| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) 2004 Mips Technologies, Inc |
| * Copyright (C) 2008 Kevin D. Kissell |
| */ |
| |
| #include <linux/clockchips.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/cpumask.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/module.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/processor.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/hardirq.h> |
| #include <asm/hazards.h> |
| #include <asm/irq.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mipsregs.h> |
| #include <asm/cacheflush.h> |
| #include <asm/time.h> |
| #include <asm/addrspace.h> |
| #include <asm/smtc.h> |
| #include <asm/smtc_proc.h> |
| |
| /* |
| * SMTC Kernel needs to manipulate low-level CPU interrupt mask |
| * in do_IRQ. These are passed in setup_irq_smtc() and stored |
| * in this table. |
| */ |
| unsigned long irq_hwmask[NR_IRQS]; |
| |
| #define LOCK_MT_PRA() \ |
| local_irq_save(flags); \ |
| mtflags = dmt() |
| |
| #define UNLOCK_MT_PRA() \ |
| emt(mtflags); \ |
| local_irq_restore(flags) |
| |
| #define LOCK_CORE_PRA() \ |
| local_irq_save(flags); \ |
| mtflags = dvpe() |
| |
| #define UNLOCK_CORE_PRA() \ |
| evpe(mtflags); \ |
| local_irq_restore(flags) |
| |
| /* |
| * Data structures purely associated with SMTC parallelism |
| */ |
| |
| |
| /* |
| * Table for tracking ASIDs whose lifetime is prolonged. |
| */ |
| |
| asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS]; |
| |
| |
| /* |
| * Number of InterProcessor Interrupt (IPI) message buffers to allocate |
| */ |
| |
| #define IPIBUF_PER_CPU 4 |
| |
| struct smtc_ipi_q IPIQ[NR_CPUS]; |
| static struct smtc_ipi_q freeIPIq; |
| |
| |
| /* Forward declarations */ |
| |
| void ipi_decode(struct smtc_ipi *); |
| static void post_direct_ipi(int cpu, struct smtc_ipi *pipi); |
| static void setup_cross_vpe_interrupts(unsigned int nvpe); |
| void init_smtc_stats(void); |
| |
| /* Global SMTC Status */ |
| |
| unsigned int smtc_status = 0; |
| |
| /* Boot command line configuration overrides */ |
| |
| static int vpe0limit; |
| static int ipibuffers = 0; |
| static int nostlb = 0; |
| static int asidmask = 0; |
| unsigned long smtc_asid_mask = 0xff; |
| |
| static int __init vpe0tcs(char *str) |
| { |
| get_option(&str, &vpe0limit); |
| |
| return 1; |
| } |
| |
| static int __init ipibufs(char *str) |
| { |
| get_option(&str, &ipibuffers); |
| return 1; |
| } |
| |
| static int __init stlb_disable(char *s) |
| { |
| nostlb = 1; |
| return 1; |
| } |
| |
| static int __init asidmask_set(char *str) |
| { |
| get_option(&str, &asidmask); |
| switch (asidmask) { |
| case 0x1: |
| case 0x3: |
| case 0x7: |
| case 0xf: |
| case 0x1f: |
| case 0x3f: |
| case 0x7f: |
| case 0xff: |
| smtc_asid_mask = (unsigned long)asidmask; |
| break; |
| default: |
| printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask); |
| } |
| return 1; |
| } |
| |
| __setup("vpe0tcs=", vpe0tcs); |
| __setup("ipibufs=", ipibufs); |
| __setup("nostlb", stlb_disable); |
| __setup("asidmask=", asidmask_set); |
| |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG |
| |
| static int hang_trig = 0; |
| |
| static int __init hangtrig_enable(char *s) |
| { |
| hang_trig = 1; |
| return 1; |
| } |
| |
| |
| __setup("hangtrig", hangtrig_enable); |
| |
| #define DEFAULT_BLOCKED_IPI_LIMIT 32 |
| |
| static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT; |
| |
| static int __init tintq(char *str) |
| { |
| get_option(&str, &timerq_limit); |
| return 1; |
| } |
| |
| __setup("tintq=", tintq); |
| |
| static int imstuckcount[2][8]; |
| /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */ |
| static int vpemask[2][8] = { |
| {0, 0, 1, 0, 0, 0, 0, 1}, |
| {0, 0, 0, 0, 0, 0, 0, 1} |
| }; |
| int tcnoprog[NR_CPUS]; |
| static atomic_t idle_hook_initialized = {0}; |
| static int clock_hang_reported[NR_CPUS]; |
| |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ |
| |
| /* |
| * Configure shared TLB - VPC configuration bit must be set by caller |
| */ |
| |
| static void smtc_configure_tlb(void) |
| { |
| int i, tlbsiz, vpes; |
| unsigned long mvpconf0; |
| unsigned long config1val; |
| |
| /* Set up ASID preservation table */ |
| for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) { |
| for(i = 0; i < MAX_SMTC_ASIDS; i++) { |
| smtc_live_asid[vpes][i] = 0; |
| } |
| } |
| mvpconf0 = read_c0_mvpconf0(); |
| |
| if ((vpes = ((mvpconf0 & MVPCONF0_PVPE) |
| >> MVPCONF0_PVPE_SHIFT) + 1) > 1) { |
| /* If we have multiple VPEs, try to share the TLB */ |
| if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) { |
| /* |
| * If TLB sizing is programmable, shared TLB |
| * size is the total available complement. |
| * Otherwise, we have to take the sum of all |
| * static VPE TLB entries. |
| */ |
| if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE) |
| >> MVPCONF0_PTLBE_SHIFT)) == 0) { |
| /* |
| * If there's more than one VPE, there had better |
| * be more than one TC, because we need one to bind |
