| /* |
| * core.c -- Voltage/Current Regulator framework. |
| * |
| * Copyright 2007, 2008 Wolfson Microelectronics PLC. |
| * Copyright 2008 SlimLogic Ltd. |
| * |
| * Author: Liam Girdwood <lrg@slimlogic.co.uk> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| #include <linux/suspend.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| |
| #define REGULATOR_VERSION "0.5" |
| |
| static DEFINE_MUTEX(regulator_list_mutex); |
| static LIST_HEAD(regulator_list); |
| static LIST_HEAD(regulator_map_list); |
| |
| /** |
| * struct regulator_dev |
| * |
| * Voltage / Current regulator class device. One for each regulator. |
| */ |
| struct regulator_dev { |
| struct regulator_desc *desc; |
| int use_count; |
| |
| /* lists we belong to */ |
| struct list_head list; /* list of all regulators */ |
| struct list_head slist; /* list of supplied regulators */ |
| |
| /* lists we own */ |
| struct list_head consumer_list; /* consumers we supply */ |
| struct list_head supply_list; /* regulators we supply */ |
| |
| struct blocking_notifier_head notifier; |
| struct mutex mutex; /* consumer lock */ |
| struct module *owner; |
| struct device dev; |
| struct regulation_constraints *constraints; |
| struct regulator_dev *supply; /* for tree */ |
| |
| void *reg_data; /* regulator_dev data */ |
| }; |
| |
| /** |
| * struct regulator_map |
| * |
| * Used to provide symbolic supply names to devices. |
| */ |
| struct regulator_map { |
| struct list_head list; |
| struct device *dev; |
| const char *supply; |
| struct regulator_dev *regulator; |
| }; |
| |
| /* |
| * struct regulator |
| * |
| * One for each consumer device. |
| */ |
| struct regulator { |
| struct device *dev; |
| struct list_head list; |
| int uA_load; |
| int min_uV; |
| int max_uV; |
| int enabled; /* count of client enables */ |
| char *supply_name; |
| struct device_attribute dev_attr; |
| struct regulator_dev *rdev; |
| }; |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev); |
| static int _regulator_disable(struct regulator_dev *rdev); |
| static int _regulator_get_voltage(struct regulator_dev *rdev); |
| static int _regulator_get_current_limit(struct regulator_dev *rdev); |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev); |
| static void _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data); |
| |
| /* gets the regulator for a given consumer device */ |
| static struct regulator *get_device_regulator(struct device *dev) |
| { |
| struct regulator *regulator = NULL; |
| struct regulator_dev *rdev; |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(rdev, ®ulator_list, list) { |
| mutex_lock(&rdev->mutex); |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| if (regulator->dev == dev) { |
| mutex_unlock(&rdev->mutex); |
| mutex_unlock(®ulator_list_mutex); |
| return regulator; |
| } |
| } |
| mutex_unlock(&rdev->mutex); |
| } |
| mutex_unlock(®ulator_list_mutex); |
| return NULL; |
| } |
| |
| /* Platform voltage constraint check */ |
| static int regulator_check_voltage(struct regulator_dev *rdev, |
| int *min_uV, int *max_uV) |
| { |
| BUG_ON(*min_uV > *max_uV); |
| |
| if (!rdev->constraints) { |
| printk(KERN_ERR "%s: no constraints for %s\n", __func__, |
| rdev->desc->name); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { |
| printk(KERN_ERR "%s: operation not allowed for %s\n", |
| __func__, rdev->desc->name); |
| return -EPERM; |
| } |
| |
| if (*max_uV > rdev->constraints->max_uV) |
| *max_uV = rdev->constraints->max_uV; |
| if (*min_uV < rdev->constraints->min_uV) |
| *min_uV = rdev->constraints->min_uV; |
| |
| if (*min_uV > *max_uV) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* current constraint check */ |
| static int regulator_check_current_limit(struct regulator_dev *rdev, |
| int *min_uA, int *max_uA) |
| { |
| BUG_ON(*min_uA > *max_uA); |
| |
| if (!rdev->constraints) { |
| printk(KERN_ERR "%s: no constraints for %s\n", __func__, |
| rdev->desc->name); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { |
| printk(KERN_ERR "%s: operation not allowed for %s\n", |
| __func__, rdev->desc->name); |
| return -EPERM; |
| } |
| |
| if (*max_uA > rdev->constraints->max_uA) |
| *max_uA = rdev->constraints->max_uA; |
| if (*min_uA < rdev->constraints->min_uA) |
| *min_uA = rdev->constraints->min_uA; |
| |
| if (*min_uA > *max_uA) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* operating mode constraint check */ |
| static int regulator_check_mode(struct regulator_dev *rdev, int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| case REGULATOR_MODE_NORMAL: |
| case REGULATOR_MODE_IDLE: |
| case REGULATOR_MODE_STANDBY: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (!rdev->constraints) { |
| printk(KERN_ERR "%s: no constraints for %s\n", __func__, |
| rdev->desc->name); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { |
| printk(KERN_ERR "%s: operation not allowed for %s\n", |
