| /* |
| * Copyright (c) 2010-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "hw.h" |
| #include "ar9003_phy.h" |
| |
| void ar9003_paprd_enable(struct ath_hw *ah, bool val) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; |
| |
| /* |
| * 3 bits for modalHeader5G.papdRateMaskHt20 |
| * is used for sub-band disabling of PAPRD. |
| * 5G band is divided into 3 sub-bands -- upper, |
| * middle, lower. |
| * if bit 30 of modalHeader5G.papdRateMaskHt20 is set |
| * -- disable PAPRD for upper band 5GHz |
| * if bit 29 of modalHeader5G.papdRateMaskHt20 is set |
| * -- disable PAPRD for middle band 5GHz |
| * if bit 28 of modalHeader5G.papdRateMaskHt20 is set |
| * -- disable PAPRD for lower band 5GHz |
| */ |
| |
| if (IS_CHAN_5GHZ(chan)) { |
| if (chan->channel >= UPPER_5G_SUB_BAND_START) { |
| if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) |
| & BIT(30)) |
| val = false; |
| } else if (chan->channel >= MID_5G_SUB_BAND_START) { |
| if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) |
| & BIT(29)) |
| val = false; |
| } else { |
| if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) |
| & BIT(28)) |
| val = false; |
| } |
| } |
| |
| if (val) { |
| ah->paprd_table_write_done = true; |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(regulatory, chan), |
| chan->chan->max_antenna_gain * 2, |
| chan->chan->max_power * 2, |
| min((u32) MAX_RATE_POWER, |
| (u32) regulatory->power_limit), false); |
| } |
| |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, |
| AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); |
| if (ah->caps.tx_chainmask & BIT(1)) |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, |
| AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); |
| if (ah->caps.tx_chainmask & BIT(2)) |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, |
| AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); |
| } |
| EXPORT_SYMBOL(ar9003_paprd_enable); |
| |
| static int ar9003_get_training_power_2g(struct ath_hw *ah) |
| { |
| struct ath9k_channel *chan = ah->curchan; |
| unsigned int power, scale, delta; |
| |
| scale = ar9003_get_paprd_scale_factor(ah, chan); |
| power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, |
| AR_PHY_POWERTX_RATE5_POWERTXHT20_0); |
| |
| delta = abs((int) ah->paprd_target_power - (int) power); |
| if (delta > scale) |
| return -1; |
| |
| if (delta < 4) |
| power -= 4 - delta; |
| |
| return power; |
| } |
| |
| static int ar9003_get_training_power_5g(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| unsigned int power, scale, delta; |
| |
| scale = ar9003_get_paprd_scale_factor(ah, chan); |
| |
| if (IS_CHAN_HT40(chan)) |
| power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, |
| AR_PHY_POWERTX_RATE8_POWERTXHT40_5); |
| else |
| power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, |
| AR_PHY_POWERTX_RATE6_POWERTXHT20_5); |
| |
| power += scale; |
| delta = abs((int) ah->paprd_target_power - (int) power); |
| if (delta > scale) |
| return -1; |
| |
| switch (get_streams(common->tx_chainmask)) { |
| case 1: |
| delta = 6; |
| break; |
| case 2: |
| delta = 4; |
| break; |
| case 3: |
| delta = 2; |
| break; |
| default: |
| delta = 0; |
| ath_dbg(common, ATH_DBG_CALIBRATE, |
| "Invalid tx-chainmask: %u\n", common->tx_chainmask); |
| } |
| |
| power += delta; |
| return power; |
| } |
| |
| static int ar9003_paprd_setup_single_table(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| static const u32 ctrl0[3] = { |
| AR_PHY_PAPRD_CTRL0_B0, |
| AR_PHY_PAPRD_CTRL0_B1, |
| AR_PHY_PAPRD_CTRL0_B2 |
| }; |
| static const u32 ctrl1[3] = { |
| AR_PHY_PAPRD_CTRL1_B0, |
| AR_PHY_PAPRD_CTRL1_B1, |
| AR_PHY_PAPRD_CTRL1_B2 |
| }; |
| int training_power; |
| int i; |
| |
| if (IS_CHAN_2GHZ(ah->curchan)) |
| training_power = ar9003_get_training_power_2g(ah); |
| else |
| training_power = ar9003_get_training_power_5g(ah); |
| |
| ath_dbg(common, ATH_DBG_CALIBRATE, |