| * to each VPE in turn to be able to read |
| * its configuration state! |
| */ |
| settc(1); |
| /* Stop the TC from doing anything foolish */ |
| write_tc_c0_tchalt(TCHALT_H); |
| mips_ihb(); |
| /* No need to un-Halt - that happens later anyway */ |
| for (i=0; i < vpes; i++) { |
| write_tc_c0_tcbind(i); |
| /* |
| * To be 100% sure we're really getting the right |
| * information, we exit the configuration state |
| * and do an IHB after each rebinding. |
| */ |
| write_c0_mvpcontrol( |
| read_c0_mvpcontrol() & ~ MVPCONTROL_VPC ); |
| mips_ihb(); |
| /* |
| * Only count if the MMU Type indicated is TLB |
| */ |
| if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) { |
| config1val = read_vpe_c0_config1(); |
| tlbsiz += ((config1val >> 25) & 0x3f) + 1; |
| } |
| |
| /* Put core back in configuration state */ |
| write_c0_mvpcontrol( |
| read_c0_mvpcontrol() | MVPCONTROL_VPC ); |
| mips_ihb(); |
| } |
| } |
| write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB); |
| ehb(); |
| |
| /* |
| * Setup kernel data structures to use software total, |
| * rather than read the per-VPE Config1 value. The values |
| * for "CPU 0" gets copied to all the other CPUs as part |
| * of their initialization in smtc_cpu_setup(). |
| */ |
| |
| /* MIPS32 limits TLB indices to 64 */ |
| if (tlbsiz > 64) |
| tlbsiz = 64; |
| cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz; |
| smtc_status |= SMTC_TLB_SHARED; |
| local_flush_tlb_all(); |
| |
| printk("TLB of %d entry pairs shared by %d VPEs\n", |
| tlbsiz, vpes); |
| } else { |
| printk("WARNING: TLB Not Sharable on SMTC Boot!\n"); |
| } |
| } |
| } |
| |
| |
| /* |
| * Incrementally build the CPU map out of constituent MIPS MT cores, |
| * using the specified available VPEs and TCs. Plaform code needs |
| * to ensure that each MIPS MT core invokes this routine on reset, |
| * one at a time(!). |
| * |
| * This version of the build_cpu_map and prepare_cpus routines assumes |
| * that *all* TCs of a MIPS MT core will be used for Linux, and that |
| * they will be spread across *all* available VPEs (to minimise the |
| * loss of efficiency due to exception service serialization). |
| * An improved version would pick up configuration information and |
| * possibly leave some TCs/VPEs as "slave" processors. |
| * |
| * Use c0_MVPConf0 to find out how many TCs are available, setting up |
| * cpu_possible_map and the logical/physical mappings. |
| */ |
| |
| int __init smtc_build_cpu_map(int start_cpu_slot) |
| { |
| int i, ntcs; |
| |
| /* |
| * The CPU map isn't actually used for anything at this point, |
| * so it's not clear what else we should do apart from set |
| * everything up so that "logical" = "physical". |
| */ |
| ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; |
| for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) { |
| cpu_set(i, cpu_possible_map); |
| __cpu_number_map[i] = i; |
| __cpu_logical_map[i] = i; |
| } |
| #ifdef CONFIG_MIPS_MT_FPAFF |
| /* Initialize map of CPUs with FPUs */ |
| cpus_clear(mt_fpu_cpumask); |
| #endif |
| |
| /* One of those TC's is the one booting, and not a secondary... */ |
| printk("%i available secondary CPU TC(s)\n", i - 1); |
| |
| return i; |
| } |
| |
| /* |
| * Common setup before any secondaries are started |
| * Make sure all CPU's are in a sensible state before we boot any of the |
| * secondaries. |
| * |
| * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly |
| * as possible across the available VPEs. |
| */ |
| |
| static void smtc_tc_setup(int vpe, int tc, int cpu) |
| { |
| settc(tc); |
| write_tc_c0_tchalt(TCHALT_H); |
| mips_ihb(); |
| write_tc_c0_tcstatus((read_tc_c0_tcstatus() |
| & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT)) |
| | TCSTATUS_A); |
| /* |
| * TCContext gets an offset from the base of the IPIQ array |
| * to be used in low-level code to detect the presence of |
| * an active IPI queue |
| */ |
| write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16); |
| /* Bind tc to vpe */ |
| write_tc_c0_tcbind(vpe); |
| /* In general, all TCs should have the same cpu_data indications */ |
| memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips)); |
| /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */ |
| if (cpu_data[0].cputype == CPU_34K || |
| cpu_data[0].cputype == CPU_1004K) |
| cpu_data[cpu].options &= ~MIPS_CPU_FPU; |
| cpu_data[cpu].vpe_id = vpe; |
| cpu_data[cpu].tc_id = tc; |
| /* Multi-core SMTC hasn't been tested, but be prepared */ |
| cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff; |
| } |
| |
| /* |
| * Tweak to get Count registes in as close a sync as possible. |
| * Value seems good for 34K-class cores. |
| */ |
| |
| #define CP0_SKEW 8 |
| |
| void smtc_prepare_cpus(int cpus) |
| { |
| int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu; |
| unsigned long flags; |
| unsigned long val; |
| int nipi; |
| struct smtc_ipi *pipi; |
| |
| /* disable interrupts so we can disable MT */ |
