, |
| }, |
| {} |
| }; |
| |
| static struct ctl_table sd_ctl_root[] = { |
| { |
| .procname = "kernel", |
| .mode = 0555, |
| .child = sd_ctl_dir, |
| }, |
| {} |
| }; |
| |
| static struct ctl_table *sd_alloc_ctl_entry(int n) |
| { |
| struct ctl_table *entry = |
| kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
| |
| return entry; |
| } |
| |
| static void sd_free_ctl_entry(struct ctl_table **tablep) |
| { |
| struct ctl_table *entry; |
| |
| /* |
| * In the intermediate directories, both the child directory and |
| * procname are dynamically allocated and could fail but the mode |
| * will always be set. In the lowest directory the names are |
| * static strings and all have proc handlers. |
| */ |
| for (entry = *tablep; entry->mode; entry++) { |
| if (entry->child) |
| sd_free_ctl_entry(&entry->child); |
| if (entry->proc_handler == NULL) |
| kfree(entry->procname); |
| } |
| |
| kfree(*tablep); |
| *tablep = NULL; |
| } |
| |
| static int min_load_idx = 0; |
| static int max_load_idx = CPU_LOAD_IDX_MAX-1; |
| |
| static void |
| set_table_entry(struct ctl_table *entry, |
| const char *procname, void *data, int maxlen, |
| umode_t mode, proc_handler *proc_handler, |
| bool load_idx) |
| { |
| entry->procname = procname; |
| entry->data = data; |
| entry->maxlen = maxlen; |
| entry->mode = mode; |
| entry->proc_handler = proc_handler; |
| |
| if (load_idx) { |
| entry->extra1 = &min_load_idx; |
| entry->extra2 = &max_load_idx; |
| } |
| } |
| |
| static struct ctl_table * |
| sd_alloc_ctl_domain_table(struct sched_domain *sd) |
| { |
| struct ctl_table *table = sd_alloc_ctl_entry(13); |
| |
| if (table == NULL) |
| return NULL; |
| |
| set_table_entry(&table[0], "min_interval", &sd->min_interval, |
| sizeof(long), 0644, proc_doulongvec_minmax, false); |
| set_table_entry(&table[1], "max_interval", &sd->max_interval, |
| sizeof(long), 0644, proc_doulongvec_minmax, false); |
| set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
| sizeof(int), 0644, proc_dointvec_minmax, true); |
| set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
| sizeof(int), 0644, proc_dointvec_minmax, true); |
| set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
| sizeof(int), 0644, proc_dointvec_minmax, true); |
| set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
| sizeof(int), 0644, proc_dointvec_minmax, true); |
| set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
| sizeof(int), 0644, proc_dointvec_minmax, true); |
| set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
| sizeof(int), 0644, proc_dointvec_minmax, false); |
| set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
| sizeof(int), 0644, proc_dointvec_minmax, false); |
| set_table_entry(&table[9], "cache_nice_tries", |
| &sd->cache_nice_tries, |
| sizeof(int), 0644, proc_dointvec_minmax, false); |
| set_table_entry(&table[10], "flags", &sd->flags, |
| sizeof(int), 0644, proc_dointvec_minmax, false); |
| set_table_entry(&table[11], "name", sd->name, |
| CORENAME_MAX_SIZE, 0444, proc_dostring, false); |
| /* &table[12] is terminator */ |
| |
| return table; |
| } |
| |
| static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
| { |
| struct ctl_table *entry, *table; |
| struct sched_domain *sd; |
| int domain_num = 0, i; |
| char buf[32]; |
| |
| for_each_domain(cpu, sd) |
| domain_num++; |
| entry = table = sd_alloc_ctl_entry(domain_num + 1); |
| if (table == NULL) |
| return NULL; |
| |
| i = 0; |
| for_each_domain(cpu, sd) { |
| snprintf(buf, 32, "domain%d", i); |
| entry->procname = kstrdup(buf, GFP_KERNEL); |
| entry->mode = 0555; |
| entry->child = sd_alloc_ctl_domain_table(sd); |
| entry++; |
| i++; |
| } |
| return table; |
| } |
| |
| static struct ctl_table_header *sd_sysctl_header; |
| static void register_sched_domain_sysctl(void) |
| { |
| int i, cpu_num = num_possible_cpus(); |
| struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
| char buf[32]; |
| |
| WARN_ON(sd_ctl_dir[0].child); |
| sd_ctl_dir[0].child = entry; |
| |
| if (entry == NULL) |
| return; |
| |
| for_each_possible_cpu(i) { |
| snprintf(buf, 32, "cpu%d", i); |
| entry->procname = kstrdup(buf, GFP_KERNEL); |
| entry->mode = 0555; |
| entry->child = sd_alloc_ctl_cpu_table(i); |
| entry++; |
| } |
| |
| WARN_ON(sd_sysctl_header); |
| sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
| } |
| |
| /* may be called multiple times per register */ |
| static void unregister_sched_domain_sysctl(void) |
| { |
| if (sd_sysctl_header) |
| unregister_sysctl_table(sd_sysctl_header); |
| sd_sysctl_header = NULL; |
| if (sd_ctl_dir[0].child) |
| sd_free_ctl_entry(&sd_ctl_dir[0].child); |
| } |
| #else |
| static void register_sched_domain_sysctl(void) |
| { |
| } |
| static void unregister_sched_domain_sysctl(void) |
| { |
| } |
| #endif |
| |
| static void set_rq_online(struct rq *rq) |
| { |
| if (!rq->online) { |
| const struct sched_class *class; |
| |
| cpumask_set_cpu(rq->cpu, rq->rd->online); |
| rq->online = 1; |
| |
| for_each_class(class) { |
| if (class->rq_online) |
| class->rq_online(rq); |
| } |
| } |
| } |
| |
| static void set_rq_offline(struct rq *rq) |
| { |
| if (rq->online) { |
| const struct sched_class *class; |
| |
| for_each_class(class) { |
| if (class->rq_offline) |
| class->rq_offline(rq); |
| } |
| |
| cpumask_clear_cpu(rq->cpu, rq->rd->online); |
| rq->online = 0; |
| } |
| } |
| |
| /* |
| * migration_call - callback that gets triggered when a CPU is added. |
| * Here we can start up the necessary migration thread for the new CPU. |
| */ |
| static int __cpuinit |
| migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| { |
| int cpu = (long)hcpu; |
| unsigned long flags; |
| struct rq *rq = cpu_rq(cpu); |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| |
| case CPU_UP_PREPARE: |
| rq->calc_load_update = calc_load_update; |
| break; |
| |
| case CPU_ONLINE: |
| /* Update our root-domain */ |
| raw_spin_lock_irqsave(&rq->lock, flags); |
| if (rq->rd) { |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| |
| set_rq_online(rq); |
| } |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| break; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| case CPU_DYING: |
| sched_ttwu_pending(); |
| /* Update our root-domain */ |
| raw_spin_lock_irqsave(&rq->lock, flags); |
| if (rq->rd) { |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| set_rq_offline(rq); |
| } |
| migrate_tasks(cpu); |
| BUG_ON(rq->nr_running != 1); /* the migration thread */ |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| break; |
| |
| case CPU_DEAD: |
| calc_load_migrate(rq); |
| break; |
| #endif |
| } |
| |
| update_max_interval(); |
| |
| return NOTIFY_OK; |
| } |
| |
| /* |
| * Register at high priority so that task migration (migrate_all_tasks) |
| * happens before everything else. This has to be lower priority than |
| * the notifier in the perf_event subsystem, though. |
| */ |
| static struct notifier_block __cpuinitdata migration_notifier = { |
| .notifier_call = migration_call, |
| .priority = CPU_PRI_MIGRATION, |
| }; |
| |
| static int __cpuinit sched_cpu_active(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_STARTING: |
| case CPU_DOWN_FAILED: |
| set_cpu_active((long)hcpu, true); |
| return NOTIFY_OK; |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_DOWN_PREPARE: |
| set_cpu_active((long)hcpu, false); |
| return NOTIFY_OK; |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| static int __init migration_init(void) |
| { |
| void *cpu = (void *)(long)smp_processor_id(); |
| int err; |
| |
| /* Initialize migration for the boot CPU */ |
| err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
| BUG_ON(err == NOTIFY_BAD); |
| migration_call(&migration_notifier, CPU_ONLINE, cpu); |
| register_cpu_notifier(&migration_notifier); |
| |
| /* Register cpu active notifiers */ |
| cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); |
| cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); |
| |
| return 0; |
| } |
| early_initcall(migration_init); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| |
| static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| |
| static __read_mostly int sched_debug_enabled; |
| |
| static int __init sched_debug_setup(char *str) |
| { |
| sched_debug_enabled = 1; |
| |
| return 0; |
| } |
| early_param("sched_debug", sched_debug_setup); |
| |
| static inline bool sched_debug(void) |
| { |
| return sched_debug_enabled; |
| } |
| |
| static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
| struct cpumask *groupmask) |
| { |
| struct sched_group *group = sd->groups; |
| char str[256]; |
| |
| cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
| cpumask_clear(groupmask); |
| |
| printk(KERN_DEBUG "%*s domain %d: ", level, "", level); |
| |
| if (!(sd->flags & SD_LOAD_BALANCE)) { |
| printk("does not load-balance\n"); |
| if (sd->parent) |
| printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
| " has parent"); |
| return -1; |
| } |
| |
| printk(KERN_CONT "span %s level %s\n", str, sd->name); |
| |
| if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
| printk(KERN_ERR "ERROR: domain->span does not contain " |
| "CPU%d\n", cpu); |
| } |
| if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
| printk(KERN_ERR "ERROR: domain->groups does not contain" |
| " CPU%d\n", cpu); |
| } |
| |
| printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
| do { |
| if (!group) { |
| printk("\n"); |
| printk(KERN_ERR "ERROR: group is NULL\n"); |
| break; |
| } |
| |
| /* |
| * Even though we initialize ->power to something semi-sane, |
| * we leave power_orig unset. This allows us to detect if |
| * domain iteration is still funny without causing /0 traps. |
| */ |
| if (!group->sgp->power_orig) { |
| printk(KERN_CONT "\n"); |
| printk(KERN_ERR "ERROR: domain->cpu_power not " |
| "set\n"); |
| break; |
| } |
| |
| if (!cpumask_weight(sched_group_cpus(group))) { |
| printk(KERN_CONT "\n"); |
| printk(KERN_ERR "ERROR: empty group\n"); |
| break; |
| } |
| |
| if (!(sd->flags & SD_OVERLAP) && |
| cpumask_intersects(groupmask, sched_group_cpus(group))) { |
| printk(KERN_CONT "\n"); |
| printk(KERN_ERR "ERROR: repeated CPUs\n"); |
| break; |
| } |
| |
| cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
| |
| cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
| |
| printk(KERN_CONT " %s", str); |
| if (group->sgp->power != SCHED_POWER_SCALE) { |
| printk(KERN_CONT " (cpu_power = %d)", |
| group->sgp->power); |
| } |
| |
| group = group->next; |
| } while (group != sd->groups); |
| printk(KERN_CONT "\n"); |
| |
| if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
| printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
| |
| if (sd->parent && |