| __func__, rdev->desc->name); |
| return -EPERM; |
| } |
| if (!(rdev->constraints->valid_modes_mask & mode)) { |
| printk(KERN_ERR "%s: invalid mode %x for %s\n", |
| __func__, mode, rdev->desc->name); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* dynamic regulator mode switching constraint check */ |
| static int regulator_check_drms(struct regulator_dev *rdev) |
| { |
| if (!rdev->constraints) { |
| printk(KERN_ERR "%s: no constraints for %s\n", __func__, |
| rdev->desc->name); |
| return -ENODEV; |
| } |
| if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { |
| printk(KERN_ERR "%s: operation not allowed for %s\n", |
| __func__, rdev->desc->name); |
| return -EPERM; |
| } |
| return 0; |
| } |
| |
| static ssize_t device_requested_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator *regulator; |
| |
| regulator = get_device_regulator(dev); |
| if (regulator == NULL) |
| return 0; |
| |
| return sprintf(buf, "%d\n", regulator->uA_load); |
| } |
| |
| static ssize_t regulator_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| ssize_t ret; |
| |
| mutex_lock(&rdev->mutex); |
| ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); |
| mutex_unlock(&rdev->mutex); |
| |
| return ret; |
| } |
| |
| static ssize_t regulator_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); |
| } |
| |
| static ssize_t regulator_name_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| const char *name; |
| |
| if (rdev->constraints->name) |
| name = rdev->constraints->name; |
| else if (rdev->desc->name) |
| name = rdev->desc->name; |
| else |
| name = ""; |
| |
| return sprintf(buf, "%s\n", name); |
| } |
| |
| static ssize_t regulator_print_opmode(char *buf, int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| return sprintf(buf, "fast\n"); |
| case REGULATOR_MODE_NORMAL: |
| return sprintf(buf, "normal\n"); |
| case REGULATOR_MODE_IDLE: |
| return sprintf(buf, "idle\n"); |
| case REGULATOR_MODE_STANDBY: |
| return sprintf(buf, "standby\n"); |
| } |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t regulator_opmode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, _regulator_get_mode(rdev)); |
| } |
| |
| static ssize_t regulator_print_state(char *buf, int state) |
| { |
| if (state > 0) |
| return sprintf(buf, "enabled\n"); |
| else if (state == 0) |
| return sprintf(buf, "disabled\n"); |
| else |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t regulator_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, _regulator_is_enabled(rdev)); |
| } |
| |
| static ssize_t regulator_min_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uA); |
| } |
| |
| static ssize_t regulator_max_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uA); |
| } |
| |
| static ssize_t regulator_min_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uV); |
| } |
| |
| static ssize_t regulator_max_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uV); |
| } |
| |
| static ssize_t regulator_total_uA_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| struct regulator *regulator; |
| int uA = 0; |
| |
| mutex_lock(&rdev->mutex); |
| list_for_each_entry(regulator, &rdev->consumer_list, list) |
| uA += regulator->uA_load; |
| mutex_unlock(&rdev->mutex); |
| return sprintf(buf, "%d\n", uA); |
| } |
| |
| static ssize_t regulator_num_users_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", rdev->use_count); |
| } |
| |
| static ssize_t regulator_type_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| switch (rdev->desc->type) { |
| case REGULATOR_VOLTAGE: |
| return sprintf(buf, "voltage\n"); |
| case REGULATOR_CURRENT: |
| return sprintf(buf, "current\n"); |
| } |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t regulator_suspend_mem_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); |
| } |
| |
| static ssize_t regulator_suspend_disk_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); |
| } |
| |
| static ssize_t regulator_suspend_standby_uV_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); |
| } |
| |
| static ssize_t regulator_suspend_mem_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_mem.mode); |
| } |
| |
| static ssize_t regulator_suspend_disk_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_disk.mode); |
| } |
| |
| static ssize_t regulator_suspend_standby_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_standby.mode); |
| } |
| |
| static ssize_t regulator_suspend_mem_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_mem.enabled); |
| } |
| |
| static ssize_t regulator_suspend_disk_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_disk.enabled); |
| } |
| |
| static ssize_t regulator_suspend_standby_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "not defined\n"); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_standby.enabled); |
| } |
| |
