| /* |
| * eeh.c |
| * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/bootmem.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/notifier.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <asm/eeh.h> |
| #include <asm/io.h> |
| #include <asm/machdep.h> |
| #include <asm/rtas.h> |
| #include <asm/atomic.h> |
| #include <asm/systemcfg.h> |
| #include "pci.h" |
| |
| #undef DEBUG |
| |
| /** Overview: |
| * EEH, or "Extended Error Handling" is a PCI bridge technology for |
| * dealing with PCI bus errors that can't be dealt with within the |
| * usual PCI framework, except by check-stopping the CPU. Systems |
| * that are designed for high-availability/reliability cannot afford |
| * to crash due to a "mere" PCI error, thus the need for EEH. |
| * An EEH-capable bridge operates by converting a detected error |
| * into a "slot freeze", taking the PCI adapter off-line, making |
| * the slot behave, from the OS'es point of view, as if the slot |
| * were "empty": all reads return 0xff's and all writes are silently |
| * ignored. EEH slot isolation events can be triggered by parity |
| * errors on the address or data busses (e.g. during posted writes), |
| * which in turn might be caused by dust, vibration, humidity, |
| * radioactivity or plain-old failed hardware. |
| * |
| * Note, however, that one of the leading causes of EEH slot |
| * freeze events are buggy device drivers, buggy device microcode, |
| * or buggy device hardware. This is because any attempt by the |
| * device to bus-master data to a memory address that is not |
| * assigned to the device will trigger a slot freeze. (The idea |
| * is to prevent devices-gone-wild from corrupting system memory). |
| * Buggy hardware/drivers will have a miserable time co-existing |
| * with EEH. |
| * |
| * Ideally, a PCI device driver, when suspecting that an isolation |
| * event has occured (e.g. by reading 0xff's), will then ask EEH |
| * whether this is the case, and then take appropriate steps to |
| * reset the PCI slot, the PCI device, and then resume operations. |
| * However, until that day, the checking is done here, with the |
| * eeh_check_failure() routine embedded in the MMIO macros. If |
| * the slot is found to be isolated, an "EEH Event" is synthesized |
| * and sent out for processing. |
| */ |
| |
| /** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */ |
| #define BUID_HI(buid) ((buid) >> 32) |
| #define BUID_LO(buid) ((buid) & 0xffffffff) |
| |
| /* EEH event workqueue setup. */ |
| static DEFINE_SPINLOCK(eeh_eventlist_lock); |
| LIST_HEAD(eeh_eventlist); |
| static void eeh_event_handler(void *); |
| DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL); |
| |
| static struct notifier_block *eeh_notifier_chain; |
| |
| /* |
| * If a device driver keeps reading an MMIO register in an interrupt |
| * handler after a slot isolation event has occurred, we assume it |
| * is broken and panic. This sets the threshold for how many read |
| * attempts we allow before panicking. |
| */ |
| #define EEH_MAX_FAILS 1000 |
| static atomic_t eeh_fail_count; |
| |
| /* RTAS tokens */ |
| static int ibm_set_eeh_option; |
| static int ibm_set_slot_reset; |
| static int ibm_read_slot_reset_state; |
| static int ibm_read_slot_reset_state2; |
| static int ibm_slot_error_detail; |
| |
| static int eeh_subsystem_enabled; |
| |
| /* Buffer for reporting slot-error-detail rtas calls */ |
| static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; |
| static DEFINE_SPINLOCK(slot_errbuf_lock); |
| static int eeh_error_buf_size; |
| |
| /* System monitoring statistics */ |
| static DEFINE_PER_CPU(unsigned long, total_mmio_ffs); |
| static DEFINE_PER_CPU(unsigned long, false_positives); |
| static DEFINE_PER_CPU(unsigned long, ignored_failures); |
| static DEFINE_PER_CPU(unsigned long, slot_resets); |
| |
| /** |
| * The pci address cache subsystem. This subsystem places |
| * PCI device address resources into a red-black tree, sorted |
| * according to the address range, so that given only an i/o |
| * address, the corresponding PCI device can be **quickly** |