| !cpumask_subset(groupmask, sched_domain_span(sd->parent))) |
| printk(KERN_ERR "ERROR: parent span is not a superset " |
| "of domain->span\n"); |
| return 0; |
| } |
| |
| static void sched_domain_debug(struct sched_domain *sd, int cpu) |
| { |
| int level = 0; |
| |
| if (!sched_debug_enabled) |
| return; |
| |
| if (!sd) { |
| printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
| return; |
| } |
| |
| printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
| |
| for (;;) { |
| if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) |
| break; |
| level++; |
| sd = sd->parent; |
| if (!sd) |
| break; |
| } |
| } |
| #else /* !CONFIG_SCHED_DEBUG */ |
| # define sched_domain_debug(sd, cpu) do { } while (0) |
| static inline bool sched_debug(void) |
| { |
| return false; |
| } |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| static int sd_degenerate(struct sched_domain *sd) |
| { |
| if (cpumask_weight(sched_domain_span(sd)) == 1) |
| return 1; |
| |
| /* Following flags need at least 2 groups */ |
| if (sd->flags & (SD_LOAD_BALANCE | |
| SD_BALANCE_NEWIDLE | |
| SD_BALANCE_FORK | |
| SD_BALANCE_EXEC | |
| SD_SHARE_CPUPOWER | |
| SD_SHARE_PKG_RESOURCES)) { |
| if (sd->groups != sd->groups->next) |
| return 0; |
| } |
| |
| /* Following flags don't use groups */ |
| if (sd->flags & (SD_WAKE_AFFINE)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int |
| sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) |
| { |
| unsigned long cflags = sd->flags, pflags = parent->flags; |
| |
| if (sd_degenerate(parent)) |
| return 1; |
| |
| if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| return 0; |
| |
| /* Flags needing groups don't count if only 1 group in parent */ |
| if (parent->groups == parent->groups->next) { |
| pflags &= ~(SD_LOAD_BALANCE | |
| SD_BALANCE_NEWIDLE | |
| SD_BALANCE_FORK | |
| SD_BALANCE_EXEC | |
| SD_SHARE_CPUPOWER | |
| SD_SHARE_PKG_RESOURCES); |
| if (nr_node_ids == 1) |
| pflags &= ~SD_SERIALIZE; |
| } |
| if (~cflags & pflags) |
| return 0; |
| |
| return 1; |
| } |
| |
| static void free_rootdomain(struct rcu_head *rcu) |
| { |
| struct root_domain *rd = container_of(rcu, struct root_domain, rcu); |
| |
| cpupri_cleanup(&rd->cpupri); |
| free_cpumask_var(rd->rto_mask); |
| free_cpumask_var(rd->online); |
| free_cpumask_var(rd->span); |
| kfree(rd); |
| } |
| |
| static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
| { |
| struct root_domain *old_rd = NULL; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&rq->lock, flags); |
| |
| if (rq->rd) { |
| old_rd = rq->rd; |
| |
| if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
| set_rq_offline(rq); |
| |
| cpumask_clear_cpu(rq->cpu, old_rd->span); |
| |
| /* |
| * If we dont want to free the old_rt yet then |
| * set old_rd to NULL to skip the freeing later |
| * in this function: |
| */ |
| if (!atomic_dec_and_test(&old_rd->refcount)) |
| old_rd = NULL; |
| } |
| |
| atomic_inc(&rd->refcount); |
| rq->rd = rd; |
| |
| cpumask_set_cpu(rq->cpu, rd->span); |
| if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
| set_rq_online(rq); |
| |
| raw_spin_unlock_irqrestore(&rq->lock, flags); |
| |
| if (old_rd) |
| call_rcu_sched(&old_rd->rcu, free_rootdomain); |
| } |
| |
| static int init_rootdomain(struct root_domain *rd) |
| { |
| memset(rd, 0, sizeof(*rd)); |
| |
| if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) |
| goto out; |
| if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) |
| goto free_span; |
| if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) |
| goto free_online; |
| |
| if (cpupri_init(&rd->cpupri) != 0) |
| goto free_rto_mask; |
| return 0; |
| |
| free_rto_mask: |
| free_cpumask_var(rd->rto_mask); |
| free_online: |
| free_cpumask_var(rd->online); |
| free_span: |
| free_cpumask_var(rd->span); |
| out: |
| return -ENOMEM; |
| } |
| |
| /* |
| * By default the system creates a single root-domain with all cpus as |
| * members (mimicking the global state we have today). |
| */ |
| struct root_domain def_root_domain; |
| |
| static void init_defrootdomain(void) |
| { |
| init_rootdomain(&def_root_domain); |
| |
| atomic_set(&def_root_domain.refcount, 1); |
| } |
| |
| static struct root_domain *alloc_rootdomain(void) |
| { |
| struct root_domain *rd; |
| |
| rd = kmalloc(sizeof(*rd), GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| if (init_rootdomain(rd) != 0) { |
| kfree(rd); |
| return NULL; |
| } |
| |
| return rd; |
| } |
| |
| static void free_sched_groups(struct sched_group *sg, int free_sgp) |
| { |
| struct sched_group *tmp, *first; |
| |
| if (!sg) |
| return; |
| |
| first = sg; |
| do { |
| tmp = sg->next; |
| |
| if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) |
| kfree(sg->sgp); |
| |
| kfree(sg); |
| sg = tmp; |
| } while (sg != first); |
| } |
| |
| static void free_sched_domain(struct rcu_head *rcu) |
| { |
| struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); |
| |
| /* |
| * If its an overlapping domain it has private groups, iterate and |
| * nuke them all. |
| */ |
| if (sd->flags & SD_OVERLAP) { |
| free_sched_groups(sd->groups, 1); |
| } else if (atomic_dec_and_test(&sd->groups->ref)) { |
| kfree(sd->groups->sgp); |
| kfree(sd->groups); |
| } |
| kfree(sd); |
| } |
| |
| static void destroy_sched_domain(struct sched_domain *sd, int cpu) |
| { |
| call_rcu(&sd->rcu, free_sched_domain); |
| } |
| |
| static void destroy_sched_domains(struct sched_domain *sd, int cpu) |
| { |
| for (; sd; sd = sd->parent) |
| destroy_sched_domain(sd, cpu); |
| } |
| |
| /* |
| * Keep a special pointer to the highest sched_domain that has |
| * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this |
| * allows us to avoid some pointer chasing select_idle_sibling(). |
| * |
| * Also keep a unique ID per domain (we use the first cpu number in |
| * the cpumask of the domain), this allows us to quickly tell if |
| * two cpus are in the same cache domain, see cpus_share_cache(). |
| */ |
| DEFINE_PER_CPU(struct sched_domain *, sd_llc); |
| DEFINE_PER_CPU(int, sd_llc_id); |
| |
| static void update_top_cache_domain(int cpu) |
| { |
| struct sched_domain *sd; |
| int id = cpu; |
| |
| sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); |
| if (sd) |
| id = cpumask_first(sched_domain_span(sd)); |
| |
| rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); |
| per_cpu(sd_llc_id, cpu) = id; |
| } |
| |
| /* |
| * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
| * hold the hotplug lock. |
| */ |
| static void |
| cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct sched_domain *tmp; |
| |
| /* Remove the sched domains which do not contribute to scheduling. */ |
| for (tmp = sd; tmp; ) { |
| struct sched_domain *parent = tmp->parent; |
| if (!parent) |
| break; |
| |
| if (sd_parent_degenerate(tmp, parent)) { |
| tmp->parent = parent->parent; |
| if (parent->parent) |
| parent->parent->child = tmp; |
| destroy_sched_domain(parent, cpu); |
| } else |
| tmp = tmp->parent; |
| } |
| |
| if (sd && sd_degenerate(sd)) { |
| tmp = sd; |
| sd = sd->parent; |
| destroy_sched_domain(tmp, cpu); |
| if (sd) |
| sd->child = NULL; |
| } |
| |
| sched_domain_debug(sd, cpu); |
| |
| rq_attach_root(rq, rd); |
| tmp = rq->sd; |
| rcu_assign_pointer(rq->sd, sd); |
| destroy_sched_domains(tmp, cpu); |
| |
| update_top_cache_domain(cpu); |
| } |
| |
| /* cpus with isolated domains */ |
| static cpumask_var_t cpu_isolated_map; |
| |
| /* Setup the mask of cpus configured for isolated domains */ |
| static int __init isolated_cpu_setup(char *str) |
| { |
| alloc_bootmem_cpumask_var(&cpu_isolated_map); |
| cpulist_parse(str, cpu_isolated_map); |
| return 1; |
| } |
| |
| __setup("isolcpus=", isolated_cpu_setup); |
| |
| static const struct cpumask *cpu_cpu_mask(int cpu) |
| { |
| return cpumask_of_node(cpu_to_node(cpu)); |
| } |
| |
| struct sd_data { |
| struct sched_domain **__percpu sd; |
| struct sched_group **__percpu sg; |
| struct sched_group_power **__percpu sgp; |
| }; |
| |
| struct s_data { |
| struct sched_domain ** __percpu sd; |
| struct root_domain *rd; |
| }; |
| |
| enum s_alloc { |
| sa_rootdomain, |
| sa_sd, |
| sa_sd_storage, |
| sa_none, |
| }; |
| |
| struct sched_domain_topology_level; |
| |
| typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); |
| typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); |
| |
| #define SDTL_OVERLAP 0x01 |
| |
| struct sched_domain_topology_level { |
| sched_domain_init_f init; |
| sched_domain_mask_f mask; |
| int flags; |
| int numa_level; |
| struct sd_data data; |
| }; |
| |
| /* |
| * Build an iteration mask that can exclude certain CPUs from the upwards |
| * domain traversal. |
| * |
| * Asymmetric node setups can result in situations where the domain tree is of |
| * unequal depth, make sure to skip domains that already cover the entire |
| * range. |
| * |
| * In that case build_sched_domains() will have terminated the iteration early |
| * and our sibling sd spans will be empty. Domains should always include the |
| * cpu they're built on, so check that. |
| * |
| */ |
| static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) |
| { |
| const struct cpumask *span = sched_domain_span(sd); |
| struct sd_data *sdd = sd->private; |
| struct sched_domain *sibling; |
| int i; |
| |
| for_each_cpu(i, span) { |
| sibling = *per_cpu_ptr(sdd->sd, i); |
| if (!cpumask_test_cpu(i, sched_domain_span(sibling))) |
| continue; |
| |
| cpumask_set_cpu(i, sched_group_mask(sg)); |
| } |
| } |
| |
| /* |
| * Return the canonical balance cpu for this group, this is the first cpu |
| * of this group that's also in the iteration mask. |
| */ |
| int group_balance_cpu(struct sched_group *sg) |
| { |
| return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); |
| } |
| |
| static int |
| build_overlap_sched_groups(struct sched_domain *sd, int cpu) |
| { |
| struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; |
| const struct cpumask *span = sched_domain_span(sd); |
| struct cpumask *covered = sched_domains_tmpmask; |
| struct sd_data *sdd = sd->private; |
| struct sched_domain *child; |
| int i; |
| |
| cpumask_clear(covered); |
| |
| for_each_cpu(i, span) { |
| struct cpumask *sg_span; |
| |
| if (cpumask_test_cpu(i, covered)) |
| continue; |
| |
| child = *per_cpu_ptr(sdd->sd, i); |
| |
| /* See the comment near build_group_mask(). */ |
| if (!cpumask_test_cpu(i, sched_domain_span(child))) |
| continue; |
| |
| sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| |
| if (!sg) |
| goto fail; |
| |
| sg_span = sched_group_cpus(sg); |
| if (child->child) { |
| child = child->child; |
| cpumask_copy(sg_span, sched_domain_span(child)); |
| } else |