| "Training power: %d, Target power: %d\n", |
| training_power, ah->paprd_target_power); |
| |
| if (training_power < 0) { |
| ath_dbg(common, ATH_DBG_CALIBRATE, |
| "PAPRD target power delta out of range"); |
| return -ERANGE; |
| } |
| ah->paprd_training_power = training_power; |
| |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, |
| ah->paprd_ratemask); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, |
| ah->paprd_ratemask); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, |
| ah->paprd_ratemask_ht40); |
| |
| for (i = 0; i < ah->caps.max_txchains; i++) { |
| REG_RMW_FIELD(ah, ctrl0[i], |
| AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); |
| REG_RMW_FIELD(ah, ctrl1[i], |
| AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); |
| REG_RMW_FIELD(ah, ctrl0[i], |
| AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); |
| } |
| |
| ar9003_paprd_enable(ah, false); |
| |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, |
| AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, |
| AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); |
| if (AR_SREV_9485(ah)) |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, |
| -3); |
| else |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, |
| -6); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, |
| -15); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, |
| AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, |
| AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, |
| AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, |
| AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, |
| 100); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 261376); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 248079); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 233759); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 220464); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 208194); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 196949); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 185706); |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, |
| AR_PHY_PAPRD_PRE_POST_SCALING, 175487); |
| return 0; |
| } |
| |
| static void ar9003_paprd_get_gain_table(struct ath_hw *ah) |
| { |
| u32 *entry = ah->paprd_gain_table_entries; |
| u8 *index = ah->paprd_gain_table_index; |
| u32 reg = AR_PHY_TXGAIN_TABLE; |
| int i; |
| |
| memset(entry, 0, sizeof(ah->paprd_gain_table_entries)); |
| memset(index, 0, sizeof(ah->paprd_gain_table_index)); |
| |
| for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { |
| entry[i] = REG_READ(ah, reg); |
| index[i] = (entry[i] >> 24) & 0xff; |
| reg += 4; |
| } |
| } |
| |
| static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, |
| int target_power) |
| { |
| int olpc_gain_delta = 0, cl_gain_mod; |
| int alpha_therm, alpha_volt; |
| int therm_cal_value, volt_cal_value; |
| int therm_value, volt_value; |
| int thermal_gain_corr, voltage_gain_corr; |
| int desired_scale, desired_gain = 0; |
| u32 reg_olpc = 0, reg_cl_gain = 0; |
| |
| REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, |
| AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); |
| desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, |
| AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); |
| alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, |
| AR_PHY_TPC_19_ALPHA_THERM); |
| alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, |
| AR_PHY_TPC_19_ALPHA_VOLT); |
| therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, |
| AR_PHY_TPC_18_THERM_CAL_VALUE); |
| volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, |
| AR_PHY_TPC_18_VOLT_CAL_VALUE); |
| therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, |
| AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); |
| volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, |
| AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); |
| |
| switch (chain) { |