| * found. It is safe to perform an address lookup in an interrupt |
| * context; this ability is an important feature. |
| * |
| * Currently, the only customer of this code is the EEH subsystem; |
| * thus, this code has been somewhat tailored to suit EEH better. |
| * In particular, the cache does *not* hold the addresses of devices |
| * for which EEH is not enabled. |
| * |
| * (Implementation Note: The RB tree seems to be better/faster |
| * than any hash algo I could think of for this problem, even |
| * with the penalty of slow pointer chases for d-cache misses). |
| */ |
| struct pci_io_addr_range |
| { |
| struct rb_node rb_node; |
| unsigned long addr_lo; |
| unsigned long addr_hi; |
| struct pci_dev *pcidev; |
| unsigned int flags; |
| }; |
| |
| static struct pci_io_addr_cache |
| { |
| struct rb_root rb_root; |
| spinlock_t piar_lock; |
| } pci_io_addr_cache_root; |
| |
| static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr) |
| { |
| struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; |
| |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| |
| if (addr < piar->addr_lo) { |
| n = n->rb_left; |
| } else { |
| if (addr > piar->addr_hi) { |
| n = n->rb_right; |
| } else { |
| pci_dev_get(piar->pcidev); |
| return piar->pcidev; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * pci_get_device_by_addr - Get device, given only address |
| * @addr: mmio (PIO) phys address or i/o port number |
| * |
| * Given an mmio phys address, or a port number, find a pci device |
| * that implements this address. Be sure to pci_dev_put the device |
| * when finished. I/O port numbers are assumed to be offset |
| * from zero (that is, they do *not* have pci_io_addr added in). |
| * It is safe to call this function within an interrupt. |
| */ |
| static struct pci_dev *pci_get_device_by_addr(unsigned long addr) |
| { |
| struct pci_dev *dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| dev = __pci_get_device_by_addr(addr); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| return dev; |
| } |
| |
| #ifdef DEBUG |
| /* |
| * Handy-dandy debug print routine, does nothing more |
| * than print out the contents of our addr cache. |
| */ |
| static void pci_addr_cache_print(struct pci_io_addr_cache *cache) |
| { |
| struct rb_node *n; |
| int cnt = 0; |
| |
| n = rb_first(&cache->rb_root); |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n", |
| (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, |
| piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev)); |
| cnt++; |
| n = rb_next(n); |
| } |
| } |
| #endif |
| |
| /* Insert address range into the rb tree. */ |
| static struct pci_io_addr_range * |
| pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo, |
| unsigned long ahi, unsigned int flags) |
| { |
| struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct pci_io_addr_range *piar; |
| |
| /* Walk tree, find a place to insert into tree */ |
| while (*p) { |
| parent = *p; |
| piar = rb_entry(parent, struct pci_io_addr_range, rb_node); |
| if (alo < piar->addr_lo) { |
| p = &parent->rb_left; |
| } else if (ahi > piar->addr_hi) { |
| p = &parent->rb_right; |
| } else { |
| if (dev != piar->pcidev || |
| alo != piar->addr_lo || ahi != piar->addr_hi) { |
| printk(KERN_WARNING "PIAR: overlapping address range\n"); |
| } |
| return piar; |
| } |
| } |
| piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); |
| if (!piar) |
| return NULL; |
| |
| piar->addr_lo = alo; |
| piar->addr_hi = ahi; |
| piar->pcidev = dev; |
| piar->flags = flags; |
| |
| rb_link_node(&piar->rb_node, parent, p); |
| rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); |
| |
| return piar; |
| } |
| |
| static void __pci_addr_cache_insert_device(struct pci_dev *dev) |
| { |
| struct device_node *dn; |
| int i; |
| int inserted = 0; |
| |
| dn = pci_device_to_OF_node(dev); |
| if (!dn) { |
| printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", |
| pci_name(dev)); |
| return; |
| } |
| |
| /* Skip any devices for which EEH is not enabled. */ |