| cpumask_set_cpu(i, sg_span); |
| |
| cpumask_or(covered, covered, sg_span); |
| |
| sg->sgp = *per_cpu_ptr(sdd->sgp, i); |
| if (atomic_inc_return(&sg->sgp->ref) == 1) |
| build_group_mask(sd, sg); |
| |
| /* |
| * Initialize sgp->power such that even if we mess up the |
| * domains and no possible iteration will get us here, we won't |
| * die on a /0 trap. |
| */ |
| sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); |
| |
| /* |
| * Make sure the first group of this domain contains the |
| * canonical balance cpu. Otherwise the sched_domain iteration |
| * breaks. See update_sg_lb_stats(). |
| */ |
| if ((!groups && cpumask_test_cpu(cpu, sg_span)) || |
| group_balance_cpu(sg) == cpu) |
| groups = sg; |
| |
| if (!first) |
| first = sg; |
| if (last) |
| last->next = sg; |
| last = sg; |
| last->next = first; |
| } |
| sd->groups = groups; |
| |
| return 0; |
| |
| fail: |
| free_sched_groups(first, 0); |
| |
| return -ENOMEM; |
| } |
| |
| static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) |
| { |
| struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); |
| struct sched_domain *child = sd->child; |
| |
| if (child) |
| cpu = cpumask_first(sched_domain_span(child)); |
| |
| if (sg) { |
| *sg = *per_cpu_ptr(sdd->sg, cpu); |
| (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); |
| atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ |
| } |
| |
| return cpu; |
| } |
| |
| /* |
| * build_sched_groups will build a circular linked list of the groups |
| * covered by the given span, and will set each group's ->cpumask correctly, |
| * and ->cpu_power to 0. |
| * |
| * Assumes the sched_domain tree is fully constructed |
| */ |
| static int |
| build_sched_groups(struct sched_domain *sd, int cpu) |
| { |
| struct sched_group *first = NULL, *last = NULL; |
| struct sd_data *sdd = sd->private; |
| const struct cpumask *span = sched_domain_span(sd); |
| struct cpumask *covered; |
| int i; |
| |
| get_group(cpu, sdd, &sd->groups); |
| atomic_inc(&sd->groups->ref); |
| |
| if (cpu != cpumask_first(sched_domain_span(sd))) |
| return 0; |
| |
| lockdep_assert_held(&sched_domains_mutex); |
| covered = sched_domains_tmpmask; |
| |
| cpumask_clear(covered); |
| |
| for_each_cpu(i, span) { |
| struct sched_group *sg; |
| int group = get_group(i, sdd, &sg); |
| int j; |
| |
| if (cpumask_test_cpu(i, covered)) |
| continue; |
| |
| cpumask_clear(sched_group_cpus(sg)); |
| sg->sgp->power = 0; |
| cpumask_setall(sched_group_mask(sg)); |
| |
| for_each_cpu(j, span) { |
| if (get_group(j, sdd, NULL) != group) |
| continue; |
| |
| cpumask_set_cpu(j, covered); |
| cpumask_set_cpu(j, sched_group_cpus(sg)); |
| } |
| |
| if (!first) |
| first = sg; |
| if (last) |
| last->next = sg; |
| last = sg; |
| } |
| last->next = first; |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize sched groups cpu_power. |
| * |
| * cpu_power indicates the capacity of sched group, which is used while |
| * distributing the load between different sched groups in a sched domain. |
| * Typically cpu_power for all the groups in a sched domain will be same unless |
| * there are asymmetries in the topology. If there are asymmetries, group |
| * having more cpu_power will pickup more load compared to the group having |
| * less cpu_power. |
| */ |
| static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
| { |
| struct sched_group *sg = sd->groups; |
| |
| WARN_ON(!sd || !sg); |
| |
| do { |
| sg->group_weight = cpumask_weight(sched_group_cpus(sg)); |
| sg = sg->next; |
| } while (sg != sd->groups); |
| |
| if (cpu != group_balance_cpu(sg)) |
| return; |
| |
| update_group_power(sd, cpu); |
| atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); |
| } |
| |
| int __weak arch_sd_sibling_asym_packing(void) |
| { |
| return 0*SD_ASYM_PACKING; |
| } |
| |
| /* |
| * Initializers for schedule domains |
| * Non-inlined to reduce accumulated stack pressure in build_sched_domains() |
| */ |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| # define SD_INIT_NAME(sd, type) sd->name = #type |
| #else |
| # define SD_INIT_NAME(sd, type) do { } while (0) |
| #endif |
| |
| #define SD_INIT_FUNC(type) \ |
| static noinline struct sched_domain * \ |
| sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ |
| { \ |
| struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ |
| *sd = SD_##type##_INIT; \ |
| SD_INIT_NAME(sd, type); \ |
| sd->private = &tl->data; \ |
| return sd; \ |
| } |
| |
| SD_INIT_FUNC(CPU) |
| #ifdef CONFIG_SCHED_SMT |
| SD_INIT_FUNC(SIBLING) |
| #endif |
| #ifdef CONFIG_SCHED_MC |
| SD_INIT_FUNC(MC) |
| #endif |
| #ifdef CONFIG_SCHED_BOOK |
| SD_INIT_FUNC(BOOK) |
| #endif |
| |
| static int default_relax_domain_level = -1; |
| int sched_domain_level_max; |
| |
| static int __init setup_relax_domain_level(char *str) |
| { |
| if (kstrtoint(str, 0, &default_relax_domain_level)) |
| pr_warn("Unable to set relax_domain_level\n"); |
| |
| return 1; |
| } |
| __setup("relax_domain_level=", setup_relax_domain_level); |
| |
| static void set_domain_attribute(struct sched_domain *sd, |
| struct sched_domain_attr *attr) |
| { |
| int request; |
| |
| if (!attr || attr->relax_domain_level < 0) { |
| if (default_relax_domain_level < 0) |
| return; |
| else |
| request = default_relax_domain_level; |
| } else |
| request = attr->relax_domain_level; |
| if (request < sd->level) { |
| /* turn off idle balance on this domain */ |
| sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| } else { |
| /* turn on idle balance on this domain */ |
| sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| } |
| } |
| |
| static void __sdt_free(const struct cpumask *cpu_map); |
| static int __sdt_alloc(const struct cpumask *cpu_map); |
| |
| static void __free_domain_allocs(struct s_data *d, enum s_alloc what, |
| const struct cpumask *cpu_map) |
| { |
| switch (what) { |
| case sa_rootdomain: |
| if (!atomic_read(&d->rd->refcount)) |
| free_rootdomain(&d->rd->rcu); /* fall through */ |
| case sa_sd: |
| free_percpu(d->sd); /* fall through */ |
| case sa_sd_storage: |
| __sdt_free(cpu_map); /* fall through */ |
| case sa_none: |
| break; |
| } |
| } |
| |
| static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
| const struct cpumask *cpu_map) |
| { |
| memset(d, 0, sizeof(*d)); |
| |
| if (__sdt_alloc(cpu_map)) |
| return sa_sd_storage; |
| d->sd = alloc_percpu(struct sched_domain *); |
| if (!d->sd) |
| return sa_sd_storage; |
| d->rd = alloc_rootdomain(); |
| if (!d->rd) |
| return sa_sd; |
| return sa_rootdomain; |
| } |
| |
| /* |
| * NULL the sd_data elements we've used to build the sched_domain and |
| * sched_group structure so that the subsequent __free_domain_allocs() |
| * will not free the data we're using. |
| */ |
| static void claim_allocations(int cpu, struct sched_domain *sd) |
| { |
| struct sd_data *sdd = sd->private; |
| |
| WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); |
| *per_cpu_ptr(sdd->sd, cpu) = NULL; |
| |
| if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) |
| *per_cpu_ptr(sdd->sg, cpu) = NULL; |
| |
| if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) |
| *per_cpu_ptr(sdd->sgp, cpu) = NULL; |
| } |
| |
| #ifdef CONFIG_SCHED_SMT |
| static const struct cpumask *cpu_smt_mask(int cpu) |
| { |
| return topology_thread_cpumask(cpu); |
| } |
| #endif |
| |
| /* |
| * Topology list, bottom-up. |
| */ |
| static struct sched_domain_topology_level default_topology[] = { |
| #ifdef CONFIG_SCHED_SMT |
| { sd_init_SIBLING, cpu_smt_mask, }, |
| #endif |
| #ifdef CONFIG_SCHED_MC |
| { sd_init_MC, cpu_coregroup_mask, }, |
| #endif |
| #ifdef CONFIG_SCHED_BOOK |
| { sd_init_BOOK, cpu_book_mask, }, |
| #endif |
| { sd_init_CPU, cpu_cpu_mask, }, |
| { NULL, }, |
| }; |
| |
| static struct sched_domain_topology_level *sched_domain_topology = default_topology; |
| |
| #ifdef CONFIG_NUMA |
| |
| static int sched_domains_numa_levels; |
| static int *sched_domains_numa_distance; |
| static struct cpumask ***sched_domains_numa_masks; |
| static int sched_domains_curr_level; |
| |
| static inline int sd_local_flags(int level) |
| { |
| if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) |
| return 0; |
| |
| return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; |
| } |
| |
| static struct sched_domain * |
| sd_numa_init(struct sched_domain_topology_level *tl, int cpu) |
| { |
| struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); |
| int level = tl->numa_level; |
| int sd_weight = cpumask_weight( |
| sched_domains_numa_masks[level][cpu_to_node(cpu)]); |
| |
| *sd = (struct sched_domain){ |
| .min_interval = sd_weight, |
| .max_interval = 2*sd_weight, |
| .busy_factor = 32, |
| .imbalance_pct = 125, |
| .cache_nice_tries = 2, |
| .busy_idx = 3, |
| .idle_idx = 2, |
| .newidle_idx = 0, |
| .wake_idx = 0, |
| .forkexec_idx = 0, |
| |
| .flags = 1*SD_LOAD_BALANCE |
| | 1*SD_BALANCE_NEWIDLE |
| | 0*SD_BALANCE_EXEC |
| | 0*SD_BALANCE_FORK |
| | 0*SD_BALANCE_WAKE |
| | 0*SD_WAKE_AFFINE |
| | 0*SD_SHARE_CPUPOWER |
| | 0*SD_SHARE_PKG_RESOURCES |
| | 1*SD_SERIALIZE |
| | 0*SD_PREFER_SIBLING |
| | sd_local_flags(level) |
| , |
| .last_balance = jiffies, |
| .balance_interval = sd_weight, |
| }; |
| SD_INIT_NAME(sd, NUMA); |
| sd->private = &tl->data; |
| |
| /* |
| * Ugly hack to pass state to sd_numa_mask()... |
| */ |
| sched_domains_curr_level = tl->numa_level; |
| |
| return sd; |
| } |
| |
| static const struct cpumask *sd_numa_mask(int cpu) |
| { |
| return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; |
| } |
| |
| static void sched_numa_warn(const char *str) |
| { |
| static int done = false; |
| int i,j; |
| |
| if (done) |
| return; |
| |
| done = true; |
| |
| printk(KERN_WARNING "ERROR: %s\n\n", str); |
| |
| for (i = 0; i < nr_node_ids; i++) { |
| printk(KERN_WARNING " "); |
| for (j = 0; j < nr_node_ids; j++) |
| printk(KERN_CONT "%02d ", node_distance(i,j)); |
| printk(KERN_CONT "\n"); |
| } |
| printk(KERN_WARNING "\n"); |
| } |
| |
| static bool find_numa_distance(int distance) |
| { |
| int i; |
| |
| if (distance == node_distance(0, 0)) |
| return true; |
| |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| if (sched_domains_numa_distance[i] == distance) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void sched_init_numa(void) |
| { |
| int next_distance, curr_distance = node_distance(0, 0); |
| struct sched_domain_topology_level *tl; |
| int level = 0; |
| int i, j, k; |
| |
| sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); |
| if (!sched_domains_numa_distance) |
| return; |
| |
| /* |
| * O(nr_nodes^2) deduplicating selection sort -- in order to find the |
| * unique distances in the node_distance() table. |
| * |