| local_irq_save(flags); |
| /* disable MT so we can configure */ |
| dvpe(); |
| dmt(); |
| |
| spin_lock_init(&freeIPIq.lock); |
| |
| /* |
| * We probably don't have as many VPEs as we do SMP "CPUs", |
| * but it's possible - and in any case we'll never use more! |
| */ |
| for (i=0; i<NR_CPUS; i++) { |
| IPIQ[i].head = IPIQ[i].tail = NULL; |
| spin_lock_init(&IPIQ[i].lock); |
| IPIQ[i].depth = 0; |
| } |
| |
| /* cpu_data index starts at zero */ |
| cpu = 0; |
| cpu_data[cpu].vpe_id = 0; |
| cpu_data[cpu].tc_id = 0; |
| cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff; |
| cpu++; |
| |
| /* Report on boot-time options */ |
| mips_mt_set_cpuoptions(); |
| if (vpelimit > 0) |
| printk("Limit of %d VPEs set\n", vpelimit); |
| if (tclimit > 0) |
| printk("Limit of %d TCs set\n", tclimit); |
| if (nostlb) { |
| printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n"); |
| } |
| if (asidmask) |
| printk("ASID mask value override to 0x%x\n", asidmask); |
| |
| /* Temporary */ |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG |
| if (hang_trig) |
| printk("Logic Analyser Trigger on suspected TC hang\n"); |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ |
| |
| /* Put MVPE's into 'configuration state' */ |
| write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC ); |
| |
| val = read_c0_mvpconf0(); |
| nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; |
| if (vpelimit > 0 && nvpe > vpelimit) |
| nvpe = vpelimit; |
| ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; |
| if (ntc > NR_CPUS) |
| ntc = NR_CPUS; |
| if (tclimit > 0 && ntc > tclimit) |
| ntc = tclimit; |
| slop = ntc % nvpe; |
| for (i = 0; i < nvpe; i++) { |
| tcpervpe[i] = ntc / nvpe; |
| if (slop) { |
| if((slop - i) > 0) tcpervpe[i]++; |
| } |
| } |
| /* Handle command line override for VPE0 */ |
| if (vpe0limit > ntc) vpe0limit = ntc; |
| if (vpe0limit > 0) { |
| int slopslop; |
| if (vpe0limit < tcpervpe[0]) { |
| /* Reducing TC count - distribute to others */ |
| slop = tcpervpe[0] - vpe0limit; |
| slopslop = slop % (nvpe - 1); |
| tcpervpe[0] = vpe0limit; |
| for (i = 1; i < nvpe; i++) { |
| tcpervpe[i] += slop / (nvpe - 1); |
| if(slopslop && ((slopslop - (i - 1) > 0))) |
| tcpervpe[i]++; |
| } |
| } else if (vpe0limit > tcpervpe[0]) { |
| /* Increasing TC count - steal from others */ |
| slop = vpe0limit - tcpervpe[0]; |
| slopslop = slop % (nvpe - 1); |
| tcpervpe[0] = vpe0limit; |
| for (i = 1; i < nvpe; i++) { |
| tcpervpe[i] -= slop / (nvpe - 1); |
| if(slopslop && ((slopslop - (i - 1) > 0))) |
| tcpervpe[i]--; |
| } |
| } |
| } |
| |
| /* Set up shared TLB */ |
| smtc_configure_tlb(); |
| |
| for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) { |
| /* |
| * Set the MVP bits. |
| */ |
| settc(tc); |
| write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP); |
| if (vpe != 0) |
| printk(", "); |
| printk("VPE %d: TC", vpe); |
| for (i = 0; i < tcpervpe[vpe]; i++) { |
| /* |
| * TC 0 is bound to VPE 0 at reset, |
| * and is presumably executing this |
| * code. Leave it alone! |
| */ |
| if (tc != 0) { |
| smtc_tc_setup(vpe, tc, cpu); |
| cpu++; |
| } |
| printk(" %d", tc); |
| tc++; |
| } |
| if (vpe != 0) { |
| /* |
| * Clear any stale software interrupts from VPE's Cause |
| */ |
| write_vpe_c0_cause(0); |
| |
| /* |
| * Clear ERL/EXL of VPEs other than 0 |
| * and set restricted interrupt enable/mask. |
| */ |
| write_vpe_c0_status((read_vpe_c0_status() |
| & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM)) |
| | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7 |
| | ST0_IE)); |
| /* |
| * set config to be the same as vpe0, |
| * particularly kseg0 coherency alg |
| */ |
| write_vpe_c0_config(read_c0_config()); |
| /* Clear any pending timer interrupt */ |
| write_vpe_c0_compare(0); |
| /* Propagate Config7 */ |
| write_vpe_c0_config7(read_c0_config7()); |
| write_vpe_c0_count(read_c0_count() + CP0_SKEW); |
| ehb(); |
| } |
| /* enable multi-threading within VPE */ |
| write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE); |
| /* enable the VPE */ |
| write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); |
| } |
| |
| /* |
| * Pull any physically present but unused TCs out of circulation. |
| */ |
| while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) { |
| cpu_clear(tc, cpu_possible_map); |
| cpu_clear(tc, cpu_present_map); |
| tc++; |
| } |
| |
| /* release config state */ |
| write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC ); |
| |
| printk("\n"); |
| |
| /* Set up coprocessor affinity CPU mask(s) */ |
| |
| #ifdef CONFIG_MIPS_MT_FPAFF |
| for (tc = 0; tc < ntc; tc++) { |
| if (cpu_data[tc].options & MIPS_CPU_FPU) |
| cpu_set(tc, mt_fpu_cpumask); |
| } |
| #endif |
| |
| /* set up ipi interrupts... */ |
| |
| /* If we have multiple VPEs running, set up the cross-VPE interrupt */ |
| |
| setup_cross_vpe_interrupts(nvpe); |
| |
| /* Set up queue of free IPI "messages". */ |
| nipi = NR_CPUS * IPIBUF_PER_CPU; |
