| /* |
| * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Alexander Graf <agraf@suse.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu-hash32.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu_context.h> |
| #include <asm/hw_irq.h> |
| |
| /* #define DEBUG_MMU */ |
| /* #define DEBUG_SR */ |
| |
| #ifdef DEBUG_MMU |
| #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) |
| #else |
| #define dprintk_mmu(a, ...) do { } while(0) |
| #endif |
| |
| #ifdef DEBUG_SR |
| #define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__) |
| #else |
| #define dprintk_sr(a, ...) do { } while(0) |
| #endif |
| |
| #if PAGE_SHIFT != 12 |
| #error Unknown page size |
| #endif |
| |
| #ifdef CONFIG_SMP |
| #error XXX need to grab mmu_hash_lock |
| #endif |
| |
| #ifdef CONFIG_PTE_64BIT |
| #error Only 32 bit pages are supported for now |
| #endif |
| |
| static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) |
| { |
| volatile u32 *pteg; |
| |
| dprintk_mmu("KVM: Flushing SPTE: 0x%llx (0x%llx) -> 0x%llx\n", |
| pte->pte.eaddr, pte->pte.vpage, pte->host_va); |
| |
| pteg = (u32*)pte->slot; |
| |
| pteg[0] = 0; |
| asm volatile ("sync"); |
| asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory"); |
| asm volatile ("sync"); |
| asm volatile ("tlbsync"); |
| |
| pte->host_va = 0; |
| |
| if (pte->pte.may_write) |
| kvm_release_pfn_dirty(pte->pfn); |
| else |
| kvm_release_pfn_clean(pte->pfn); |
| } |
| |
| void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask) |
| { |
| int i; |
| |
| dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%x & 0x%x\n", |
| vcpu->arch.hpte_cache_offset, guest_ea, ea_mask); |
| BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| |
| guest_ea &= ea_mask; |
| for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| struct hpte_cache *pte; |
| |
| pte = &vcpu->arch.hpte_cache[i]; |
| if (!pte->host_va) |
| continue; |
| |
| if ((pte->pte.eaddr & ea_mask) == guest_ea) { |
| invalidate_pte(vcpu, pte); |
| } |
| } |
| |
| /* Doing a complete flush -> start from scratch */ |
| if (!ea_mask) |
| vcpu->arch.hpte_cache_offset = 0; |
| } |
| |
| void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) |
| { |
| int i; |
| |
| dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", |
| vcpu->arch.hpte_cache_offset, guest_vp, vp_mask); |
| BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| |
| guest_vp &= vp_mask; |
| for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| struct hpte_cache *pte; |
| |
| pte = &vcpu->arch.hpte_cache[i]; |
| if (!pte->host_va) |
| continue; |
| |
| if ((pte->pte.vpage & vp_mask) == guest_vp) { |
| invalidate_pte(vcpu, pte); |
| } |
| } |
| } |
| |
| void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) |
| { |
| int i; |
| |
| dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n", |
| vcpu->arch.hpte_cache_offset, pa_start, pa_end); |
| BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| |
| for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| struct hpte_cache *pte; |
| |
| pte = &vcpu->arch.hpte_cache[i]; |
| if (!pte->host_va) |
| continue; |
| |
| if ((pte->pte.raddr >= pa_start) && |
| (pte->pte.raddr < pa_end)) { |
| invalidate_pte(vcpu, pte); |
| } |
| } |
| } |
| |
| struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data) |
| { |
| int i; |
| u64 guest_vp; |
| |
| guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false); |
| for (i=0; i<vcpu->arch.hpte_cache_offset; i++) { |
| struct hpte_cache *pte; |
| |
| pte = &vcpu->arch.hpte_cache[i]; |
| if (!pte->host_va) |
| continue; |
| |
| if (pte->pte.vpage == guest_vp) |
| return &pte->pte; |
| } |
| |
| return NULL; |
| } |
| |
| static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM) |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| |
| return vcpu->arch.hpte_cache_offset++; |
| } |
| |
| /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using |
| * a hash, so we don't waste cycles on looping */ |
| static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ |
| ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); |
| } |
| |
| |
| static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| struct kvmppc_sid_map *map; |
| u16 sid_map_mask; |
| |
| if (vcpu->arch.msr & MSR_PR) |
| gvsid |= VSID_PR; |
| |
| sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| if (map->guest_vsid == gvsid) { |
| dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", |
| gvsid, map->host_vsid); |
| return map; |
| } |
| |
| map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; |
| if (map->guest_vsid == gvsid) { |
| dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n", |
| gvsid, map->host_vsid); |
| return map; |
| } |
| |
| dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid); |
| return NULL; |
| } |
| |
| extern struct hash_pte *Hash; |
| extern unsigned long _SDR1; |
| |
| static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr, |
| bool primary) |
| { |
| u32 page, hash, htabmask; |
| ulong pteg = (ulong)Hash; |
| |
| page = (eaddr & ~ESID_MASK) >> 12; |
| |
| hash = ((vsid ^ page) << 6); |
| if (!primary) |
| hash = ~hash; |
| |
| htabmask = ((_SDR1 & 0x1FF) << 16) | 0xFFC0; |
| hash &= htabmask; |
| |
| pteg |= hash; |
| |
| dprintk_mmu("htab: %p | hash: %x | htabmask: %x | pteg: %lx\n", |
| Hash, hash, htabmask, pteg); |
| |
| return (u32*)pteg; |
| } |
| |
| extern char etext[]; |
| |
| int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) |
| { |
| pfn_t hpaddr; |
| u64 va; |
| u64 vsid; |
| struct kvmppc_sid_map *map; |
| volatile u32 *pteg; |
| u32 eaddr = orig_pte->eaddr; |