| * Assumes node_distance(0,j) includes all distances in |
| * node_distance(i,j) in order to avoid cubic time. |
| */ |
| next_distance = curr_distance; |
| for (i = 0; i < nr_node_ids; i++) { |
| for (j = 0; j < nr_node_ids; j++) { |
| for (k = 0; k < nr_node_ids; k++) { |
| int distance = node_distance(i, k); |
| |
| if (distance > curr_distance && |
| (distance < next_distance || |
| next_distance == curr_distance)) |
| next_distance = distance; |
| |
| /* |
| * While not a strong assumption it would be nice to know |
| * about cases where if node A is connected to B, B is not |
| * equally connected to A. |
| */ |
| if (sched_debug() && node_distance(k, i) != distance) |
| sched_numa_warn("Node-distance not symmetric"); |
| |
| if (sched_debug() && i && !find_numa_distance(distance)) |
| sched_numa_warn("Node-0 not representative"); |
| } |
| if (next_distance != curr_distance) { |
| sched_domains_numa_distance[level++] = next_distance; |
| sched_domains_numa_levels = level; |
| curr_distance = next_distance; |
| } else break; |
| } |
| |
| /* |
| * In case of sched_debug() we verify the above assumption. |
| */ |
| if (!sched_debug()) |
| break; |
| } |
| /* |
| * 'level' contains the number of unique distances, excluding the |
| * identity distance node_distance(i,i). |
| * |
| * The sched_domains_nume_distance[] array includes the actual distance |
| * numbers. |
| */ |
| |
| /* |
| * Here, we should temporarily reset sched_domains_numa_levels to 0. |
| * If it fails to allocate memory for array sched_domains_numa_masks[][], |
| * the array will contain less then 'level' members. This could be |
| * dangerous when we use it to iterate array sched_domains_numa_masks[][] |
| * in other functions. |
| * |
| * We reset it to 'level' at the end of this function. |
| */ |
| sched_domains_numa_levels = 0; |
| |
| sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); |
| if (!sched_domains_numa_masks) |
| return; |
| |
| /* |
| * Now for each level, construct a mask per node which contains all |
| * cpus of nodes that are that many hops away from us. |
| */ |
| for (i = 0; i < level; i++) { |
| sched_domains_numa_masks[i] = |
| kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); |
| if (!sched_domains_numa_masks[i]) |
| return; |
| |
| for (j = 0; j < nr_node_ids; j++) { |
| struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); |
| if (!mask) |
| return; |
| |
| sched_domains_numa_masks[i][j] = mask; |
| |
| for (k = 0; k < nr_node_ids; k++) { |
| if (node_distance(j, k) > sched_domains_numa_distance[i]) |
| continue; |
| |
| cpumask_or(mask, mask, cpumask_of_node(k)); |
| } |
| } |
| } |
| |
| tl = kzalloc((ARRAY_SIZE(default_topology) + level) * |
| sizeof(struct sched_domain_topology_level), GFP_KERNEL); |
| if (!tl) |
| return; |
| |
| /* |
| * Copy the default topology bits.. |
| */ |
| for (i = 0; default_topology[i].init; i++) |
| tl[i] = default_topology[i]; |
| |
| /* |
| * .. and append 'j' levels of NUMA goodness. |
| */ |
| for (j = 0; j < level; i++, j++) { |
| tl[i] = (struct sched_domain_topology_level){ |
| .init = sd_numa_init, |
| .mask = sd_numa_mask, |
| .flags = SDTL_OVERLAP, |
| .numa_level = j, |
| }; |
| } |
| |
| sched_domain_topology = tl; |
| |
| sched_domains_numa_levels = level; |
| } |
| |
| static void sched_domains_numa_masks_set(int cpu) |
| { |
| int i, j; |
| int node = cpu_to_node(cpu); |
| |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| for (j = 0; j < nr_node_ids; j++) { |
| if (node_distance(j, node) <= sched_domains_numa_distance[i]) |
| cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); |
| } |
| } |
| } |
| |
| static void sched_domains_numa_masks_clear(int cpu) |
| { |
| int i, j; |
| for (i = 0; i < sched_domains_numa_levels; i++) { |
| for (j = 0; j < nr_node_ids; j++) |
| cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); |
| } |
| } |
| |
| /* |
| * Update sched_domains_numa_masks[level][node] array when new cpus |
| * are onlined. |
| */ |
| static int sched_domains_numa_masks_update(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| int cpu = (long)hcpu; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_ONLINE: |
| sched_domains_numa_masks_set(cpu); |
| break; |
| |
| case CPU_DEAD: |
| sched_domains_numa_masks_clear(cpu); |
| break; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| |
| return NOTIFY_OK; |
| } |
| #else |
| static inline void sched_init_numa(void) |
| { |
| } |
| |
| static int sched_domains_numa_masks_update(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| static int __sdt_alloc(const struct cpumask *cpu_map) |
| { |
| struct sched_domain_topology_level *tl; |
| int j; |
| |
| for (tl = sched_domain_topology; tl->init; tl++) { |
| struct sd_data *sdd = &tl->data; |
| |
| sdd->sd = alloc_percpu(struct sched_domain *); |
| if (!sdd->sd) |
| return -ENOMEM; |
| |
| sdd->sg = alloc_percpu(struct sched_group *); |
| if (!sdd->sg) |
| return -ENOMEM; |
| |
| sdd->sgp = alloc_percpu(struct sched_group_power *); |
| if (!sdd->sgp) |
| return -ENOMEM; |
| |
| for_each_cpu(j, cpu_map) { |
| struct sched_domain *sd; |
| struct sched_group *sg; |
| struct sched_group_power *sgp; |
| |
| sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sd) |
| return -ENOMEM; |
| |
| *per_cpu_ptr(sdd->sd, j) = sd; |
| |
| sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sg) |
| return -ENOMEM; |
| |
| sg->next = sg; |
| |
| *per_cpu_ptr(sdd->sg, j) = sg; |
| |
| sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), |
| GFP_KERNEL, cpu_to_node(j)); |
| if (!sgp) |
| return -ENOMEM; |
| |
| *per_cpu_ptr(sdd->sgp, j) = sgp; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void __sdt_free(const struct cpumask *cpu_map) |
| { |
| struct sched_domain_topology_level *tl; |
| int j; |
| |
| for (tl = sched_domain_topology; tl->init; tl++) { |
| struct sd_data *sdd = &tl->data; |
| |
| for_each_cpu(j, cpu_map) { |
| struct sched_domain *sd; |
| |
| if (sdd->sd) { |
| sd = *per_cpu_ptr(sdd->sd, j); |
| if (sd && (sd->flags & SD_OVERLAP)) |
| free_sched_groups(sd->groups, 0); |
| kfree(*per_cpu_ptr(sdd->sd, j)); |
| } |
| |
| if (sdd->sg) |
| kfree(*per_cpu_ptr(sdd->sg, j)); |
| if (sdd->sgp) |
| kfree(*per_cpu_ptr(sdd->sgp, j)); |
| } |
| free_percpu(sdd->sd); |
| sdd->sd = NULL; |
| free_percpu(sdd->sg); |
| sdd->sg = NULL; |
| free_percpu(sdd->sgp); |
| sdd->sgp = NULL; |
| } |
| } |
| |
| struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, |
| struct s_data *d, const struct cpumask *cpu_map, |
| struct sched_domain_attr *attr, struct sched_domain *child, |
| int cpu) |
| { |
| struct sched_domain *sd = tl->init(tl, cpu); |
| if (!sd) |
| return child; |
| |
| cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); |
| if (child) { |
| sd->level = child->level + 1; |
| sched_domain_level_max = max(sched_domain_level_max, sd->level); |
| child->parent = sd; |
| } |
| sd->child = child; |
| set_domain_attribute(sd, attr); |
| |
| return sd; |
| } |
| |
| /* |
| * Build sched domains for a given set of cpus and attach the sched domains |
| * to the individual cpus |
| */ |
| static int build_sched_domains(const struct cpumask *cpu_map, |
| struct sched_domain_attr *attr) |
| { |
| enum s_alloc alloc_state = sa_none; |
| struct sched_domain *sd; |
| struct s_data d; |
| int i, ret = -ENOMEM; |
| |
| alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
| if (alloc_state != sa_rootdomain) |
| goto error; |
| |
| /* Set up domains for cpus specified by the cpu_map. */ |
| for_each_cpu(i, cpu_map) { |
| struct sched_domain_topology_level *tl; |
| |
| sd = NULL; |
| for (tl = sched_domain_topology; tl->init; tl++) { |
| sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); |
| if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) |
| sd->flags |= SD_OVERLAP; |
| if (cpumask_equal(cpu_map, sched_domain_span(sd))) |
| break; |
| } |
| |
| while (sd->child) |
| sd = sd->child; |
| |
| *per_cpu_ptr(d.sd, i) = sd; |
| } |
| |
| /* Build the groups for the domains */ |
| for_each_cpu(i, cpu_map) { |
| for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
| sd->span_weight = cpumask_weight(sched_domain_span(sd)); |
| if (sd->flags & SD_OVERLAP) { |
| if (build_overlap_sched_groups(sd, i)) |
| goto error; |
| } else { |
| if (build_sched_groups(sd, i)) |
| goto error; |
| } |
| } |
| } |
| |
| /* Calculate CPU power for physical packages and nodes */ |
| for (i = nr_cpumask_bits-1; i >= 0; i--) { |
| if (!cpumask_test_cpu(i, cpu_map)) |
| continue; |
| |
| for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { |
| claim_allocations(i, sd); |
| init_sched_groups_power(i, sd); |
| } |
| } |
| |
| /* Attach the domains */ |
| rcu_read_lock(); |
| for_each_cpu(i, cpu_map) { |
| sd = *per_cpu_ptr(d.sd, i); |
| cpu_attach_domain(sd, d.rd, i); |
| } |
| rcu_read_unlock(); |
| |
| ret = 0; |
| error: |
| __free_domain_allocs(&d, alloc_state, cpu_map); |
| return ret; |
| } |
| |
| static cpumask_var_t *doms_cur; /* current sched domains */ |
| static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
| static struct sched_domain_attr *dattr_cur; |
| /* attribues of custom domains in 'doms_cur' */ |
| |
| /* |
| * Special case: If a kmalloc of a doms_cur partition (array of |
| * cpumask) fails, then fallback to a single sched domain, |
| * as determined by the single cpumask fallback_doms. |
| */ |
| static cpumask_var_t fallback_doms; |
| |
| /* |
| * arch_update_cpu_topology lets virtualized architectures update the |
| * cpu core maps. It is supposed to return 1 if the topology changed |
| * or 0 if it stayed the same. |
| */ |
| int __attribute__((weak)) arch_update_cpu_topology(void) |
| { |
| return 0; |
| } |
| |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms) |
| { |
| int i; |
| cpumask_var_t *doms; |
| |
| doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); |
| if (!doms) |
| return NULL; |
| for (i = 0; i < ndoms; i++) { |
| if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { |
| free_sched_domains(doms, i); |
| return NULL; |
| } |
| } |
| return doms; |
| } |
| |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) |
| { |
| unsigned int i; |
| for (i = 0; i < ndoms; i++) |
| free_cpumask_var(doms[i]); |
| kfree(doms); |
| } |
| |
| /* |
| * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
| * For now this just excludes isolated cpus, but could be used to |
| * exclude other special cases in the future. |
| */ |
| static int init_sched_domains(const struct cpumask *cpu_map) |
| { |
| int err; |
| |
| arch_update_cpu_topology(); |
| ndoms_cur = 1; |
| doms_cur = alloc_sched_domains(ndoms_cur); |
| if (!doms_cur) |
| doms_cur = &fallback_doms; |
| cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