| if (ipibuffers > 0) |
| nipi = ipibuffers; |
| |
| pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL); |
| if (pipi == NULL) |
| panic("kmalloc of IPI message buffers failed\n"); |
| else |
| printk("IPI buffer pool of %d buffers\n", nipi); |
| for (i = 0; i < nipi; i++) { |
| smtc_ipi_nq(&freeIPIq, pipi); |
| pipi++; |
| } |
| |
| /* Arm multithreading and enable other VPEs - but all TCs are Halted */ |
| emt(EMT_ENABLE); |
| evpe(EVPE_ENABLE); |
| local_irq_restore(flags); |
| /* Initialize SMTC /proc statistics/diagnostics */ |
| init_smtc_stats(); |
| } |
| |
| |
| /* |
| * Setup the PC, SP, and GP of a secondary processor and start it |
| * running! |
| * smp_bootstrap is the place to resume from |
| * __KSTK_TOS(idle) is apparently the stack pointer |
| * (unsigned long)idle->thread_info the gp |
| * |
| */ |
| void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle) |
| { |
| extern u32 kernelsp[NR_CPUS]; |
| unsigned long flags; |
| int mtflags; |
| |
| LOCK_MT_PRA(); |
| if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { |
| dvpe(); |
| } |
| settc(cpu_data[cpu].tc_id); |
| |
| /* pc */ |
| write_tc_c0_tcrestart((unsigned long)&smp_bootstrap); |
| |
| /* stack pointer */ |
| kernelsp[cpu] = __KSTK_TOS(idle); |
| write_tc_gpr_sp(__KSTK_TOS(idle)); |
| |
| /* global pointer */ |
| write_tc_gpr_gp((unsigned long)task_thread_info(idle)); |
| |
| smtc_status |= SMTC_MTC_ACTIVE; |
| write_tc_c0_tchalt(0); |
| if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { |
| evpe(EVPE_ENABLE); |
| } |
| UNLOCK_MT_PRA(); |
| } |
| |
| void smtc_init_secondary(void) |
| { |
| local_irq_enable(); |
| } |
| |
| void smtc_smp_finish(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Lowest-numbered CPU per VPE starts a clock tick. |
| * Like per_cpu_trap_init() hack, this assumes that |
| * SMTC init code assigns TCs consdecutively and |
| * in ascending order across available VPEs. |
| */ |
| if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id)) |
| write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ); |
| |
| printk("TC %d going on-line as CPU %d\n", |
| cpu_data[smp_processor_id()].tc_id, smp_processor_id()); |
| } |
| |
| void smtc_cpus_done(void) |
| { |
| } |
| |
| /* |
| * Support for SMTC-optimized driver IRQ registration |
| */ |
| |
| /* |
| * SMTC Kernel needs to manipulate low-level CPU interrupt mask |
| * in do_IRQ. These are passed in setup_irq_smtc() and stored |
| * in this table. |
| */ |
| |
| int setup_irq_smtc(unsigned int irq, struct irqaction * new, |
| unsigned long hwmask) |
| { |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG |
| unsigned int vpe = current_cpu_data.vpe_id; |
| |
| vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1; |
| #endif |
| irq_hwmask[irq] = hwmask; |
| |
| return setup_irq(irq, new); |
| } |
| |
| #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF |
| /* |
| * Support for IRQ affinity to TCs |
| */ |
| |
| void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity) |
| { |
| /* |
| * If a "fast path" cache of quickly decodable affinity state |
| * is maintained, this is where it gets done, on a call up |
| * from the platform affinity code. |
| */ |
| } |
| |
| void smtc_forward_irq(unsigned int irq) |
| { |
| int target; |
| |
| /* |
| * OK wise guy, now figure out how to get the IRQ |
| * to be serviced on an authorized "CPU". |
| * |
| * Ideally, to handle the situation where an IRQ has multiple |
| * eligible CPUS, we would maintain state per IRQ that would |
| * allow a fair distribution of service requests. Since the |
| * expected use model is any-or-only-one, for simplicity |
| * and efficiency, we just pick the easiest one to find. |
| */ |
| |
| target = first_cpu(irq_desc[irq].affinity); |
| |
| /* |
| * We depend on the platform code to have correctly processed |
| * IRQ affinity change requests to ensure that the IRQ affinity |
| * mask has been purged of bits corresponding to nonexistent and |
| * offline "CPUs", and to TCs bound to VPEs other than the VPE |
| * connected to the physical interrupt input for the interrupt |
| * in question. Otherwise we have a nasty problem with interrupt |
| * mask management. This is best handled in non-performance-critical |
| * platform IRQ affinity setting code, to minimize interrupt-time |
| * checks. |
| */ |
| |
| /* If no one is eligible, service locally */ |
| if (target >= NR_CPUS) { |
| do_IRQ_no_affinity(irq); |
| return; |
| } |
| |
| smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq); |
| } |
| |
| #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */ |
| |
| /* |
| * IPI model for SMTC is tricky, because interrupts aren't TC-specific. |
| * Within a VPE one TC can interrupt another by different approaches. |
| * The easiest to get right would probably be to make all TCs except |
| * the target IXMT and set a software interrupt, but an IXMT-based |
| * scheme requires that a handler must run before a new IPI could |