| case 0: |
| reg_olpc = AR_PHY_TPC_11_B0; |
| reg_cl_gain = AR_PHY_CL_TAB_0; |
| break; |
| case 1: |
| reg_olpc = AR_PHY_TPC_11_B1; |
| reg_cl_gain = AR_PHY_CL_TAB_1; |
| break; |
| case 2: |
| reg_olpc = AR_PHY_TPC_11_B2; |
| reg_cl_gain = AR_PHY_CL_TAB_2; |
| break; |
| default: |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, |
| "Invalid chainmask: %d\n", chain); |
| break; |
| } |
| |
| olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc, |
| AR_PHY_TPC_11_OLPC_GAIN_DELTA); |
| cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain, |
| AR_PHY_CL_TAB_CL_GAIN_MOD); |
| |
| if (olpc_gain_delta >= 128) |
| olpc_gain_delta = olpc_gain_delta - 256; |
| |
| thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + |
| (256 / 2)) / 256; |
| voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + |
| (128 / 2)) / 128; |
| desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - |
| voltage_gain_corr + desired_scale + cl_gain_mod; |
| |
| return desired_gain; |
| } |
| |
| static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) |
| { |
| int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; |
| int padrvgnA, padrvgnB, padrvgnC, padrvgnD; |
| u32 *gain_table_entries = ah->paprd_gain_table_entries; |
| |
| selected_gain_entry = gain_table_entries[gain_index]; |
| txbb1dbgain = selected_gain_entry & 0x7; |
| txbb6dbgain = (selected_gain_entry >> 3) & 0x3; |
| txmxrgain = (selected_gain_entry >> 5) & 0xf; |
| padrvgnA = (selected_gain_entry >> 9) & 0xf; |
| padrvgnB = (selected_gain_entry >> 13) & 0xf; |
| padrvgnC = (selected_gain_entry >> 17) & 0xf; |
| padrvgnD = (selected_gain_entry >> 21) & 0x3; |
| |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, |
| AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); |
| REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); |
| } |
| |
| static inline int find_expn(int num) |
| { |
| return fls(num) - 1; |
| } |
| |
| static inline int find_proper_scale(int expn, int N) |
| { |
| return (expn > N) ? expn - 10 : 0; |
| } |
| |
| #define NUM_BIN 23 |
| |
| static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) |
| { |
| unsigned int thresh_accum_cnt; |
| int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; |
| int PA_in[NUM_BIN + 1]; |
| int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; |
| unsigned int B1_abs_max, B2_abs_max; |
| int max_index, scale_factor; |
| int y_est[NUM_BIN + 1]; |
| int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; |
| unsigned int x_tilde_abs; |
| int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; |
| int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; |
| int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; |
| int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; |
| int y5, y3, tmp; |
| int theta_low_bin = 0; |
| int i; |
| |
| /* disregard any bin that contains <= 16 samples */ |
| thresh_accum_cnt = 16; |
| scale_factor = 5; |
| max_index = 0; |
| memset(theta, 0, sizeof(theta)); |
| memset(x_est, 0, sizeof(x_est)); |
| memset(Y, 0, sizeof(Y)); |
| memset(y_est, 0, sizeof(y_est)); |
| memset(x_tilde, 0, sizeof(x_tilde)); |
| |
| for (i = 0; i < NUM_BIN; i++) { |
| s32 accum_cnt, accum_tx, accum_rx, accum_ang; |
| |
| /* number of samples */ |
| accum_cnt = data_L[i] & 0xffff; |
| |
| if (accum_cnt <= thresh_accum_cnt) |
| continue; |
| |
| /* sum(tx amplitude) */ |
| accum_tx = ((data_L[i] >> 16) & 0xffff) | |
| ((data_U[i] & 0x7ff) << 16); |
| |
| /* sum(rx amplitude distance to lower bin edge) */ |
| accum_rx = ((data_U[i] >> 11) & 0x1f) | |
| ((data_L[i + 23] & 0xffff) << 5); |
| |
| /* sum(angles) */ |
| accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | |
| ((data_U[i + 23] & 0x7ff) << 16); |
| |
| accum_tx <<= scale_factor; |
| accum_rx <<= scale_factor; |
| x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >> |
| scale_factor; |
| |
| Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> |
| scale_factor) + |