| u32 pteg0, pteg1; |
| register int rr = 0; |
| bool primary = false; |
| bool evict = false; |
| int hpte_id; |
| struct hpte_cache *pte; |
| |
| /* Get host physical address for gpa */ |
| hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); |
| if (kvm_is_error_hva(hpaddr)) { |
| printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", |
| orig_pte->eaddr); |
| return -EINVAL; |
| } |
| hpaddr <<= PAGE_SHIFT; |
| |
| /* and write the mapping ea -> hpa into the pt */ |
| vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); |
| map = find_sid_vsid(vcpu, vsid); |
| if (!map) { |
| kvmppc_mmu_map_segment(vcpu, eaddr); |
| map = find_sid_vsid(vcpu, vsid); |
| } |
| BUG_ON(!map); |
| |
| vsid = map->host_vsid; |
| va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK); |
| |
| next_pteg: |
| if (rr == 16) { |
| primary = !primary; |
| evict = true; |
| rr = 0; |
| } |
| |
| pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary); |
| |
| /* not evicting yet */ |
| if (!evict && (pteg[rr] & PTE_V)) { |
| rr += 2; |
| goto next_pteg; |
| } |
| |
| dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); |
| |
| pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V | |
| (primary ? 0 : PTE_SEC); |
| pteg1 = hpaddr | PTE_M | PTE_R | PTE_C; |
| |
| if (orig_pte->may_write) { |
| pteg1 |= PP_RWRW; |
| mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); |
| } else { |
| pteg1 |= PP_RWRX; |
| } |
| |
| local_irq_disable(); |
| |
| if (pteg[rr]) { |
| pteg[rr] = 0; |
| asm volatile ("sync"); |
| } |
| pteg[rr + 1] = pteg1; |
| pteg[rr] = pteg0; |
| asm volatile ("sync"); |
| |
| local_irq_enable(); |
| |
| dprintk_mmu("KVM: new PTEG: %p\n", pteg); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]); |
| dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]); |
| |
| |
| /* Now tell our Shadow PTE code about the new page */ |
| |
| hpte_id = kvmppc_mmu_hpte_cache_next(vcpu); |
| pte = &vcpu->arch.hpte_cache[hpte_id]; |
| |
| dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n", |
| orig_pte->may_write ? 'w' : '-', |
| orig_pte->may_execute ? 'x' : '-', |
| orig_pte->eaddr, (ulong)pteg, va, |
| orig_pte->vpage, hpaddr); |
| |
| pte->slot = (ulong)&pteg[rr]; |
| pte->host_va = va; |
| pte->pte = *orig_pte; |
| pte->pfn = hpaddr >> PAGE_SHIFT; |
| |
| return 0; |
| } |
| |
| static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) |
| { |
| struct kvmppc_sid_map *map; |
| struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| u16 sid_map_mask; |
| static int backwards_map = 0; |
| |
| if (vcpu->arch.msr & MSR_PR) |
| gvsid |= VSID_PR; |
| |
| /* We might get collisions that trap in preceding order, so let's |
| map them differently */ |
| |
| sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| if (backwards_map) |
| sid_map_mask = SID_MAP_MASK - sid_map_mask; |
| |
| map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| |
| /* Make sure we're taking the other map next time */ |
| backwards_map = !backwards_map; |
| |
| /* Uh-oh ... out of mappings. Let's flush! */ |
| if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) { |
| vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; |
| memset(vcpu_book3s->sid_map, 0, |
| sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| kvmppc_mmu_flush_segments(vcpu); |
| } |
| map->host_vsid = vcpu_book3s->vsid_next; |
| |
| /* Would have to be 111 to be completely aligned with the rest of |
| Linux, but that is just way too little space! */ |
| vcpu_book3s->vsid_next+=1; |
| |
| map->guest_vsid = gvsid; |
| map->valid = true; |
| |
| return map; |
| } |
| |
| int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) |
| { |
| u32 esid = eaddr >> SID_SHIFT; |
| u64 gvsid; |
| u32 sr; |
| struct kvmppc_sid_map *map; |
| struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu); |
| |
| if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { |
| /* Invalidate an entry */ |
| svcpu->sr[esid] = SR_INVALID; |
| return -ENOENT; |
| } |
| |
| map = find_sid_vsid(vcpu, gvsid); |
| if (!map) |
| map = create_sid_map(vcpu, gvsid); |
| |
| map->guest_esid = esid; |
| sr = map->host_vsid | SR_KP; |
| svcpu->sr[esid] = sr; |
| |
| dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr); |
| |
| return 0; |
| } |
| |
| void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu); |
| |
| dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr)); |
| for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++) |
| svcpu->sr[i] = SR_INVALID; |
| } |
| |
| void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| preempt_disable(); |
| __destroy_context(to_book3s(vcpu)->context_id); |
| preempt_enable(); |
| } |
| |
| /* From mm/mmu_context_hash32.c */ |
| #define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff) |
| |
| int kvmppc_mmu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int err; |
| |
| err = __init_new_context(); |
| if (err < 0) |
| return -1; |
| vcpu3s->context_id = err; |
| |
| vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1; |
| vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id); |
| |
| #if 0 /* XXX still doesn't guarantee uniqueness */ |
| /* We could collide with the Linux vsid space because the vsid |
| * wraps around at 24 bits. We're safe if we do our own space |
| * though, so let's always set the highest bit. */ |
| |
| vcpu3s->vsid_max |= 0x00800000; |
| vcpu3s->vsid_first |= 0x00800000; |
| #endif |
| BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first); |
| |
| vcpu3s->vsid_next = vcpu3s->vsid_first; |
| |
| return 0; |
| } |