| * be sent, which would break the "broadcast" loops in MIPS MT. |
| * A more gonzo approach within a VPE is to halt the TC, extract |
| * its Restart, Status, and a couple of GPRs, and program the Restart |
| * address to emulate an interrupt. |
| * |
| * Within a VPE, one can be confident that the target TC isn't in |
| * a critical EXL state when halted, since the write to the Halt |
| * register could not have issued on the writing thread if the |
| * halting thread had EXL set. So k0 and k1 of the target TC |
| * can be used by the injection code. Across VPEs, one can't |
| * be certain that the target TC isn't in a critical exception |
| * state. So we try a two-step process of sending a software |
| * interrupt to the target VPE, which either handles the event |
| * itself (if it was the target) or injects the event within |
| * the VPE. |
| */ |
| |
| static void smtc_ipi_qdump(void) |
| { |
| int i; |
| |
| for (i = 0; i < NR_CPUS ;i++) { |
| printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n", |
| i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail, |
| IPIQ[i].depth); |
| } |
| } |
| |
| /* |
| * The standard atomic.h primitives don't quite do what we want |
| * here: We need an atomic add-and-return-previous-value (which |
| * could be done with atomic_add_return and a decrement) and an |
| * atomic set/zero-and-return-previous-value (which can't really |
| * be done with the atomic.h primitives). And since this is |
| * MIPS MT, we can assume that we have LL/SC. |
| */ |
| static inline int atomic_postincrement(atomic_t *v) |
| { |
| unsigned long result; |
| |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1: ll %0, %2 \n" |
| " addu %1, %0, 1 \n" |
| " sc %1, %2 \n" |
| " beqz %1, 1b \n" |
| __WEAK_LLSC_MB |
| : "=&r" (result), "=&r" (temp), "=m" (v->counter) |
| : "m" (v->counter) |
| : "memory"); |
| |
| return result; |
| } |
| |
| void smtc_send_ipi(int cpu, int type, unsigned int action) |
| { |
| int tcstatus; |
| struct smtc_ipi *pipi; |
| unsigned long flags; |
| int mtflags; |
| unsigned long tcrestart; |
| extern void r4k_wait_irqoff(void), __pastwait(void); |
| |
| if (cpu == smp_processor_id()) { |
| printk("Cannot Send IPI to self!\n"); |
| return; |
| } |
| /* Set up a descriptor, to be delivered either promptly or queued */ |
| pipi = smtc_ipi_dq(&freeIPIq); |
| if (pipi == NULL) { |
| bust_spinlocks(1); |
| mips_mt_regdump(dvpe()); |
| panic("IPI Msg. Buffers Depleted\n"); |
| } |
| pipi->type = type; |
| pipi->arg = (void *)action; |
| pipi->dest = cpu; |
| if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { |
| /* If not on same VPE, enqueue and send cross-VPE interrupt */ |
| smtc_ipi_nq(&IPIQ[cpu], pipi); |
| LOCK_CORE_PRA(); |
| settc(cpu_data[cpu].tc_id); |
| write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1); |
| UNLOCK_CORE_PRA(); |
| } else { |
| /* |
| * Not sufficient to do a LOCK_MT_PRA (dmt) here, |
| * since ASID shootdown on the other VPE may |
| * collide with this operation. |
| */ |
| LOCK_CORE_PRA(); |
| settc(cpu_data[cpu].tc_id); |
| /* Halt the targeted TC */ |
| write_tc_c0_tchalt(TCHALT_H); |
| mips_ihb(); |
| |
| /* |
| * Inspect TCStatus - if IXMT is set, we have to queue |
| * a message. Otherwise, we set up the "interrupt" |
| * of the other TC |
| */ |
| tcstatus = read_tc_c0_tcstatus(); |
| |
| if ((tcstatus & TCSTATUS_IXMT) != 0) { |
| /* |
| * If we're in the the irq-off version of the wait |
| * loop, we need to force exit from the wait and |
| * do a direct post of the IPI. |
| */ |
| if (cpu_wait == r4k_wait_irqoff) { |
| tcrestart = read_tc_c0_tcrestart(); |
| if (tcrestart >= (unsigned long)r4k_wait_irqoff |
| && tcrestart < (unsigned long)__pastwait) { |
| write_tc_c0_tcrestart(__pastwait); |
| tcstatus &= ~TCSTATUS_IXMT; |
| write_tc_c0_tcstatus(tcstatus); |
| goto postdirect; |
| } |
| } |
| /* |
| * Otherwise we queue the message for the target TC |
| * to pick up when he does a local_irq_restore() |
| */ |
| write_tc_c0_tchalt(0); |
| UNLOCK_CORE_PRA(); |
| smtc_ipi_nq(&IPIQ[cpu], pipi); |
| } else { |
| postdirect: |
| post_direct_ipi(cpu, pipi); |
| write_tc_c0_tchalt(0); |
| UNLOCK_CORE_PRA(); |
| } |
| } |
| } |
| |
| /* |
| * Send IPI message to Halted TC, TargTC/TargVPE already having been set |
| */ |
| static void post_direct_ipi(int cpu, struct smtc_ipi *pipi) |
| { |
| struct pt_regs *kstack; |
| unsigned long tcstatus; |
| unsigned long tcrestart; |
| extern u32 kernelsp[NR_CPUS]; |
| extern void __smtc_ipi_vector(void); |
| //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu); |
| |
| /* Extract Status, EPC from halted TC */ |
| tcstatus = read_tc_c0_tcstatus(); |
| tcrestart = read_tc_c0_tcrestart(); |
| /* If TCRestart indicates a WAIT instruction, advance the PC */ |
| if ((tcrestart & 0x80000000) |
| && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) { |
| tcrestart += 4; |
| } |
| /* |
| * Save on TC's future kernel stack |
| * |