| (1 << scale_factor) * max_index + 16; |
| |
| if (accum_ang >= (1 << 26)) |
| accum_ang -= 1 << 27; |
| |
| theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) / |
| accum_cnt; |
| |
| max_index++; |
| } |
| |
| /* |
| * Find average theta of first 5 bin and all of those to same value. |
| * Curve is linear at that range. |
| */ |
| for (i = 1; i < 6; i++) |
| theta_low_bin += theta[i]; |
| |
| theta_low_bin = theta_low_bin / 5; |
| for (i = 1; i < 6; i++) |
| theta[i] = theta_low_bin; |
| |
| /* Set values at origin */ |
| theta[0] = theta_low_bin; |
| for (i = 0; i <= max_index; i++) |
| theta[i] -= theta_low_bin; |
| |
| x_est[0] = 0; |
| Y[0] = 0; |
| scale_factor = 8; |
| |
| /* low signal gain */ |
| if (x_est[6] == x_est[3]) |
| return false; |
| |
| G_fxp = |
| (((Y[6] - Y[3]) * 1 << scale_factor) + |
| (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); |
| |
| /* prevent division by zero */ |
| if (G_fxp == 0) |
| return false; |
| |
| Y_intercept = |
| (G_fxp * (x_est[0] - x_est[3]) + |
| (1 << scale_factor)) / (1 << scale_factor) + Y[3]; |
| |
| for (i = 0; i <= max_index; i++) |
| y_est[i] = Y[i] - Y_intercept; |
| |
| for (i = 0; i <= 3; i++) { |
| y_est[i] = i * 32; |
| x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; |
| } |
| |
| if (y_est[max_index] == 0) |
| return false; |
| |
| x_est_fxp1_nonlin = |
| x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + |
| G_fxp) / G_fxp; |
| |
| order_x_by_y = |
| (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; |
| |
| if (order_x_by_y == 0) |
| M = 10; |
| else if (order_x_by_y == 1) |
| M = 9; |
| else |
| M = 8; |
| |
| I = (max_index > 15) ? 7 : max_index >> 1; |
| L = max_index - I; |
| scale_factor = 8; |
| sum_y_sqr = 0; |
| sum_y_quad = 0; |
| x_tilde_abs = 0; |
| |
| for (i = 0; i <= L; i++) { |
| unsigned int y_sqr; |
| unsigned int y_quad; |
| unsigned int tmp_abs; |
| |
| /* prevent division by zero */ |
| if (y_est[i + I] == 0) |
| return false; |
| |
| x_est_fxp1_nonlin = |
| x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + |
| G_fxp) / G_fxp; |
| |
| x_tilde[i] = |
| (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + |
| I]; |
| x_tilde[i] = |
| (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; |
| x_tilde[i] = |
| (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; |
| y_sqr = |
| (y_est[i + I] * y_est[i + I] + |
| (scale_factor * scale_factor)) / (scale_factor * |
| scale_factor); |
| tmp_abs = abs(x_tilde[i]); |
| if (tmp_abs > x_tilde_abs) |
| x_tilde_abs = tmp_abs; |
| |
| y_quad = y_sqr * y_sqr; |
| sum_y_sqr = sum_y_sqr + y_sqr; |
| sum_y_quad = sum_y_quad + y_quad; |
| B1_tmp[i] = y_sqr * (L + 1); |
| B2_tmp[i] = y_sqr; |
| } |
| |
| B1_abs_max = 0; |
| B2_abs_max = 0; |
| for (i = 0; i <= L; i++) { |
| int abs_val; |
| |
| B1_tmp[i] -= sum_y_sqr; |
| B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; |
| |
| abs_val = abs(B1_tmp[i]); |
| if (abs_val > B1_abs_max) |
| B1_abs_max = abs_val; |
| |
| abs_val = abs(B2_tmp[i]); |
| if (abs_val > B2_abs_max) |
| B2_abs_max = abs_val; |
| } |
| |
| Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); |
| Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); |
| Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); |
| |
| beta_raw = 0; |
| alpha_raw = 0; |
| for (i = 0; i <= L; i++) { |
| x_tilde[i] = x_tilde[i] / (1 << Q_x); |
| B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); |
| B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); |
| beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; |
| alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; |
| } |
| |
| scale_B = |
| ((sum_y_quad / scale_factor) * (L + 1) - |
| (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; |
| |
| Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); |
| scale_B = scale_B / (1 << Q_scale_B); |
| if (scale_B == 0) |
| return false; |
| Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); |
| Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); |
| beta_raw = beta_raw / (1 << Q_beta); |
| alpha_raw = alpha_raw / (1 << Q_alpha); |
| alpha = (alpha_raw << 10) / scale_B; |
| beta = (beta_raw << 10) / scale_B; |
| order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; |
| order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; |
| order1_5x = order_1 / 5; |
| order2_3x = order_2 / 3; |
| order1_5x_rem = order_1 - 5 * order1_5x; |
| order2_3x_rem = order_2 - 3 * order2_3x; |
| |
| for (i = 0; i < PAPRD_TABLE_SZ; i++) { |
| tmp = i * 32; |
| y5 = ((beta * tmp) >> 6) >> order1_5x; |
| y5 = (y5 * tmp) >> order1_5x; |
| y5 = (y5 * tmp) >> order1_5x; |
| y5 = (y5 * tmp) >> order1_5x; |
| y5 = (y5 * tmp) >> order1_5x; |
| y5 = y5 >> order1_5x_rem; |
| y3 = (alpha * tmp) >> order2_3x; |
| y3 = (y3 * tmp) >> order2_3x; |
| y3 = (y3 * tmp) >> order2_3x; |
| y3 = y3 >> order2_3x_rem; |
| PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; |
| |
| if (i >= 2) { |
| tmp = PA_in[i] - PA_in[i - 1]; |
| if (tmp < 0) |
| PA_in[i] = |
| PA_in[i - 1] + (PA_in[i - 1] - |
| PA_in[i - 2]); |
| } |
| |
| PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; |
| } |
| |
| beta_raw = 0; |
| alpha_raw = 0; |
| |
| for (i = 0; i <= L; i++) { |
| int theta_tilde = |
| ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; |
| theta_tilde = |
| ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; |
| theta_tilde = |
| ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; |
| beta_raw = beta_raw + B1_tmp[i] * theta_tilde; |
| alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; |
| } |
| |
| Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); |
| Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); |
| beta_raw = beta_raw / (1 << Q_beta); |
| alpha_raw = alpha_raw / (1 << Q_alpha); |
| |
| alpha = (alpha_raw << 10) / scale_B; |
| beta = (beta_raw << 10) / scale_B; |
| order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; |
| order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; |
| order1_5x = order_1 / 5; |
| order2_3x = order_2 / 3; |
| order1_5x_rem = order_1 - 5 * order1_5x; |
| order2_3x_rem = order_2 - 3 * order2_3x; |
| |
| for (i = 0; i < PAPRD_TABLE_SZ; i++) { |
| int PA_angle; |
| |
| /* pa_table[4] is calculated from PA_angle for i=5 */ |
| if (i == 4) |
| continue; |
| |
| tmp = i * 32; |
| if (beta > 0) |
| y5 = (((beta * tmp - 64) >> 6) - |
| (1 << order1_5x)) / (1 << order1_5x); |
| else |
| y5 = ((((beta * tmp - 64) >> 6) + |
| (1 << order1_5x)) / (1 << order1_5x)); |
| |
| y5 = (y5 * tmp) / (1 << order1_5x); |
| y5 = (y5 * tmp) / (1 << order1_5x); |
| y5 = (y5 * tmp) / (1 << order1_5x); |
| y5 = (y5 * tmp) / (1 << order1_5x); |
| y5 = y5 / (1 << order1_5x_rem); |
| |
| if (beta > 0) |
| y3 = (alpha * tmp - |
| (1 << order2_3x)) / (1 << order2_3x); |
| else |
| y3 = (alpha * tmp + |
| (1 << order2_3x)) / (1 << order2_3x); |
| y3 = (y3 * tmp) / (1 << order2_3x); |
| y3 = (y3 * tmp) / (1 << order2_3x); |
| y3 = y3 / (1 << order2_3x_rem); |
| |
| if (i < 4) { |
| PA_angle = 0; |
| } else { |
| PA_angle = y5 + y3; |
| if (PA_angle < -150) |
| PA_angle = -150; |
| else if (PA_angle > 150) |
| PA_angle = 150; |
| } |
| |
| pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); |
| if (i == 5) { |
| PA_angle = (PA_angle + 2) >> 1; |
| pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + |
| (PA_angle & 0x7ff); |
| } |
| } |
| |
| *gain = G_fxp; |
| return true; |
| } |
| |
| void ar9003_paprd_populate_single_table(struct ath_hw *ah, |
| struct ath9k_hw_cal_data *caldata, |
| int chain) |
| { |
| u32 *paprd_table_val = caldata->pa_table[chain]; |
| u32 small_signal_gain = caldata->small_signal_gain[chain]; |
| u32 training_power = ah->paprd_training_power; |
| u32 reg = 0; |
| int i; |
| |
| if (chain == 0) |
| reg = AR_PHY_PAPRD_MEM_TAB_B0; |
| else if (chain == 1) |
| reg = AR_PHY_PAPRD_MEM_TAB_B1; |
| else if (chain == 2) |