| err = build_sched_domains(doms_cur[0], NULL); |
| register_sched_domain_sysctl(); |
| |
| return err; |
| } |
| |
| /* |
| * Detach sched domains from a group of cpus specified in cpu_map |
| * These cpus will now be attached to the NULL domain |
| */ |
| static void detach_destroy_domains(const struct cpumask *cpu_map) |
| { |
| int i; |
| |
| rcu_read_lock(); |
| for_each_cpu(i, cpu_map) |
| cpu_attach_domain(NULL, &def_root_domain, i); |
| rcu_read_unlock(); |
| } |
| |
| /* handle null as "default" */ |
| static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, |
| struct sched_domain_attr *new, int idx_new) |
| { |
| struct sched_domain_attr tmp; |
| |
| /* fast path */ |
| if (!new && !cur) |
| return 1; |
| |
| tmp = SD_ATTR_INIT; |
| return !memcmp(cur ? (cur + idx_cur) : &tmp, |
| new ? (new + idx_new) : &tmp, |
| sizeof(struct sched_domain_attr)); |
| } |
| |
| /* |
| * Partition sched domains as specified by the 'ndoms_new' |
| * cpumasks in the array doms_new[] of cpumasks. This compares |
| * doms_new[] to the current sched domain partitioning, doms_cur[]. |
| * It destroys each deleted domain and builds each new domain. |
| * |
| * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
| * The masks don't intersect (don't overlap.) We should setup one |
| * sched domain for each mask. CPUs not in any of the cpumasks will |
| * not be load balanced. If the same cpumask appears both in the |
| * current 'doms_cur' domains and in the new 'doms_new', we can leave |
| * it as it is. |
| * |
| * The passed in 'doms_new' should be allocated using |
| * alloc_sched_domains. This routine takes ownership of it and will |
| * free_sched_domains it when done with it. If the caller failed the |
| * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
| * and partition_sched_domains() will fallback to the single partition |
| * 'fallback_doms', it also forces the domains to be rebuilt. |
| * |
| * If doms_new == NULL it will be replaced with cpu_online_mask. |
| * ndoms_new == 0 is a special case for destroying existing domains, |
| * and it will not create the default domain. |
| * |
| * Call with hotplug lock held |
| */ |
| void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new) |
| { |
| int i, j, n; |
| int new_topology; |
| |
| mutex_lock(&sched_domains_mutex); |
| |
| /* always unregister in case we don't destroy any domains */ |
| unregister_sched_domain_sysctl(); |
| |
| /* Let architecture update cpu core mappings. */ |
| new_topology = arch_update_cpu_topology(); |
| |
| n = doms_new ? ndoms_new : 0; |
| |
| /* Destroy deleted domains */ |
| for (i = 0; i < ndoms_cur; i++) { |
| for (j = 0; j < n && !new_topology; j++) { |
| if (cpumask_equal(doms_cur[i], doms_new[j]) |
| && dattrs_equal(dattr_cur, i, dattr_new, j)) |
| goto match1; |
| } |
| /* no match - a current sched domain not in new doms_new[] */ |
| detach_destroy_domains(doms_cur[i]); |
| match1: |
| ; |
| } |
| |
| if (doms_new == NULL) { |
| ndoms_cur = 0; |
| doms_new = &fallback_doms; |
| cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
| WARN_ON_ONCE(dattr_new); |
| } |
| |
| /* Build new domains */ |
| for (i = 0; i < ndoms_new; i++) { |
| for (j = 0; j < ndoms_cur && !new_topology; j++) { |
| if (cpumask_equal(doms_new[i], doms_cur[j]) |
| && dattrs_equal(dattr_new, i, dattr_cur, j)) |
| goto match2; |
| } |
| /* no match - add a new doms_new */ |
| build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); |
| match2: |
| ; |
| } |
| |
| /* Remember the new sched domains */ |
| if (doms_cur != &fallback_doms) |
| free_sched_domains(doms_cur, ndoms_cur); |
| kfree(dattr_cur); /* kfree(NULL) is safe */ |
| doms_cur = doms_new; |
| dattr_cur = dattr_new; |
| ndoms_cur = ndoms_new; |
| |
| register_sched_domain_sysctl(); |
| |
| mutex_unlock(&sched_domains_mutex); |
| } |
| |
| static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ |
| |
| /* |
| * Update cpusets according to cpu_active mask. If cpusets are |
| * disabled, cpuset_update_active_cpus() becomes a simple wrapper |
| * around partition_sched_domains(). |
| * |
| * If we come here as part of a suspend/resume, don't touch cpusets because we |
| * want to restore it back to its original state upon resume anyway. |
| */ |
| static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, |
| void *hcpu) |
| { |
| switch (action) { |
| case CPU_ONLINE_FROZEN: |
| case CPU_DOWN_FAILED_FROZEN: |
| |
| /* |
| * num_cpus_frozen tracks how many CPUs are involved in suspend |
| * resume sequence. As long as this is not the last online |
| * operation in the resume sequence, just build a single sched |
| * domain, ignoring cpusets. |
| */ |
| num_cpus_frozen--; |
| if (likely(num_cpus_frozen)) { |
| partition_sched_domains(1, NULL, NULL); |
| break; |
| } |
| |
| /* |
| * This is the last CPU online operation. So fall through and |
| * restore the original sched domains by considering the |
| * cpuset configurations. |
| */ |
| |
| case CPU_ONLINE: |
| case CPU_DOWN_FAILED: |
| cpuset_update_active_cpus(true); |
| break; |
| default: |
| return NOTIFY_DONE; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, |
| void *hcpu) |
| { |
| switch (action) { |
| case CPU_DOWN_PREPARE: |
| cpuset_update_active_cpus(false); |
| break; |
| case CPU_DOWN_PREPARE_FROZEN: |
| num_cpus_frozen++; |
| partition_sched_domains(1, NULL, NULL); |
| break; |
| default: |
| return NOTIFY_DONE; |
| } |
| return NOTIFY_OK; |
| } |
| |
| void __init sched_init_smp(void) |
| { |
| cpumask_var_t non_isolated_cpus; |
| |
| alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
| alloc_cpumask_var(&fallback_doms, GFP_KERNEL); |
| |
| sched_init_numa(); |
| |
| get_online_cpus(); |
| mutex_lock(&sched_domains_mutex); |
| init_sched_domains(cpu_active_mask); |
| cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
| if (cpumask_empty(non_isolated_cpus)) |
| cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
| mutex_unlock(&sched_domains_mutex); |
| put_online_cpus(); |
| |
| hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); |
| hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); |
| hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); |
| |
| /* RT runtime code needs to handle some hotplug events */ |
| hotcpu_notifier(update_runtime, 0); |
| |
| init_hrtick(); |
| |
| /* Move init over to a non-isolated CPU */ |
| if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) |
| BUG(); |
| sched_init_granularity(); |
| free_cpumask_var(non_isolated_cpus); |
| |
| init_sched_rt_class(); |
| } |
| #else |
| void __init sched_init_smp(void) |
| { |
| sched_init_granularity(); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| const_debug unsigned int sysctl_timer_migration = 1; |
| |
| int in_sched_functions(unsigned long addr) |
| { |
| return in_lock_functions(addr) || |
| (addr >= (unsigned long)__sched_text_start |
| && addr < (unsigned long)__sched_text_end); |
| } |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| struct task_group root_task_group; |
| LIST_HEAD(task_groups); |
| #endif |
| |
| DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); |
| |
| void __init sched_init(void) |
| { |
| int i, j; |
| unsigned long alloc_size = 0, ptr; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
| #endif |
| #ifdef CONFIG_RT_GROUP_SCHED |
| alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
| #endif |
| #ifdef CONFIG_CPUMASK_OFFSTACK |
| alloc_size += num_possible_cpus() * cpumask_size(); |
| #endif |
| if (alloc_size) { |
| ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| root_task_group.se = (struct sched_entity **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| #ifdef CONFIG_RT_GROUP_SCHED |
| root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| root_task_group.rt_rq = (struct rt_rq **)ptr; |
| ptr += nr_cpu_ids * sizeof(void **); |
| |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| #ifdef CONFIG_CPUMASK_OFFSTACK |
| for_each_possible_cpu(i) { |
| per_cpu(load_balance_tmpmask, i) = (void *)ptr; |
| ptr += cpumask_size(); |
| } |
| #endif /* CONFIG_CPUMASK_OFFSTACK */ |
| } |
| |
| #ifdef CONFIG_SMP |
| init_defrootdomain(); |
| #endif |
| |
| init_rt_bandwidth(&def_rt_bandwidth, |
| global_rt_period(), global_rt_runtime()); |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| init_rt_bandwidth(&root_task_group.rt_bandwidth, |
| global_rt_period(), global_rt_runtime()); |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| list_add(&root_task_group.list, &task_groups); |
| INIT_LIST_HEAD(&root_task_group.children); |
| INIT_LIST_HEAD(&root_task_group.siblings); |
| autogroup_init(&init_task); |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| #ifdef CONFIG_CGROUP_CPUACCT |
| root_cpuacct.cpustat = &kernel_cpustat; |
| root_cpuacct.cpuusage = alloc_percpu(u64); |
| /* Too early, not expected to fail */ |
| BUG_ON(!root_cpuacct.cpuusage); |
| #endif |
| for_each_possible_cpu(i) { |
| struct rq *rq; |
| |
| rq = cpu_rq(i); |
| raw_spin_lock_init(&rq->lock); |
| rq->nr_running = 0; |
| rq->calc_load_active = 0; |
| rq->calc_load_update = jiffies + LOAD_FREQ; |
| init_cfs_rq(&rq->cfs); |
| init_rt_rq(&rq->rt, rq); |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| root_task_group.shares = ROOT_TASK_GROUP_LOAD; |
| INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
| /* |
| * How much cpu bandwidth does root_task_group get? |
| * |
| * In case of task-groups formed thr' the cgroup filesystem, it |
| * gets 100% of the cpu resources in the system. This overall |
| * system cpu resource is divided among the tasks of |
| * root_task_group and its child task-groups in a fair manner, |
| * based on each entity's (task or task-group's) weight |
| * (se->load.weight). |
| * |
| * In other words, if root_task_group has 10 tasks of weight |
| * 1024) and two child groups A0 and A1 (of weight 1024 each), |
| * then A0's share of the cpu resource is: |
| * |
| * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
| * |
| * We achieve this by letting root_task_group's tasks sit |
| * directly in rq->cfs (i.e root_task_group->se[] = NULL). |
| */ |
| init_cfs_bandwidth(&root_task_group.cfs_bandwidth); |
| init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; |
| #ifdef CONFIG_RT_GROUP_SCHED |
| INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
| init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); |
| #endif |
| |
| for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
| rq->cpu_load[j] = 0; |
| |
| rq->last_load_update_tick = jiffies; |
| |
| #ifdef CONFIG_SMP |
| rq->sd = NULL; |
| rq->rd = NULL; |
| rq->cpu_power = SCHED_POWER_SCALE; |
| rq->post_schedule = 0; |