| * CU bit of Status is indicator that TC was |
| * already running on a kernel stack... |
| */ |
| if (tcstatus & ST0_CU0) { |
| /* Note that this "- 1" is pointer arithmetic */ |
| kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1; |
| } else { |
| kstack = ((struct pt_regs *)kernelsp[cpu]) - 1; |
| } |
| |
| kstack->cp0_epc = (long)tcrestart; |
| /* Save TCStatus */ |
| kstack->cp0_tcstatus = tcstatus; |
| /* Pass token of operation to be performed kernel stack pad area */ |
| kstack->pad0[4] = (unsigned long)pipi; |
| /* Pass address of function to be called likewise */ |
| kstack->pad0[5] = (unsigned long)&ipi_decode; |
| /* Set interrupt exempt and kernel mode */ |
| tcstatus |= TCSTATUS_IXMT; |
| tcstatus &= ~TCSTATUS_TKSU; |
| write_tc_c0_tcstatus(tcstatus); |
| ehb(); |
| /* Set TC Restart address to be SMTC IPI vector */ |
| write_tc_c0_tcrestart(__smtc_ipi_vector); |
| } |
| |
| static void ipi_resched_interrupt(void) |
| { |
| /* Return from interrupt should be enough to cause scheduler check */ |
| } |
| |
| static void ipi_call_interrupt(void) |
| { |
| /* Invoke generic function invocation code in smp.c */ |
| smp_call_function_interrupt(); |
| } |
| |
| DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device); |
| |
| void ipi_decode(struct smtc_ipi *pipi) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct clock_event_device *cd; |
| void *arg_copy = pipi->arg; |
| int type_copy = pipi->type; |
| smtc_ipi_nq(&freeIPIq, pipi); |
| switch (type_copy) { |
| case SMTC_CLOCK_TICK: |
| irq_enter(); |
| kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++; |
| cd = &per_cpu(mips_clockevent_device, cpu); |
| cd->event_handler(cd); |
| irq_exit(); |
| break; |
| |
| case LINUX_SMP_IPI: |
| switch ((int)arg_copy) { |
| case SMP_RESCHEDULE_YOURSELF: |
| ipi_resched_interrupt(); |
| break; |
| case SMP_CALL_FUNCTION: |
| ipi_call_interrupt(); |
| break; |
| default: |
| printk("Impossible SMTC IPI Argument 0x%x\n", |
| (int)arg_copy); |
| break; |
| } |
| break; |
| #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF |
| case IRQ_AFFINITY_IPI: |
| /* |
| * Accept a "forwarded" interrupt that was initially |
| * taken by a TC who doesn't have affinity for the IRQ. |
| */ |
| do_IRQ_no_affinity((int)arg_copy); |
| break; |
| #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */ |
| default: |
| printk("Impossible SMTC IPI Type 0x%x\n", type_copy); |
| break; |
| } |
| } |
| |
| /* |
| * Similar to smtc_ipi_replay(), but invoked from context restore, |
| * so it reuses the current exception frame rather than set up a |
| * new one with self_ipi. |
| */ |
| |
| void deferred_smtc_ipi(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Test is not atomic, but much faster than a dequeue, |
| * and the vast majority of invocations will have a null queue. |
| * If irq_disabled when this was called, then any IPIs queued |
| * after we test last will be taken on the next irq_enable/restore. |
| * If interrupts were enabled, then any IPIs added after the |
| * last test will be taken directly. |
| */ |
| |
| while (IPIQ[cpu].head != NULL) { |
| struct smtc_ipi_q *q = &IPIQ[cpu]; |
| struct smtc_ipi *pipi; |
| unsigned long flags; |
| |
| /* |
| * It may be possible we'll come in with interrupts |
| * already enabled. |
| */ |
| local_irq_save(flags); |
| |
| spin_lock(&q->lock); |
| pipi = __smtc_ipi_dq(q); |
| spin_unlock(&q->lock); |
| if (pipi != NULL) |
| ipi_decode(pipi); |
| /* |
| * The use of the __raw_local restore isn't |
| * as obviously necessary here as in smtc_ipi_replay(), |
| * but it's more efficient, given that we're already |
| * running down the IPI queue. |
| */ |
| __raw_local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * Cross-VPE interrupts in the SMTC prototype use "software interrupts" |
| * set via cross-VPE MTTR manipulation of the Cause register. It would be |
| * in some regards preferable to have external logic for "doorbell" hardware |
| * interrupts. |
| */ |
| |
| static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ; |
| |
| static irqreturn_t ipi_interrupt(int irq, void *dev_idm) |
| { |
| int my_vpe = cpu_data[smp_processor_id()].vpe_id; |
| int my_tc = cpu_data[smp_processor_id()].tc_id; |
| int cpu; |
| struct smtc_ipi *pipi; |
| unsigned long tcstatus; |
| int sent; |
| unsigned long flags; |
| unsigned int mtflags; |
| unsigned int vpflags; |
| |
| /* |
| * So long as cross-VPE interrupts are done via |
| * MFTR/MTTR read-modify-writes of Cause, we need |
| * to stop other VPEs whenever the local VPE does |
| * anything similar. |
| */ |
| local_irq_save(flags); |
| vpflags = dvpe(); |
| clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ); |
| set_c0_status(0x100 << MIPS_CPU_IPI_IRQ); |
| irq_enable_hazard(); |
| evpe(vpflags); |
| local_irq_restore(flags); |
| |
| /* |
| * Cross-VPE Interrupt handler: Try to directly deliver IPIs |
| * queued for TCs on this VPE other than the current one. |