| if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || |
| dn->eeh_mode & EEH_MODE_NOCHECK) { |
| #ifdef DEBUG |
| printk(KERN_INFO "PCI: skip building address cache for=%s\n", |
| pci_name(dev)); |
| #endif |
| return; |
| } |
| |
| /* The cache holds a reference to the device... */ |
| pci_dev_get(dev); |
| |
| /* Walk resources on this device, poke them into the tree */ |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| unsigned long start = pci_resource_start(dev,i); |
| unsigned long end = pci_resource_end(dev,i); |
| unsigned int flags = pci_resource_flags(dev,i); |
| |
| /* We are interested only bus addresses, not dma or other stuff */ |
| if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) |
| continue; |
| if (start == 0 || ~start == 0 || end == 0 || ~end == 0) |
| continue; |
| pci_addr_cache_insert(dev, start, end, flags); |
| inserted = 1; |
| } |
| |
| /* If there was nothing to add, the cache has no reference... */ |
| if (!inserted) |
| pci_dev_put(dev); |
| } |
| |
| /** |
| * pci_addr_cache_insert_device - Add a device to the address cache |
| * @dev: PCI device whose I/O addresses we are interested in. |
| * |
| * In order to support the fast lookup of devices based on addresses, |
| * we maintain a cache of devices that can be quickly searched. |
| * This routine adds a device to that cache. |
| */ |
| void pci_addr_cache_insert_device(struct pci_dev *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| __pci_addr_cache_insert_device(dev); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| } |
| |
| static inline void __pci_addr_cache_remove_device(struct pci_dev *dev) |
| { |
| struct rb_node *n; |
| int removed = 0; |
| |
| restart: |
| n = rb_first(&pci_io_addr_cache_root.rb_root); |
| while (n) { |
| struct pci_io_addr_range *piar; |
| piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| |
| if (piar->pcidev == dev) { |
| rb_erase(n, &pci_io_addr_cache_root.rb_root); |
| removed = 1; |
| kfree(piar); |
| goto restart; |
| } |
| n = rb_next(n); |
| } |
| |
| /* The cache no longer holds its reference to this device... */ |
| if (removed) |
| pci_dev_put(dev); |
| } |
| |
| /** |
| * pci_addr_cache_remove_device - remove pci device from addr cache |
| * @dev: device to remove |
| * |
| * Remove a device from the addr-cache tree. |
| * This is potentially expensive, since it will walk |
| * the tree multiple times (once per resource). |
| * But so what; device removal doesn't need to be that fast. |
| */ |
| void pci_addr_cache_remove_device(struct pci_dev *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| __pci_addr_cache_remove_device(dev); |
| spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| } |
| |
| /** |
| * pci_addr_cache_build - Build a cache of I/O addresses |
| * |
| * Build a cache of pci i/o addresses. This cache will be used to |
| * find the pci device that corresponds to a given address. |
| * This routine scans all pci busses to build the cache. |
| * Must be run late in boot process, after the pci controllers |
| * have been scaned for devices (after all device resources are known). |
| */ |
| void __init pci_addr_cache_build(void) |
| { |
| struct pci_dev *dev = NULL; |
| |
| spin_lock_init(&pci_io_addr_cache_root.piar_lock); |
| |
| while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| /* Ignore PCI bridges ( XXX why ??) */ |
| if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { |
| continue; |
| } |
| pci_addr_cache_insert_device(dev); |
| } |
| |
| #ifdef DEBUG |
| /* Verify tree built up above, echo back the list of addrs. */ |
| pci_addr_cache_print(&pci_io_addr_cache_root); |
| #endif |
| } |
| |
| /* --------------------------------------------------------------- */ |
| /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */ |
| |
| /** |
| * eeh_register_notifier - Register to find out about EEH events. |
| * @nb: notifier block to callback on events |
| */ |
| int eeh_register_notifier(struct notifier_block *nb) |
| { |
| return notifier_chain_register(&eeh_notifier_chain, nb); |
| } |
| |
| /** |