| rq->active_balance = 0; |
| rq->next_balance = jiffies; |
| rq->push_cpu = 0; |
| rq->cpu = i; |
| rq->online = 0; |
| rq->idle_stamp = 0; |
| rq->avg_idle = 2*sysctl_sched_migration_cost; |
| |
| INIT_LIST_HEAD(&rq->cfs_tasks); |
| |
| rq_attach_root(rq, &def_root_domain); |
| #ifdef CONFIG_NO_HZ |
| rq->nohz_flags = 0; |
| #endif |
| #endif |
| init_rq_hrtick(rq); |
| atomic_set(&rq->nr_iowait, 0); |
| } |
| |
| set_load_weight(&init_task); |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| INIT_HLIST_HEAD(&init_task.preempt_notifiers); |
| #endif |
| |
| #ifdef CONFIG_RT_MUTEXES |
| plist_head_init(&init_task.pi_waiters); |
| #endif |
| |
| /* |
| * The boot idle thread does lazy MMU switching as well: |
| */ |
| atomic_inc(&init_mm.mm_count); |
| enter_lazy_tlb(&init_mm, current); |
| |
| /* |
| * Make us the idle thread. Technically, schedule() should not be |
| * called from this thread, however somewhere below it might be, |
| * but because we are the idle thread, we just pick up running again |
| * when this runqueue becomes "idle". |
| */ |
| init_idle(current, smp_processor_id()); |
| |
| calc_load_update = jiffies + LOAD_FREQ; |
| |
| /* |
| * During early bootup we pretend to be a normal task: |
| */ |
| current->sched_class = &fair_sched_class; |
| |
| #ifdef CONFIG_SMP |
| zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); |
| /* May be allocated at isolcpus cmdline parse time */ |
| if (cpu_isolated_map == NULL) |
| zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
| idle_thread_set_boot_cpu(); |
| #endif |
| init_sched_fair_class(); |
| |
| scheduler_running = 1; |
| } |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| static inline int preempt_count_equals(int preempt_offset) |
| { |
| int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
| |
| return (nested == preempt_offset); |
| } |
| |
| void __might_sleep(const char *file, int line, int preempt_offset) |
| { |
| static unsigned long prev_jiffy; /* ratelimiting */ |
| |
| rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ |
| if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
| system_state != SYSTEM_RUNNING || oops_in_progress) |
| return; |
| if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| return; |
| prev_jiffy = jiffies; |
| |
| printk(KERN_ERR |
| "BUG: sleeping function called from invalid context at %s:%d\n", |
| file, line); |
| printk(KERN_ERR |
| "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", |
| in_atomic(), irqs_disabled(), |
| current->pid, current->comm); |
| |
| debug_show_held_locks(current); |
| if (irqs_disabled()) |
| print_irqtrace_events(current); |
| dump_stack(); |
| } |
| EXPORT_SYMBOL(__might_sleep); |
| #endif |
| |
| #ifdef CONFIG_MAGIC_SYSRQ |
| static void normalize_task(struct rq *rq, struct task_struct *p) |
| { |
| const struct sched_class *prev_class = p->sched_class; |
| int old_prio = p->prio; |
| int on_rq; |
| |
| on_rq = p->on_rq; |
| if (on_rq) |
| dequeue_task(rq, p, 0); |
| __setscheduler(rq, p, SCHED_NORMAL, 0); |
| if (on_rq) { |
| enqueue_task(rq, p, 0); |
| resched_task(rq->curr); |
| } |
| |
| check_class_changed(rq, p, prev_class, old_prio); |
| } |
| |
| void normalize_rt_tasks(void) |
| { |
| struct task_struct *g, *p; |
| unsigned long flags; |
| struct rq *rq; |
| |
| read_lock_irqsave(&tasklist_lock, flags); |
| do_each_thread(g, p) { |
| /* |
| * Only normalize user tasks: |
| */ |
| if (!p->mm) |
| continue; |
| |
| p->se.exec_start = 0; |
| #ifdef CONFIG_SCHEDSTATS |
| p->se.statistics.wait_start = 0; |
| p->se.statistics.sleep_start = 0; |
| p->se.statistics.block_start = 0; |
| #endif |
| |
| if (!rt_task(p)) { |
| /* |
| * Renice negative nice level userspace |
| * tasks back to 0: |
| */ |
| if (TASK_NICE(p) < 0 && p->mm) |
| set_user_nice(p, 0); |
| continue; |
| } |
| |
| raw_spin_lock(&p->pi_lock); |
| rq = __task_rq_lock(p); |
| |
| normalize_task(rq, p); |
| |
| __task_rq_unlock(rq); |
| raw_spin_unlock(&p->pi_lock); |
| } while_each_thread(g, p); |
| |
| read_unlock_irqrestore(&tasklist_lock, flags); |
| } |
| |
| #endif /* CONFIG_MAGIC_SYSRQ */ |
| |
| #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) |
| /* |
| * These functions are only useful for the IA64 MCA handling, or kdb. |
| * |
| * They can only be called when the whole system has been |
| * stopped - every CPU needs to be quiescent, and no scheduling |
| * activity can take place. Using them for anything else would |
| * be a serious bug, and as a result, they aren't even visible |
| * under any other configuration. |
| */ |
| |
| /** |
| * curr_task - return the current task for a given cpu. |
| * @cpu: the processor in question. |
| * |
| * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| */ |
| struct task_struct *curr_task(int cpu) |
| { |
| return cpu_curr(cpu); |
| } |
| |
| #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ |
| |
| #ifdef CONFIG_IA64 |
| /** |
| * set_curr_task - set the current task for a given cpu. |
| * @cpu: the processor in question. |
| * @p: the task pointer to set. |
| * |
| * Description: This function must only be used when non-maskable interrupts |
| * are serviced on a separate stack. It allows the architecture to switch the |
| * notion of the current task on a cpu in a non-blocking manner. This function |
| * must be called with all CPU's synchronized, and interrupts disabled, the |
| * and caller must save the original value of the current task (see |
| * curr_task() above) and restore that value before reenabling interrupts and |
| * re-starting the system. |
| * |
| * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
| */ |
| void set_curr_task(int cpu, struct task_struct *p) |
| { |
| cpu_curr(cpu) = p; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| /* task_group_lock serializes the addition/removal of task groups */ |
| static DEFINE_SPINLOCK(task_group_lock); |
| |
| static void free_sched_group(struct task_group *tg) |
| { |
| free_fair_sched_group(tg); |
| free_rt_sched_group(tg); |
| autogroup_free(tg); |
| kfree(tg); |
| } |
| |
| /* allocate runqueue etc for a new task group */ |
| struct task_group *sched_create_group(struct task_group *parent) |
| { |
| struct task_group *tg; |
| |
| tg = kzalloc(sizeof(*tg), GFP_KERNEL); |
| if (!tg) |
| return ERR_PTR(-ENOMEM); |
| |
| if (!alloc_fair_sched_group(tg, parent)) |
| goto err; |
| |
| if (!alloc_rt_sched_group(tg, parent)) |
| goto err; |
| |
| return tg; |
| |
| err: |
| free_sched_group(tg); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| void sched_online_group(struct task_group *tg, struct task_group *parent) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&task_group_lock, flags); |
| list_add_rcu(&tg->list, &task_groups); |
| |
| WARN_ON(!parent); /* root should already exist */ |
| |
| tg->parent = parent; |
| INIT_LIST_HEAD(&tg->children); |
| list_add_rcu(&tg->siblings, &parent->children); |
| spin_unlock_irqrestore(&task_group_lock, flags); |
| } |
| |
| /* rcu callback to free various structures associated with a task group */ |
| static void free_sched_group_rcu(struct rcu_head *rhp) |
| { |
| /* now it should be safe to free those cfs_rqs */ |
| free_sched_group(container_of(rhp, struct task_group, rcu)); |
| } |
| |
| /* Destroy runqueue etc associated with a task group */ |
| void sched_destroy_group(struct task_group *tg) |
| { |
| /* wait for possible concurrent references to cfs_rqs complete */ |
| call_rcu(&tg->rcu, free_sched_group_rcu); |
| } |
| |
| void sched_offline_group(struct task_group *tg) |
| { |
| unsigned long flags; |
| int i; |
| |
| /* end participation in shares distribution */ |
| for_each_possible_cpu(i) |
| unregister_fair_sched_group(tg, i); |
| |
| spin_lock_irqsave(&task_group_lock, flags); |
| list_del_rcu(&tg->list); |
| list_del_rcu(&tg->siblings); |
| spin_unlock_irqrestore(&task_group_lock, flags); |
| } |
| |
| /* change task's runqueue when it moves between groups. |
| * The caller of this function should have put the task in its new group |
| * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to |
| * reflect its new group. |
| */ |
| void sched_move_task(struct task_struct *tsk) |
| { |
| struct task_group *tg; |
| int on_rq, running; |
| unsigned long flags; |
| struct rq *rq; |
| |
| rq = task_rq_lock(tsk, &flags); |
| |
| running = task_current(rq, tsk); |
| on_rq = tsk->on_rq; |
| |
| if (on_rq) |
| dequeue_task(rq, tsk, 0); |
| if (unlikely(running)) |
| tsk->sched_class->put_prev_task(rq, tsk); |
| |
| tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, |
| lockdep_is_held(&tsk->sighand->siglock)), |
| struct task_group, css); |
| tg = autogroup_task_group(tsk, tg); |
| tsk->sched_task_group = tg; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| if (tsk->sched_class->task_move_group) |
| tsk->sched_class->task_move_group(tsk, on_rq); |
| else |
| #endif |
| set_task_rq(tsk, task_cpu(tsk)); |
| |
| if (unlikely(running)) |
| tsk->sched_class->set_curr_task(rq); |
| if (on_rq) |
| enqueue_task(rq, tsk, 0); |
| |
| task_rq_unlock(rq, tsk, &flags); |
| } |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) |
| static unsigned long to_ratio(u64 period, u64 runtime) |
| { |
| if (runtime == RUNTIME_INF) |
| return 1ULL << 20; |
| |
| return div64_u64(runtime << 20, period); |
| } |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| /* |
| * Ensure that the real time constraints are schedulable. |
| */ |
| static DEFINE_MUTEX(rt_constraints_mutex); |
| |
| /* Must be called with tasklist_lock held */ |
| static inline int tg_has_rt_tasks(struct task_group *tg) |
| { |
| struct task_struct *g, *p; |
| |
| do_each_thread(g, p) { |
| if (rt_task(p) && task_rq(p)->rt.tg == tg) |
| return 1; |
| } while_each_thread(g, p); |
| |
| return 0; |
| } |
| |
| struct rt_schedulable_data { |
| struct task_group *tg; |
| u64 rt_period; |
| u64 rt_runtime; |
| }; |
| |
| static int tg_rt_schedulable(struct task_group *tg, void *data) |
| { |
| struct rt_schedulable_data *d = data; |
| struct task_group *child; |
| unsigned long total, sum = 0; |
| u64 period, runtime; |
| |
| period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| runtime = tg->rt_bandwidth.rt_runtime; |
| |
| if (tg == d->tg) { |
| period = d->rt_period; |
| runtime = d->rt_runtime; |
| } |
| |
| /* |
| * Cannot have more runtime than the period. |
| */ |
| if (runtime > period && runtime != RUNTIME_INF) |
| return -EINVAL; |
| |
| /* |
| * Ensure we don't starve existing RT tasks. |
| */ |
| if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
| return -EBUSY; |
| |
| total = to_ratio(period, runtime); |
| |
| /* |
| * Nobody can have more than the global setting allows. |
| */ |