| * Return-from-interrupt should cause us to drain the queue |
| * for the current TC, so we ought not to have to do it explicitly here. |
| */ |
| |
| for_each_online_cpu(cpu) { |
| if (cpu_data[cpu].vpe_id != my_vpe) |
| continue; |
| |
| pipi = smtc_ipi_dq(&IPIQ[cpu]); |
| if (pipi != NULL) { |
| if (cpu_data[cpu].tc_id != my_tc) { |
| sent = 0; |
| LOCK_MT_PRA(); |
| settc(cpu_data[cpu].tc_id); |
| write_tc_c0_tchalt(TCHALT_H); |
| mips_ihb(); |
| tcstatus = read_tc_c0_tcstatus(); |
| if ((tcstatus & TCSTATUS_IXMT) == 0) { |
| post_direct_ipi(cpu, pipi); |
| sent = 1; |
| } |
| write_tc_c0_tchalt(0); |
| UNLOCK_MT_PRA(); |
| if (!sent) { |
| smtc_ipi_req(&IPIQ[cpu], pipi); |
| } |
| } else { |
| /* |
| * ipi_decode() should be called |
| * with interrupts off |
| */ |
| local_irq_save(flags); |
| ipi_decode(pipi); |
| local_irq_restore(flags); |
| } |
| } |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void ipi_irq_dispatch(void) |
| { |
| do_IRQ(cpu_ipi_irq); |
| } |
| |
| static struct irqaction irq_ipi = { |
| .handler = ipi_interrupt, |
| .flags = IRQF_DISABLED, |
| .name = "SMTC_IPI", |
| .flags = IRQF_PERCPU |
| }; |
| |
| static void setup_cross_vpe_interrupts(unsigned int nvpe) |
| { |
| if (nvpe < 1) |
| return; |
| |
| if (!cpu_has_vint) |
| panic("SMTC Kernel requires Vectored Interrupt support"); |
| |
| set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch); |
| |
| setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ)); |
| |
| set_irq_handler(cpu_ipi_irq, handle_percpu_irq); |
| } |
| |
| /* |
| * SMTC-specific hacks invoked from elsewhere in the kernel. |
| */ |
| |
| /* |
| * smtc_ipi_replay is called from raw_local_irq_restore |
| */ |
| |
| void smtc_ipi_replay(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| /* |
| * To the extent that we've ever turned interrupts off, |
| * we may have accumulated deferred IPIs. This is subtle. |
| * we should be OK: If we pick up something and dispatch |
| * it here, that's great. If we see nothing, but concurrent |
| * with this operation, another TC sends us an IPI, IXMT |
| * is clear, and we'll handle it as a real pseudo-interrupt |
| * and not a pseudo-pseudo interrupt. The important thing |
| * is to do the last check for queued message *after* the |
| * re-enabling of interrupts. |
| */ |
| while (IPIQ[cpu].head != NULL) { |
| struct smtc_ipi_q *q = &IPIQ[cpu]; |
| struct smtc_ipi *pipi; |
| unsigned long flags; |
| |
| /* |
| * It's just possible we'll come in with interrupts |
| * already enabled. |
| */ |
| local_irq_save(flags); |
| |
| spin_lock(&q->lock); |
| pipi = __smtc_ipi_dq(q); |
| spin_unlock(&q->lock); |
| /* |
| ** But use a raw restore here to avoid recursion. |
| */ |
| __raw_local_irq_restore(flags); |
| |
| if (pipi) { |
| self_ipi(pipi); |
| smtc_cpu_stats[cpu].selfipis++; |
| } |
| } |
| } |
| |
| EXPORT_SYMBOL(smtc_ipi_replay); |
| |
| void smtc_idle_loop_hook(void) |
| { |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG |
| int im; |
| int flags; |
| int mtflags; |
| int bit; |
| int vpe; |
| int tc; |
| int hook_ntcs; |
| /* |
| * printk within DMT-protected regions can deadlock, |
| * so buffer diagnostic messages for later output. |
| */ |
| char *pdb_msg; |
| char id_ho_db_msg[768]; /* worst-case use should be less than 700 */ |
| |
| if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */ |
| if (atomic_add_return(1, &idle_hook_initialized) == 1) { |
| int mvpconf0; |
| /* Tedious stuff to just do once */ |
| mvpconf0 = read_c0_mvpconf0(); |
| hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; |
| if (hook_ntcs > NR_CPUS) |
| hook_ntcs = NR_CPUS; |
| for (tc = 0; tc < hook_ntcs; tc++) { |
| tcnoprog[tc] = 0; |
| clock_hang_reported[tc] = 0; |
| } |
| for (vpe = 0; vpe < 2; vpe++) |
| for (im = 0; im < 8; im++) |
| imstuckcount[vpe][im] = 0; |
| printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs); |
| atomic_set(&idle_hook_initialized, 1000); |
| } else { |
| /* Someone else is initializing in parallel - let 'em finish */ |
| while (atomic_read(&idle_hook_initialized) < 1000) |
| ; |
| } |
| } |
| |
| /* Have we stupidly left IXMT set somewhere? */ |
| if (read_c0_tcstatus() & 0x400) { |
| write_c0_tcstatus(read_c0_tcstatus() & ~0x400); |
| ehb(); |
| printk("Dangling IXMT in cpu_idle()\n"); |
| } |
| |
| /* Have we stupidly left an IM bit turned off? */ |
| #define IM_LIMIT 2000 |
| local_irq_save(flags); |
| mtflags = dmt(); |
| pdb_msg = &id_ho_db_msg[0]; |
| im = read_c0_status(); |
| vpe = current_cpu_data.vpe_id; |
| for (bit = 0; bit < 8; bit++) { |
| /* |
| * In current prototype, I/O interrupts |
| * are masked for VPE > 0 |
| */ |
| if (vpemask[vpe][bit]) { |
| if (!(im & (0x100 << bit))) |
| imstuckcount[vpe][bit]++; |
| else |
| imstuckcount[vpe][bit] = 0; |
| if (imstuckcount[vpe][bit] > IM_LIMIT) { |
| set_c0_status(0x100 << bit); |
| ehb(); |
| imstuckcount[vpe][bit] = 0; |
| pdb_msg += sprintf(pdb_msg, |
| "Dangling IM %d fixed for VPE %d\n", bit, |