| reg = AR_PHY_PAPRD_MEM_TAB_B2; |
| |
| for (i = 0; i < PAPRD_TABLE_SZ; i++) { |
| REG_WRITE(ah, reg, paprd_table_val[i]); |
| reg = reg + 4; |
| } |
| |
| if (chain == 0) |
| reg = AR_PHY_PA_GAIN123_B0; |
| else if (chain == 1) |
| reg = AR_PHY_PA_GAIN123_B1; |
| else |
| reg = AR_PHY_PA_GAIN123_B2; |
| |
| REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); |
| |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, |
| AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, |
| training_power); |
| |
| if (ah->caps.tx_chainmask & BIT(1)) |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, |
| AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, |
| training_power); |
| |
| if (ah->caps.tx_chainmask & BIT(2)) |
| REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, |
| AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, |
| training_power); |
| } |
| EXPORT_SYMBOL(ar9003_paprd_populate_single_table); |
| |
| int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) |
| { |
| unsigned int i, desired_gain, gain_index; |
| unsigned int train_power = ah->paprd_training_power; |
| |
| desired_gain = ar9003_get_desired_gain(ah, chain, train_power); |
| |
| gain_index = 0; |
| for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { |
| if (ah->paprd_gain_table_index[i] >= desired_gain) |
| break; |
| gain_index++; |
| } |
| |
| ar9003_tx_force_gain(ah, gain_index); |
| |
| REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, |
| AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); |
| |
| int ar9003_paprd_create_curve(struct ath_hw *ah, |
| struct ath9k_hw_cal_data *caldata, int chain) |
| { |
| u16 *small_signal_gain = &caldata->small_signal_gain[chain]; |
| u32 *pa_table = caldata->pa_table[chain]; |
| u32 *data_L, *data_U; |
| int i, status = 0; |
| u32 *buf; |
| u32 reg; |
| |
| memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); |
| |
| buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC); |
| if (!buf) |
| return -ENOMEM; |
| |
| data_L = &buf[0]; |
| data_U = &buf[48]; |
| |
| REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, |
| AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); |
| |
| reg = AR_PHY_CHAN_INFO_TAB_0; |
| for (i = 0; i < 48; i++) |
| data_L[i] = REG_READ(ah, reg + (i << 2)); |
| |
| REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, |
| AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); |
| |
| for (i = 0; i < 48; i++) |
| data_U[i] = REG_READ(ah, reg + (i << 2)); |
| |
| if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) |
| status = -2; |
| |
| REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, |
| AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); |
| |
| kfree(buf); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(ar9003_paprd_create_curve); |
| |
| int ar9003_paprd_init_table(struct ath_hw *ah) |
| { |
| int ret; |
| |
| ret = ar9003_paprd_setup_single_table(ah); |
| if (ret < 0) |
| return ret; |
| |
| ar9003_paprd_get_gain_table(ah); |
| return 0; |
| } |
| EXPORT_SYMBOL(ar9003_paprd_init_table); |
| |
| bool ar9003_paprd_is_done(struct ath_hw *ah) |
| { |
| int paprd_done, agc2_pwr; |
| paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, |
| AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); |
| |
| if (paprd_done == 0x1) { |
| agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, |
| AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR); |
| |
| ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, |
| "AGC2_PWR = 0x%x training done = 0x%x\n", |
| agc2_pwr, paprd_done); |
| /* |
| * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE' |
| * when the training is completely done, otherwise retraining is |
| * done to make sure the value is in ideal range |
| */ |
| if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE) |
| paprd_done = 0; |
| } |
| |
| return !!paprd_done; |
| } |
| EXPORT_SYMBOL(ar9003_paprd_is_done); |