| if (total > to_ratio(global_rt_period(), global_rt_runtime())) |
| return -EINVAL; |
| |
| /* |
| * The sum of our children's runtime should not exceed our own. |
| */ |
| list_for_each_entry_rcu(child, &tg->children, siblings) { |
| period = ktime_to_ns(child->rt_bandwidth.rt_period); |
| runtime = child->rt_bandwidth.rt_runtime; |
| |
| if (child == d->tg) { |
| period = d->rt_period; |
| runtime = d->rt_runtime; |
| } |
| |
| sum += to_ratio(period, runtime); |
| } |
| |
| if (sum > total) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
| { |
| int ret; |
| |
| struct rt_schedulable_data data = { |
| .tg = tg, |
| .rt_period = period, |
| .rt_runtime = runtime, |
| }; |
| |
| rcu_read_lock(); |
| ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int tg_set_rt_bandwidth(struct task_group *tg, |
| u64 rt_period, u64 rt_runtime) |
| { |
| int i, err = 0; |
| |
| mutex_lock(&rt_constraints_mutex); |
| read_lock(&tasklist_lock); |
| err = __rt_schedulable(tg, rt_period, rt_runtime); |
| if (err) |
| goto unlock; |
| |
| raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
| tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
| tg->rt_bandwidth.rt_runtime = rt_runtime; |
| |
| for_each_possible_cpu(i) { |
| struct rt_rq *rt_rq = tg->rt_rq[i]; |
| |
| raw_spin_lock(&rt_rq->rt_runtime_lock); |
| rt_rq->rt_runtime = rt_runtime; |
| raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| } |
| raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
| unlock: |
| read_unlock(&tasklist_lock); |
| mutex_unlock(&rt_constraints_mutex); |
| |
| return err; |
| } |
| |
| int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
| { |
| u64 rt_runtime, rt_period; |
| |
| rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; |
| if (rt_runtime_us < 0) |
| rt_runtime = RUNTIME_INF; |
| |
| return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
| } |
| |
| long sched_group_rt_runtime(struct task_group *tg) |
| { |
| u64 rt_runtime_us; |
| |
| if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
| return -1; |
| |
| rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
| do_div(rt_runtime_us, NSEC_PER_USEC); |
| return rt_runtime_us; |
| } |
| |
| int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) |
| { |
| u64 rt_runtime, rt_period; |
| |
| rt_period = (u64)rt_period_us * NSEC_PER_USEC; |
| rt_runtime = tg->rt_bandwidth.rt_runtime; |
| |
| if (rt_period == 0) |
| return -EINVAL; |
| |
| return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
| } |
| |
| long sched_group_rt_period(struct task_group *tg) |
| { |
| u64 rt_period_us; |
| |
| rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| do_div(rt_period_us, NSEC_PER_USEC); |
| return rt_period_us; |
| } |
| |
| static int sched_rt_global_constraints(void) |
| { |
| u64 runtime, period; |
| int ret = 0; |
| |
| if (sysctl_sched_rt_period <= 0) |
| return -EINVAL; |
| |
| runtime = global_rt_runtime(); |
| period = global_rt_period(); |
| |
| /* |
| * Sanity check on the sysctl variables. |
| */ |
| if (runtime > period && runtime != RUNTIME_INF) |
| return -EINVAL; |
| |
| mutex_lock(&rt_constraints_mutex); |
| read_lock(&tasklist_lock); |
| ret = __rt_schedulable(NULL, 0, 0); |
| read_unlock(&tasklist_lock); |
| mutex_unlock(&rt_constraints_mutex); |
| |
| return ret; |
| } |
| |
| int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) |
| { |
| /* Don't accept realtime tasks when there is no way for them to run */ |
| if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| #else /* !CONFIG_RT_GROUP_SCHED */ |
| static int sched_rt_global_constraints(void) |
| { |
| unsigned long flags; |
| int i; |
| |
| if (sysctl_sched_rt_period <= 0) |
| return -EINVAL; |
| |
| /* |
| * There's always some RT tasks in the root group |
| * -- migration, kstopmachine etc.. |
| */ |
| if (sysctl_sched_rt_runtime == 0) |
| return -EBUSY; |
| |
| raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
| for_each_possible_cpu(i) { |
| struct rt_rq *rt_rq = &cpu_rq(i)->rt; |
| |
| raw_spin_lock(&rt_rq->rt_runtime_lock); |
| rt_rq->rt_runtime = global_rt_runtime(); |
| raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| } |
| raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
| |
| return 0; |
| } |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| |
| int sched_rr_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos) |
| { |
| int ret; |
| static DEFINE_MUTEX(mutex); |
| |
| mutex_lock(&mutex); |
| ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| /* make sure that internally we keep jiffies */ |
| /* also, writing zero resets timeslice to default */ |
| if (!ret && write) { |
| sched_rr_timeslice = sched_rr_timeslice <= 0 ? |
| RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); |
| } |
| mutex_unlock(&mutex); |
| return ret; |
| } |
| |
| int sched_rt_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos) |
| { |
| int ret; |
| int old_period, old_runtime; |
| static DEFINE_MUTEX(mutex); |
| |
| mutex_lock(&mutex); |
| old_period = sysctl_sched_rt_period; |
| old_runtime = sysctl_sched_rt_runtime; |
| |
| ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| |
| if (!ret && write) { |
| ret = sched_rt_global_constraints(); |
| if (ret) { |
| sysctl_sched_rt_period = old_period; |
| sysctl_sched_rt_runtime = old_runtime; |
| } else { |
| def_rt_bandwidth.rt_runtime = global_rt_runtime(); |
| def_rt_bandwidth.rt_period = |
| ns_to_ktime(global_rt_period()); |
| } |
| } |
| mutex_unlock(&mutex); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| /* return corresponding task_group object of a cgroup */ |
| static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
| { |
| return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
| struct task_group, css); |
| } |
| |
| static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) |
| { |
| struct task_group *tg, *parent; |
| |
| if (!cgrp->parent) { |
| /* This is early initialization for the top cgroup */ |
| return &root_task_group.css; |
| } |
| |
| parent = cgroup_tg(cgrp->parent); |
| tg = sched_create_group(parent); |
| if (IS_ERR(tg)) |
| return ERR_PTR(-ENOMEM); |
| |
| return &tg->css; |
| } |
| |
| static int cpu_cgroup_css_online(struct cgroup *cgrp) |
| { |
| struct task_group *tg = cgroup_tg(cgrp); |
| struct task_group *parent; |
| |
| if (!cgrp->parent) |
| return 0; |
| |
| parent = cgroup_tg(cgrp->parent); |
| sched_online_group(tg, parent); |
| return 0; |
| } |
| |
| static void cpu_cgroup_css_free(struct cgroup *cgrp) |
| { |
| struct task_group *tg = cgroup_tg(cgrp); |
| |
| sched_destroy_group(tg); |
| } |
| |
| static void cpu_cgroup_css_offline(struct cgroup *cgrp) |
| { |
| struct task_group *tg = cgroup_tg(cgrp); |
| |
| sched_offline_group(tg); |
| } |
| |
| static int cpu_cgroup_can_attach(struct cgroup *cgrp, |
| struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| |
| cgroup_taskset_for_each(task, cgrp, tset) { |
| #ifdef CONFIG_RT_GROUP_SCHED |
| if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) |
| return -EINVAL; |
| #else |
| /* We don't support RT-tasks being in separate groups */ |
| if (task->sched_class != &fair_sched_class) |
| return -EINVAL; |
| #endif |
| } |
| return 0; |
| } |
| |
| static void cpu_cgroup_attach(struct cgroup *cgrp, |
| struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| |
| cgroup_taskset_for_each(task, cgrp, tset) |
| sched_move_task(task); |
| } |
| |
| static void |
| cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, |
| struct task_struct *task) |
| { |
| /* |
| * cgroup_exit() is called in the copy_process() failure path. |
| * Ignore this case since the task hasn't ran yet, this avoids |
| * trying to poke a half freed task state from generic code. |
| */ |
| if (!(task->flags & PF_EXITING)) |
| return; |
| |
| sched_move_task(task); |
| } |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
| u64 shareval) |
| { |
| return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); |
| } |
| |
| static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
| { |
| struct task_group *tg = cgroup_tg(cgrp); |
| |
| return (u64) scale_load_down(tg->shares); |
| } |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| static DEFINE_MUTEX(cfs_constraints_mutex); |
| |
| const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ |
| const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ |
| |
| static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); |
| |
| static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) |
| { |
| int i, ret = 0, runtime_enabled, runtime_was_enabled; |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| |
| if (tg == &root_task_group) |
| return -EINVAL; |
| |
| /* |
| * Ensure we have at some amount of bandwidth every period. This is |
| * to prevent reaching a state of large arrears when throttled via |
| * entity_tick() resulting in prolonged exit starvation. |
| */ |
| if (quota < min_cfs_quota_period || period < min_cfs_quota_period) |
| return -EINVAL; |
| |
| /* |
| * Likewise, bound things on the otherside by preventing insane quota |
| * periods. This also allows us to normalize in computing quota |
| * feasibility. |
| */ |
| if (period > max_cfs_quota_period) |
| return -EINVAL; |
| |
| mutex_lock(&cfs_constraints_mutex); |
| ret = __cfs_schedulable(tg, period, quota); |
| if (ret) |
| goto out_unlock; |
| |
| runtime_enabled = quota != RUNTIME_INF; |
| runtime_was_enabled = cfs_b->quota != RUNTIME_INF; |
| account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); |
| raw_spin_lock_irq(&cfs_b->lock); |
| cfs_b->period = ns_to_ktime(period); |
| cfs_b->quota = quota; |
| |
| __refill_cfs_bandwidth_runtime(cfs_b); |
| /* restart the period timer (if active) to handle new period expiry */ |
| if (runtime_enabled && cfs_b->timer_active) { |
| /* force a reprogram */ |
| cfs_b->timer_active = 0; |
| __start_cfs_bandwidth(cfs_b); |
| } |
| raw_spin_unlock_irq(&cfs_b->lock); |
| |
| for_each_possible_cpu(i) { |
| struct cfs_rq *cfs_rq = tg->cfs_rq[i]; |
| struct rq *rq = cfs_rq->rq; |
| |
| raw_spin_lock_irq(&rq->lock); |
| cfs_rq->runtime_enabled = runtime_enabled; |
| cfs_rq->runtime_remaining = 0; |
| |
| if (cfs_rq->throttled) |
| unthrottle_cfs_rq(cfs_rq); |
| raw_spin_unlock_irq(&rq->lock); |
| } |
| out_unlock: |
| mutex_unlock(&cfs_constraints_mutex); |
| |
| return ret; |
| } |
| |
| int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) |
| { |
| u64 quota, period; |
| |
| period = ktime_to_ns(tg->cfs_bandwidth.period); |
| if (cfs_quota_us < 0) |
| quota = RUNTIME_INF; |
| else |
| quota = (u64)cfs_quota_us * NSEC_PER_USEC; |
| |
| return tg_set_cfs_bandwidth(tg, period, quota); |
| } |
| |