| vpe); |
| } |
| } |
| } |
| |
| emt(mtflags); |
| local_irq_restore(flags); |
| if (pdb_msg != &id_ho_db_msg[0]) |
| printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg); |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ |
| |
| smtc_ipi_replay(); |
| } |
| |
| void smtc_soft_dump(void) |
| { |
| int i; |
| |
| printk("Counter Interrupts taken per CPU (TC)\n"); |
| for (i=0; i < NR_CPUS; i++) { |
| printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints); |
| } |
| printk("Self-IPI invocations:\n"); |
| for (i=0; i < NR_CPUS; i++) { |
| printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis); |
| } |
| smtc_ipi_qdump(); |
| printk("%d Recoveries of \"stolen\" FPU\n", |
| atomic_read(&smtc_fpu_recoveries)); |
| } |
| |
| |
| /* |
| * TLB management routines special to SMTC |
| */ |
| |
| void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu) |
| { |
| unsigned long flags, mtflags, tcstat, prevhalt, asid; |
| int tlb, i; |
| |
| /* |
| * It would be nice to be able to use a spinlock here, |
| * but this is invoked from within TLB flush routines |
| * that protect themselves with DVPE, so if a lock is |
| * held by another TC, it'll never be freed. |
| * |
| * DVPE/DMT must not be done with interrupts enabled, |
| * so even so most callers will already have disabled |
| * them, let's be really careful... |
| */ |
| |
| local_irq_save(flags); |
| if (smtc_status & SMTC_TLB_SHARED) { |
| mtflags = dvpe(); |
| tlb = 0; |
| } else { |
| mtflags = dmt(); |
| tlb = cpu_data[cpu].vpe_id; |
| } |
| asid = asid_cache(cpu); |
| |
| do { |
| if (!((asid += ASID_INC) & ASID_MASK) ) { |
| if (cpu_has_vtag_icache) |
| flush_icache_all(); |
| /* Traverse all online CPUs (hack requires contigous range) */ |
| for_each_online_cpu(i) { |
| /* |
| * We don't need to worry about our own CPU, nor those of |
| * CPUs who don't share our TLB. |
| */ |
| if ((i != smp_processor_id()) && |
| ((smtc_status & SMTC_TLB_SHARED) || |
| (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) { |
| settc(cpu_data[i].tc_id); |
| prevhalt = read_tc_c0_tchalt() & TCHALT_H; |
| if (!prevhalt) { |
| write_tc_c0_tchalt(TCHALT_H); |
| mips_ihb(); |
| } |
| tcstat = read_tc_c0_tcstatus(); |
| smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i); |
| if (!prevhalt) |
| write_tc_c0_tchalt(0); |
| } |
| } |
| if (!asid) /* fix version if needed */ |
| asid = ASID_FIRST_VERSION; |
| local_flush_tlb_all(); /* start new asid cycle */ |
| } |
| } while (smtc_live_asid[tlb][(asid & ASID_MASK)]); |
| |
| /* |
| * SMTC shares the TLB within VPEs and possibly across all VPEs. |
| */ |
| for_each_online_cpu(i) { |
| if ((smtc_status & SMTC_TLB_SHARED) || |
| (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id)) |
| cpu_context(i, mm) = asid_cache(i) = asid; |
| } |
| |
| if (smtc_status & SMTC_TLB_SHARED) |
| evpe(mtflags); |
| else |
| emt(mtflags); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Invoked from macros defined in mmu_context.h |
| * which must already have disabled interrupts |
| * and done a DVPE or DMT as appropriate. |
| */ |
| |
| void smtc_flush_tlb_asid(unsigned long asid) |
| { |
| int entry; |
| unsigned long ehi; |
| |
| entry = read_c0_wired(); |
| |
| /* Traverse all non-wired entries */ |
| while (entry < current_cpu_data.tlbsize) { |
| write_c0_index(entry); |
| ehb(); |
| tlb_read(); |
| ehb(); |
| ehi = read_c0_entryhi(); |
| if ((ehi & ASID_MASK) == asid) { |
| /* |
| * Invalidate only entries with specified ASID, |
| * makiing sure all entries differ. |
| */ |
| write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1))); |
| write_c0_entrylo0(0); |
| write_c0_entrylo1(0); |
| mtc0_tlbw_hazard(); |
| tlb_write_indexed(); |
| } |
| entry++; |
| } |
| write_c0_index(PARKED_INDEX); |
| tlbw_use_hazard(); |
| } |
| |
| /* |
| * Support for single-threading cache flush operations. |
| */ |
| |
| static int halt_state_save[NR_CPUS]; |
| |
| /* |
| * To really, really be sure that nothing is being done |
| * by other TCs, halt them all. This code assumes that |
| * a DVPE has already been done, so while their Halted |
| * state is theoretically architecturally unstable, in |
| * practice, it's not going to change while we're looking |
| * at it. |
| */ |
| |
| void smtc_cflush_lockdown(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (cpu != smp_processor_id()) { |
| settc(cpu_data[cpu].tc_id); |
| halt_state_save[cpu] = read_tc_c0_tchalt(); |
| write_tc_c0_tchalt(TCHALT_H); |
| } |
| } |
| mips_ihb(); |
| } |
| |
| /* It would be cheating to change the cpu_online states during a flush! */ |
| |
| void smtc_cflush_release(void) |
| { |
| int cpu; |
| |
| /* |
| * Start with a hazard barrier to ensure |
| * that all CACHE ops have played through. |
| */ |
| mips_ihb(); |
| |
| for_each_online_cpu(cpu) { |
| if (cpu != smp_processor_id()) { |
| settc(cpu_data[cpu].tc_id); |
| write_tc_c0_tchalt(halt_state_save[cpu]); |
| } |
| } |
| mips_ihb(); |
| } |