| static struct device_attribute regulator_dev_attrs[] = { |
| __ATTR(name, 0444, regulator_name_show, NULL), |
| __ATTR(microvolts, 0444, regulator_uV_show, NULL), |
| __ATTR(microamps, 0444, regulator_uA_show, NULL), |
| __ATTR(opmode, 0444, regulator_opmode_show, NULL), |
| __ATTR(state, 0444, regulator_state_show, NULL), |
| __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL), |
| __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL), |
| __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL), |
| __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL), |
| __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL), |
| __ATTR(num_users, 0444, regulator_num_users_show, NULL), |
| __ATTR(type, 0444, regulator_type_show, NULL), |
| __ATTR(suspend_mem_microvolts, 0444, |
| regulator_suspend_mem_uV_show, NULL), |
| __ATTR(suspend_disk_microvolts, 0444, |
| regulator_suspend_disk_uV_show, NULL), |
| __ATTR(suspend_standby_microvolts, 0444, |
| regulator_suspend_standby_uV_show, NULL), |
| __ATTR(suspend_mem_mode, 0444, |
| regulator_suspend_mem_mode_show, NULL), |
| __ATTR(suspend_disk_mode, 0444, |
| regulator_suspend_disk_mode_show, NULL), |
| __ATTR(suspend_standby_mode, 0444, |
| regulator_suspend_standby_mode_show, NULL), |
| __ATTR(suspend_mem_state, 0444, |
| regulator_suspend_mem_state_show, NULL), |
| __ATTR(suspend_disk_state, 0444, |
| regulator_suspend_disk_state_show, NULL), |
| __ATTR(suspend_standby_state, 0444, |
| regulator_suspend_standby_state_show, NULL), |
| __ATTR_NULL, |
| }; |
| |
| static void regulator_dev_release(struct device *dev) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| kfree(rdev); |
| } |
| |
| static struct class regulator_class = { |
| .name = "regulator", |
| .dev_release = regulator_dev_release, |
| .dev_attrs = regulator_dev_attrs, |
| }; |
| |
| /* Calculate the new optimum regulator operating mode based on the new total |
| * consumer load. All locks held by caller */ |
| static void drms_uA_update(struct regulator_dev *rdev) |
| { |
| struct regulator *sibling; |
| int current_uA = 0, output_uV, input_uV, err; |
| unsigned int mode; |
| |
| err = regulator_check_drms(rdev); |
| if (err < 0 || !rdev->desc->ops->get_optimum_mode || |
| !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode); |
| return; |
| |
| /* get output voltage */ |
| output_uV = rdev->desc->ops->get_voltage(rdev); |
| if (output_uV <= 0) |
| return; |
| |
| /* get input voltage */ |
| if (rdev->supply && rdev->supply->desc->ops->get_voltage) |
| input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); |
| else |
| input_uV = rdev->constraints->input_uV; |
| if (input_uV <= 0) |
| return; |
| |
| /* calc total requested load */ |
| list_for_each_entry(sibling, &rdev->consumer_list, list) |
| current_uA += sibling->uA_load; |
| |
| /* now get the optimum mode for our new total regulator load */ |
| mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, |
| output_uV, current_uA); |
| |
| /* check the new mode is allowed */ |
| err = regulator_check_mode(rdev, mode); |
| if (err == 0) |
| rdev->desc->ops->set_mode(rdev, mode); |
| } |
| |
| static int suspend_set_state(struct regulator_dev *rdev, |
| struct regulator_state *rstate) |
| { |
| int ret = 0; |
| |
| /* enable & disable are mandatory for suspend control */ |
| if (!rdev->desc->ops->set_suspend_enable || |
| !rdev->desc->ops->set_suspend_disable) { |
| printk(KERN_ERR "%s: no way to set suspend state\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (rstate->enabled) |
| ret = rdev->desc->ops->set_suspend_enable(rdev); |
| else |
| ret = rdev->desc->ops->set_suspend_disable(rdev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to enabled/disable\n", __func__); |
| return ret; |
| } |
| |
| if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { |
| ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to set voltage\n", |
| __func__); |
| return ret; |
| } |
| } |
| |
| if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { |
| ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to set mode\n", __func__); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| /* locks held by caller */ |
| static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) |
| { |
| if (!rdev->constraints) |
| return -EINVAL; |
| |
| switch (state) { |
| case PM_SUSPEND_STANDBY: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_standby); |
| case PM_SUSPEND_MEM: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_mem); |
| case PM_SUSPEND_MAX: |
| return suspend_set_state(rdev, |
| &rdev->constraints->state_disk); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void print_constraints(struct regulator_dev *rdev) |
| { |
| struct regulation_constraints *constraints = rdev->constraints; |
| char buf[80]; |
| int count; |
| |
| if (rdev->desc->type == REGULATOR_VOLTAGE) { |
| if (constraints->min_uV == constraints->max_uV) |