| long tg_get_cfs_quota(struct task_group *tg) |
| { |
| u64 quota_us; |
| |
| if (tg->cfs_bandwidth.quota == RUNTIME_INF) |
| return -1; |
| |
| quota_us = tg->cfs_bandwidth.quota; |
| do_div(quota_us, NSEC_PER_USEC); |
| |
| return quota_us; |
| } |
| |
| int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) |
| { |
| u64 quota, period; |
| |
| period = (u64)cfs_period_us * NSEC_PER_USEC; |
| quota = tg->cfs_bandwidth.quota; |
| |
| return tg_set_cfs_bandwidth(tg, period, quota); |
| } |
| |
| long tg_get_cfs_period(struct task_group *tg) |
| { |
| u64 cfs_period_us; |
| |
| cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); |
| do_div(cfs_period_us, NSEC_PER_USEC); |
| |
| return cfs_period_us; |
| } |
| |
| static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) |
| { |
| return tg_get_cfs_quota(cgroup_tg(cgrp)); |
| } |
| |
| static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, |
| s64 cfs_quota_us) |
| { |
| return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); |
| } |
| |
| static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) |
| { |
| return tg_get_cfs_period(cgroup_tg(cgrp)); |
| } |
| |
| static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
| u64 cfs_period_us) |
| { |
| return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); |
| } |
| |
| struct cfs_schedulable_data { |
| struct task_group *tg; |
| u64 period, quota; |
| }; |
| |
| /* |
| * normalize group quota/period to be quota/max_period |
| * note: units are usecs |
| */ |
| static u64 normalize_cfs_quota(struct task_group *tg, |
| struct cfs_schedulable_data *d) |
| { |
| u64 quota, period; |
| |
| if (tg == d->tg) { |
| period = d->period; |
| quota = d->quota; |
| } else { |
| period = tg_get_cfs_period(tg); |
| quota = tg_get_cfs_quota(tg); |
| } |
| |
| /* note: these should typically be equivalent */ |
| if (quota == RUNTIME_INF || quota == -1) |
| return RUNTIME_INF; |
| |
| return to_ratio(period, quota); |
| } |
| |
| static int tg_cfs_schedulable_down(struct task_group *tg, void *data) |
| { |
| struct cfs_schedulable_data *d = data; |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| s64 quota = 0, parent_quota = -1; |
| |
| if (!tg->parent) { |
| quota = RUNTIME_INF; |
| } else { |
| struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; |
| |
| quota = normalize_cfs_quota(tg, d); |
| parent_quota = parent_b->hierarchal_quota; |
| |
| /* |
| * ensure max(child_quota) <= parent_quota, inherit when no |
| * limit is set |
| */ |
| if (quota == RUNTIME_INF) |
| quota = parent_quota; |
| else if (parent_quota != RUNTIME_INF && quota > parent_quota) |
| return -EINVAL; |
| } |
| cfs_b->hierarchal_quota = quota; |
| |
| return 0; |
| } |
| |
| static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) |
| { |
| int ret; |
| struct cfs_schedulable_data data = { |
| .tg = tg, |
| .period = period, |
| .quota = quota, |
| }; |
| |
| if (quota != RUNTIME_INF) { |
| do_div(data.period, NSEC_PER_USEC); |
| do_div(data.quota, NSEC_PER_USEC); |
| } |
| |
| rcu_read_lock(); |
| ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, |
| struct cgroup_map_cb *cb) |
| { |
| struct task_group *tg = cgroup_tg(cgrp); |
| struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| |
| cb->fill(cb, "nr_periods", cfs_b->nr_periods); |
| cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); |
| cb->fill(cb, "throttled_time", cfs_b->throttled_time); |
| |
| return 0; |
| } |
| #endif /* CONFIG_CFS_BANDWIDTH */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
| s64 val) |
| { |
| return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
| } |
| |
| static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
| { |
| return sched_group_rt_runtime(cgroup_tg(cgrp)); |
| } |
| |
| static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, |
| u64 rt_period_us) |
| { |
| return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); |
| } |
| |
| static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) |
| { |
| return sched_group_rt_period(cgroup_tg(cgrp)); |
| } |
| #endif /* CONFIG_RT_GROUP_SCHED */ |
| |
| static struct cftype cpu_files[] = { |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| { |
| .name = "shares", |
| .read_u64 = cpu_shares_read_u64, |
| .write_u64 = cpu_shares_write_u64, |
| }, |
| #endif |
| #ifdef CONFIG_CFS_BANDWIDTH |
| { |
| .name = "cfs_quota_us", |
| .read_s64 = cpu_cfs_quota_read_s64, |
| .write_s64 = cpu_cfs_quota_write_s64, |
| }, |
| { |
| .name = "cfs_period_us", |
| .read_u64 = cpu_cfs_period_read_u64, |
| .write_u64 = cpu_cfs_period_write_u64, |
| }, |
| { |
| .name = "stat", |
| .read_map = cpu_stats_show, |
| }, |
| #endif |
| #ifdef CONFIG_RT_GROUP_SCHED |
| { |
| .name = "rt_runtime_us", |
| .read_s64 = cpu_rt_runtime_read, |
| .write_s64 = cpu_rt_runtime_write, |
| }, |
| { |
| .name = "rt_period_us", |
| .read_u64 = cpu_rt_period_read_uint, |
| .write_u64 = cpu_rt_period_write_uint, |
| }, |
| #endif |
| { } /* terminate */ |
| }; |
| |
| struct cgroup_subsys cpu_cgroup_subsys = { |
| .name = "cpu", |
| .css_alloc = cpu_cgroup_css_alloc, |
| .css_free = cpu_cgroup_css_free, |
| .css_online = cpu_cgroup_css_online, |
| .css_offline = cpu_cgroup_css_offline, |
| .can_attach = cpu_cgroup_can_attach, |
| .attach = cpu_cgroup_attach, |
| .exit = cpu_cgroup_exit, |
| .subsys_id = cpu_cgroup_subsys_id, |
| .base_cftypes = cpu_files, |
| .early_init = 1, |
| }; |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| #ifdef CONFIG_CGROUP_CPUACCT |
| |
| /* |
| * CPU accounting code for task groups. |
| * |
| * Based on the work by Paul Menage (menage@google.com) and Balbir Singh |
| * (balbir@in.ibm.com). |
| */ |
| |
| struct cpuacct root_cpuacct; |
| |
| /* create a new cpu accounting group */ |
| static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp) |
| { |
| struct cpuacct *ca; |
| |
| if (!cgrp->parent) |
| return &root_cpuacct.css; |
| |
| ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
| if (!ca) |
| goto out; |
| |
| ca->cpuusage = alloc_percpu(u64); |
| if (!ca->cpuusage) |
| goto out_free_ca; |
| |
| ca->cpustat = alloc_percpu(struct kernel_cpustat); |
| if (!ca->cpustat) |
| goto out_free_cpuusage; |
| |
| return &ca->css; |
| |
| out_free_cpuusage: |
| free_percpu(ca->cpuusage); |
| out_free_ca: |
| kfree(ca); |
| out: |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* destroy an existing cpu accounting group */ |
| static void cpuacct_css_free(struct cgroup *cgrp) |
| { |
| struct cpuacct *ca = cgroup_ca(cgrp); |
| |
| free_percpu(ca->cpustat); |
| free_percpu(ca->cpuusage); |
| kfree(ca); |
| } |
| |
| static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
| { |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| u64 data; |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * Take rq->lock to make 64-bit read safe on 32-bit platforms. |
| */ |
| raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
| data = *cpuusage; |
| raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
| #else |
| data = *cpuusage; |
| #endif |
| |
| return data; |
| } |
| |
| static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) |
| { |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * Take rq->lock to make 64-bit write safe on 32-bit platforms. |
| */ |
| raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
| *cpuusage = val; |
| raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
| #else |
| *cpuusage = val; |
| #endif |
| } |
| |
| /* return total cpu usage (in nanoseconds) of a group */ |
| static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
| { |
| struct cpuacct *ca = cgroup_ca(cgrp); |
| u64 totalcpuusage = 0; |
| int i; |
| |
| for_each_present_cpu(i) |
| totalcpuusage += cpuacct_cpuusage_read(ca, i); |
| |
| return totalcpuusage; |
| } |
| |
| static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
| u64 reset) |
| { |
| struct cpuacct *ca = cgroup_ca(cgrp); |
| int err = 0; |
| int i; |
| |
| if (reset) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| for_each_present_cpu(i) |
| cpuacct_cpuusage_write(ca, i, 0); |
| |
| out: |
| return err; |
| } |
| |
| static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, |
| struct seq_file *m) |
| { |
| struct cpuacct *ca = cgroup_ca(cgroup); |
| u64 percpu; |
| int i; |
| |
| for_each_present_cpu(i) { |
| percpu = cpuacct_cpuusage_read(ca, i); |
| seq_printf(m, "%llu ", (unsigned long long) percpu); |
| } |
| seq_printf(m, "\n"); |
| return 0; |
| } |
| |
| static const char *cpuacct_stat_desc[] = { |
| [CPUACCT_STAT_USER] = "user", |
| [CPUACCT_STAT_SYSTEM] = "system", |
| }; |
| |
| static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, |
| struct cgroup_map_cb *cb) |
| { |
| struct cpuacct *ca = cgroup_ca(cgrp); |
| int cpu; |
| s64 val = 0; |
| |
| for_each_online_cpu(cpu) { |
| struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); |
| val += kcpustat->cpustat[CPUTIME_USER]; |
| val += kcpustat->cpustat[CPUTIME_NICE]; |
| } |
| val = cputime64_to_clock_t(val); |
| cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); |
| |
| val = 0; |
| for_each_online_cpu(cpu) { |
| struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); |
| val += kcpustat->cpustat[CPUTIME_SYSTEM]; |
| val += kcpustat->cpustat[CPUTIME_IRQ]; |
| val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; |
| } |
| |
| val = cputime64_to_clock_t(val); |
| cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); |
| |
| return 0; |
| } |
| |
| static struct cftype files[] = { |
| { |
| .name = "usage", |
| .read_u64 = cpuusage_read, |
| .write_u64 = cpuusage_write, |
| }, |
| { |
| .name = "usage_percpu", |
| .read_seq_string = cpuacct_percpu_seq_read, |
| }, |
| { |
| .name = "stat", |
| .read_map = cpuacct_stats_show, |
| }, |
| { } /* terminate */ |
| }; |
| |
| /* |
| * charge this task's execution time to its accounting group. |
| * |
| * called with rq->lock held. |
| */ |
| void cpuacct_charge(struct task_struct *tsk, u64 cputime) |
| { |
| struct cpuacct *ca; |
| int cpu; |
| |
| if (unlikely(!cpuacct_subsys.active)) |
| return; |
| |
| cpu = task_cpu(tsk); |
| |
| rcu_read_lock(); |
| |
| ca = task_ca(tsk); |
| |
| for (; ca; ca = parent_ca(ca)) { |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
| *cpuusage += cputime; |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| struct cgroup_subsys cpuacct_subsys = { |
| .name = "cpuacct", |
| .css_alloc = cpuacct_css_alloc, |
| .css_free = cpuacct_css_free, |
| .subsys_id = cpuacct_subsys_id, |
| .base_cftypes = files, |
| }; |
| #endif /* CONFIG_CGROUP_CPUACCT */ |
| |
| void dump_cpu_task(int cpu) |
| { |
| pr_info("Task dump for CPU %d:\n", cpu); |
| sched_show_task(cpu_curr(cpu)); |
| } |