| * eeh_unregister_notifier - Unregister to an EEH event notifier. |
| * @nb: notifier block to callback on events |
| */ |
| int eeh_unregister_notifier(struct notifier_block *nb) |
| { |
| return notifier_chain_unregister(&eeh_notifier_chain, nb); |
| } |
| |
| /** |
| * read_slot_reset_state - Read the reset state of a device node's slot |
| * @dn: device node to read |
| * @rets: array to return results in |
| */ |
| static int read_slot_reset_state(struct device_node *dn, int rets[]) |
| { |
| int token, outputs; |
| |
| if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { |
| token = ibm_read_slot_reset_state2; |
| outputs = 4; |
| } else { |
| token = ibm_read_slot_reset_state; |
| outputs = 3; |
| } |
| |
| return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr, |
| BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid)); |
| } |
| |
| /** |
| * eeh_panic - call panic() for an eeh event that cannot be handled. |
| * The philosophy of this routine is that it is better to panic and |
| * halt the OS than it is to risk possible data corruption by |
| * oblivious device drivers that don't know better. |
| * |
| * @dev pci device that had an eeh event |
| * @reset_state current reset state of the device slot |
| */ |
| static void eeh_panic(struct pci_dev *dev, int reset_state) |
| { |
| /* |
| * XXX We should create a separate sysctl for this. |
| * |
| * Since the panic_on_oops sysctl is used to halt the system |
| * in light of potential corruption, we can use it here. |
| */ |
| if (panic_on_oops) |
| panic("EEH: MMIO failure (%d) on device:%s\n", reset_state, |
| pci_name(dev)); |
| else { |
| __get_cpu_var(ignored_failures)++; |
| printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n", |
| reset_state, pci_name(dev)); |
| } |
| } |
| |
| /** |
| * eeh_event_handler - dispatch EEH events. The detection of a frozen |
| * slot can occur inside an interrupt, where it can be hard to do |
| * anything about it. The goal of this routine is to pull these |
| * detection events out of the context of the interrupt handler, and |
| * re-dispatch them for processing at a later time in a normal context. |
| * |
| * @dummy - unused |
| */ |
| static void eeh_event_handler(void *dummy) |
| { |
| unsigned long flags; |
| struct eeh_event *event; |
| |
| while (1) { |
| spin_lock_irqsave(&eeh_eventlist_lock, flags); |
| event = NULL; |
| if (!list_empty(&eeh_eventlist)) { |
| event = list_entry(eeh_eventlist.next, struct eeh_event, list); |
| list_del(&event->list); |
| } |
| spin_unlock_irqrestore(&eeh_eventlist_lock, flags); |
| if (event == NULL) |
| break; |
| |
| printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device " |
| "%s\n", event->reset_state, |
| pci_name(event->dev)); |
| |
| atomic_set(&eeh_fail_count, 0); |
| notifier_call_chain (&eeh_notifier_chain, |
| EEH_NOTIFY_FREEZE, event); |
| |
| __get_cpu_var(slot_resets)++; |
| |
| pci_dev_put(event->dev); |
| kfree(event); |
| } |
| } |
| |
| /** |
| * eeh_token_to_phys - convert EEH address token to phys address |
| * @token i/o token, should be address in the form 0xE.... |
| */ |
| static inline unsigned long eeh_token_to_phys(unsigned long token) |
| { |
| pte_t *ptep; |
| unsigned long pa; |
| |
| ptep = find_linux_pte(init_mm.pgd, token); |
| if (!ptep) |
| return token; |
| pa = pte_pfn(*ptep) << PAGE_SHIFT; |
| |
| return pa | (token & (PAGE_SIZE-1)); |
| } |
| |
| /** |
| * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze |
| * @dn device node |
| * @dev pci device, if known |
| * |
| * Check for an EEH failure for the given device node. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze. This routine |
| * will query firmware for the EEH status. |
| * |
| * Returns 0 if there has not been an EEH error; otherwise returns |
| * a non-zero value and queues up a solt isolation event notification. |
| * |
| * It is safe to call this routine in an interrupt context. |
| */ |
| int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) |
| { |
| int ret; |
| int rets[3]; |
| unsigned long flags; |
| int rc, reset_state; |
| struct eeh_event *event; |
| |
| __get_cpu_var(total_mmio_ffs)++; |
| |
| if (!eeh_subsystem_enabled) |
| return 0; |
| |
| if (!dn) |
| return 0; |
| |
| /* Access to IO BARs might get this far and still not want checking. */ |
| if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || |
| dn->eeh_mode & EEH_MODE_NOCHECK) { |
| return 0; |
| } |
| |
| if (!dn->eeh_config_addr) { |
| return 0; |
| } |
| |
| /* |
| * If we already have a pending isolation event for this |
| * slot, we know it's bad already, we don't need to check... |
| */ |
| if (dn->eeh_mode & EEH_MODE_ISOLATED) { |
| atomic_inc(&eeh_fail_count); |
| if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) { |
| /* re-read the slot reset state */ |
| if (read_slot_reset_state(dn, rets) != 0) |
| rets[0] = -1; /* reset state unknown */ |
| eeh_panic(dev, rets[0]); |
| } |
| return 0; |
| } |
| |
| /* |
| * Now test for an EEH failure. This is VERY expensive. |
| * Note that the eeh_config_addr may be a parent device |
| * in the case of a device behind a bridge, or it may be |
| * function zero of a multi-function device. |
| * In any case they must share a common PHB. |
| */ |
| ret = read_slot_reset_state(dn, rets); |
| if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) { |
| __get_cpu_var(false_positives)++; |
| return 0; |
| } |
| |
| /* prevent repeated reports of this failure */ |
| dn->eeh_mode |= EEH_MODE_ISOLATED; |
| |
| reset_state = rets[0]; |
| |
| spin_lock_irqsave(&slot_errbuf_lock, flags); |
| memset(slot_errbuf, 0, eeh_error_buf_size); |
| |
| rc = rtas_call(ibm_slot_error_detail, |
| 8, 1, NULL, dn->eeh_config_addr, |
| BUID_HI(dn->phb->buid), |
| BUID_LO(dn->phb->buid), NULL, 0, |
| virt_to_phys(slot_errbuf), |
| eeh_error_buf_size, |
| 1 /* Temporary Error */); |
| |
| if (rc == 0) |
| log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); |
| spin_unlock_irqrestore(&slot_errbuf_lock, flags); |
| |
| printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n", |
| rets[0], dn->name, dn->full_name); |
| event = kmalloc(sizeof(*event), GFP_ATOMIC); |
| if (event == NULL) { |
| eeh_panic(dev, reset_state); |
| return 1; |
| } |
| |
| event->dev = dev; |
| event->dn = dn; |
| event->reset_state = reset_state; |
| |
| /* We may or may not be called in an interrupt context */ |
| spin_lock_irqsave(&eeh_eventlist_lock, flags); |
| list_add(&event->list, &eeh_eventlist); |
| spin_unlock_irqrestore(&eeh_eventlist_lock, flags); |
| |
| /* Most EEH events are due to device driver bugs. Having |
| * a stack trace will help the device-driver authors figure |
| * out what happened. So print that out. */ |
| dump_stack(); |
| schedule_work(&eeh_event_wq); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(eeh_dn_check_failure); |
| |
| /** |
| * eeh_check_failure - check if all 1's data is due to EEH slot freeze |
| * @token i/o token, should be address in the form 0xA.... |
| * @val value, should be all 1's (XXX why do we need this arg??) |
| * |
| * Check for an eeh failure at the given token address. |
| * Check for an EEH failure at the given token address. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze event. This routine |
| * will query firmware for the EEH status. |
| * |
| * Note this routine is safe to call in an interrupt context. |
| */ |
| unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) |
| { |
| unsigned long addr; |
| struct pci_dev *dev; |
| struct device_node *dn; |
| |
| /* Finding the phys addr + pci device; this is pretty quick. */ |
| addr = eeh_token_to_phys((unsigned long __force) token); |
| dev = pci_get_device_by_addr(addr); |
| if (!dev) |
| return val; |
| |
| dn = pci_device_to_OF_node(dev); |
| eeh_dn_check_failure (dn, dev); |
| |
| pci_dev_put(dev); |
| return val; |
| } |
| |
| EXPORT_SYMBOL(eeh_check_failure); |
| |
| struct eeh_early_enable_info { |
| unsigned int buid_hi; |
| unsigned int buid_lo; |
| }; |
| |
| /* Enable eeh for the given device node. */ |
| static void *early_enable_eeh(struct device_node *dn, void *data) |
| { |
| struct eeh_early_enable_info *info = data; |
| int ret; |
| char *status = get_property(dn, "status", NULL); |
| u32 *class_code = (u32 *)get_property(dn, "class-code", NULL); |
| u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL); |
| u32 *device_id = (u32 *)get_property(dn, "device-id", NULL); |
| u32 *regs; |
| int enable; |
| |
| dn->eeh_mode = 0; |
| |
| if (status && strcmp(status, "ok") != 0) |
| return NULL; /* ignore devices with bad status */ |
| |
| /* Ignore bad nodes. */ |
| if (!class_code || !vendor_id || !device_id) |
| return NULL; |
| |
| /* There is nothing to check on PCI to ISA bridges */ |
| if (dn->type && !strcmp(dn->type, "isa")) { |
| dn->eeh_mode |= EEH_MODE_NOCHECK; |
| return NULL; |
| } |
| |
| /* |
| * Now decide if we are going to "Disable" EEH checking |
| * for this device. We still run with the EEH hardware active, |
| * but we won't be checking for ff's. This means a driver |
| * could return bad data (very bad!), an interrupt handler could |
| * hang waiting on status bits that won't change, etc. |
| * But there are a few cases like display devices that make sense. |
| */ |
| enable = 1; /* i.e. we will do checking */ |
| if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY) |
| enable = 0; |
| |
| if (!enable) |
| dn->eeh_mode |= EEH_MODE_NOCHECK; |
| |
| /* Ok... see if this device supports EEH. Some do, some don't, |
| * and the only way to find out is to check each and every one. */ |
| regs = (u32 *)get_property(dn, "reg", NULL); |
| if (regs) { |
| /* First register entry is addr (00BBSS00) */ |
| /* Try to enable eeh */ |
| ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, |
| regs[0], info->buid_hi, info->buid_lo, |
| EEH_ENABLE); |
| if (ret == 0) { |
| eeh_subsystem_enabled = 1; |
| dn->eeh_mode |= EEH_MODE_SUPPORTED; |
| dn->eeh_config_addr = regs[0]; |
| #ifdef DEBUG |
| printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name); |
| #endif |
| } else { |
| |
| /* This device doesn't support EEH, but it may have an |
| * EEH parent, in which case we mark it as supported. */ |
| if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) { |
| /* Parent supports EEH. */ |
| dn->eeh_mode |= EEH_MODE_SUPPORTED; |
| dn->eeh_config_addr = dn->parent->eeh_config_addr; |
| return NULL; |
| } |
| } |
| } else { |
| printk(KERN_WARNING "EEH: %s: unable to get reg property.\n", |
| dn->full_name); |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Initialize EEH by trying to enable it for all of the adapters in the system. |
| * As a side effect we can determine here if eeh is supported at all. |
| * Note that we leave EEH on so failed config cycles won't cause a machine |
| * check. If a user turns off EEH for a particular adapter they are really |
| * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't |
| * grant access to a slot if EEH isn't enabled, and so we always enable |
| * EEH for all slots/all devices. |
| * |
| * The eeh-force-off option disables EEH checking globally, for all slots. |
| * Even if force-off is set, the EEH hardware is still enabled, so that |
| * newer systems can boot. |
| */ |
| void __init eeh_init(void) |
| { |
| struct device_node *phb, *np; |
| struct eeh_early_enable_info info; |
| |
| np = of_find_node_by_path("/rtas"); |
| if (np == NULL) |
| return; |
| |
| ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); |
| ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); |
| ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); |
| ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); |
| ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); |
| |
| if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) |
| return; |
| |
| eeh_error_buf_size = rtas_token("rtas-error-log-max"); |
| if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { |
| eeh_error_buf_size = 1024; |
| } |
| if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { |
| printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated " |
| "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX); |
| eeh_error_buf_size = RTAS_ERROR_LOG_MAX; |
| } |
| |
| /* Enable EEH for all adapters. Note that eeh requires buid's */ |
| for (phb = of_find_node_by_name(NULL, "pci"); phb; |
| phb = of_find_node_by_name(phb, "pci")) { |
| unsigned long buid; |
| |
| buid = get_phb_buid(phb); |
| if (buid == 0) |
| continue; |
| |
| info.buid_lo = BUID_LO(buid); |
| info.buid_hi = BUID_HI(buid); |
| traverse_pci_devices(phb, early_enable_eeh, &info); |
| } |
| |
| if (eeh_subsystem_enabled) |
| printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n"); |
| else |
| printk(KERN_WARNING "EEH: No capable adapters found\n"); |
| } |
| |
| /** |
| * eeh_add_device_early - enable EEH for the indicated device_node |
| * @dn: device node for which to set up EEH |
| * |
| * This routine must be used to perform EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| * This routine must be called before any i/o is performed to the |
| * adapter (inluding any config-space i/o). |
| * Whether this actually enables EEH or not for this device depends |
| * on the CEC architecture, type of the device, on earlier boot |
| * command-line arguments & etc. |
| */ |
| void eeh_add_device_early(struct device_node *dn) |
| { |
| struct pci_controller *phb; |
| struct eeh_early_enable_info info; |
| |
| if (!dn) |
| return; |
| phb = dn->phb; |
| if (NULL == phb || 0 == phb->buid) { |
| printk(KERN_WARNING "EEH: Expected buid but found none\n"); |
| return; |
| } |
| |
| info.buid_hi = BUID_HI(phb->buid); |
| info.buid_lo = BUID_LO(phb->buid); |
| early_enable_eeh(dn, &info); |
| } |
| EXPORT_SYMBOL(eeh_add_device_early); |
| |
| /** |
| * eeh_add_device_late - perform EEH initialization for the indicated pci device |
| * @dev: pci device for which to set up EEH |
| * |
| * This routine must be used to complete EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| */ |
| void eeh_add_device_late(struct pci_dev *dev) |
| { |
| if (!dev || !eeh_subsystem_enabled) |
| return; |
| |
| #ifdef DEBUG |
| printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev)); |
| #endif |
| |
| pci_addr_cache_insert_device (dev); |
| } |
| EXPORT_SYMBOL(eeh_add_device_late); |
| |
| /** |
| * eeh_remove_device - undo EEH setup for the indicated pci device |
| * @dev: pci device to be removed |
| * |
| * This routine should be when a device is removed from a running |
| * system (e.g. by hotplug or dlpar). |
| */ |
| void eeh_remove_device(struct pci_dev *dev) |
| { |
| if (!dev || !eeh_subsystem_enabled) |
| return; |
| |
| /* Unregister the device with the EEH/PCI address search system */ |
| #ifdef DEBUG |
| printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev)); |
| #endif |
| pci_addr_cache_remove_device(dev); |
| } |
| EXPORT_SYMBOL(eeh_remove_device); |
| |
| static int proc_eeh_show(struct seq_file *m, void *v) |
| { |
| unsigned int cpu; |
| unsigned long ffs = 0, positives = 0, failures = 0; |
| unsigned long resets = 0; |
| |
| for_each_cpu(cpu) { |
| ffs += per_cpu(total_mmio_ffs, cpu); |
| positives += per_cpu(false_positives, cpu); |
| failures += per_cpu(ignored_failures, cpu); |
| resets += per_cpu(slot_resets, cpu); |
| } |
| |
| if (0 == eeh_subsystem_enabled) { |
| seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs); |
| } else { |
| seq_printf(m, "EEH Subsystem is enabled\n"); |
| seq_printf(m, "eeh_total_mmio_ffs=%ld\n" |
| "eeh_false_positives=%ld\n" |
| "eeh_ignored_failures=%ld\n" |
| "eeh_slot_resets=%ld\n" |
| "eeh_fail_count=%d\n", |
| ffs, positives, failures, resets, |
| eeh_fail_count.counter); |
| } |
| |
| return 0; |
| } |
| |
| static int proc_eeh_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, proc_eeh_show, NULL); |
| } |
| |
| static struct file_operations proc_eeh_operations = { |
| .open = proc_eeh_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init eeh_init_proc(void) |
| { |
| struct proc_dir_entry *e; |
| |
| if (systemcfg->platform & PLATFORM_PSERIES) { |
| e = create_proc_entry("ppc64/eeh", 0, NULL); |
| if (e) |
| e->proc_fops = &proc_eeh_operations; |
| } |
| |
| return 0; |
| } |
| __initcall(eeh_init_proc); |