| count = sprintf(buf, "%d mV ", |
| constraints->min_uV / 1000); |
| else |
| count = sprintf(buf, "%d <--> %d mV ", |
| constraints->min_uV / 1000, |
| constraints->max_uV / 1000); |
| } else { |
| if (constraints->min_uA == constraints->max_uA) |
| count = sprintf(buf, "%d mA ", |
| constraints->min_uA / 1000); |
| else |
| count = sprintf(buf, "%d <--> %d mA ", |
| constraints->min_uA / 1000, |
| constraints->max_uA / 1000); |
| } |
| if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) |
| count += sprintf(buf + count, "fast "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) |
| count += sprintf(buf + count, "normal "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) |
| count += sprintf(buf + count, "idle "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) |
| count += sprintf(buf + count, "standby"); |
| |
| printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf); |
| } |
| |
| /** |
| * set_machine_constraints - sets regulator constraints |
| * @regulator: regulator source |
| * |
| * Allows platform initialisation code to define and constrain |
| * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: |
| * Constraints *must* be set by platform code in order for some |
| * regulator operations to proceed i.e. set_voltage, set_current_limit, |
| * set_mode. |
| */ |
| static int set_machine_constraints(struct regulator_dev *rdev, |
| struct regulation_constraints *constraints) |
| { |
| int ret = 0; |
| const char *name; |
| struct regulator_ops *ops = rdev->desc->ops; |
| |
| if (constraints->name) |
| name = constraints->name; |
| else if (rdev->desc->name) |
| name = rdev->desc->name; |
| else |
| name = "regulator"; |
| |
| rdev->constraints = constraints; |
| |
| /* do we need to apply the constraint voltage */ |
| if (rdev->constraints->apply_uV && |
| rdev->constraints->min_uV == rdev->constraints->max_uV && |
| ops->set_voltage) { |
| ret = ops->set_voltage(rdev, |
| rdev->constraints->min_uV, rdev->constraints->max_uV); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n", |
| __func__, |
| rdev->constraints->min_uV, name); |
| rdev->constraints = NULL; |
| goto out; |
| } |
| } |
| |
| /* are we enabled at boot time by firmware / bootloader */ |
| if (rdev->constraints->boot_on) |
| rdev->use_count = 1; |
| |
| /* do we need to setup our suspend state */ |
| if (constraints->initial_state) { |
| ret = suspend_prepare(rdev, constraints->initial_state); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to set suspend state for %s\n", |
| __func__, name); |
| rdev->constraints = NULL; |
| goto out; |
| } |
| } |
| |
| /* if always_on is set then turn the regulator on if it's not |
| * already on. */ |
| if (constraints->always_on && ops->enable && |
| ((ops->is_enabled && !ops->is_enabled(rdev)) || |
| (!ops->is_enabled && !constraints->boot_on))) { |
| ret = ops->enable(rdev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to enable %s\n", |
| __func__, name); |
| rdev->constraints = NULL; |
| goto out; |
| } |
| } |
| |
| print_constraints(rdev); |
| out: |
| return ret; |
| } |
| |
| /** |
| * set_supply - set regulator supply regulator |
| * @regulator: regulator name |
| * @supply: supply regulator name |
| * |
| * Called by platform initialisation code to set the supply regulator for this |
| * regulator. This ensures that a regulators supply will also be enabled by the |
| * core if it's child is enabled. |
| */ |
| static int set_supply(struct regulator_dev *rdev, |
| struct regulator_dev *supply_rdev) |
| { |
| int err; |
| |
| err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj, |
| "supply"); |
| if (err) { |
| printk(KERN_ERR |
| "%s: could not add device link %s err %d\n", |
| __func__, supply_rdev->dev.kobj.name, err); |
| goto out; |
| } |
| rdev->supply = supply_rdev; |
| list_add(&rdev->slist, &supply_rdev->supply_list); |
| out: |
| return err; |
| } |
| |
| /** |
| * set_consumer_device_supply: Bind a regulator to a symbolic supply |
| * @regulator: regulator source |
| * @dev: device the supply applies to |
| * @supply: symbolic name for supply |
| * |
| * Allows platform initialisation code to map physical regulator |
| * sources to symbolic names for supplies for use by devices. Devices |
| * should use these symbolic names to request regulators, avoiding the |
| * need to provide board-specific regulator names as platform data. |
| */ |
| static int set_consumer_device_supply(struct regulator_dev *rdev, |
| struct device *consumer_dev, const char *supply) |
| { |
| struct regulator_map *node; |
| |
| if (supply == NULL) |
| return -EINVAL; |
| |
| node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL); |
| if (node == NULL) |
| return -ENOMEM; |
| |
| node->regulator = rdev; |
| node->dev = consumer_dev; |
| node->supply = supply; |
| |
| list_add(&node->list, ®ulator_map_list); |
| return 0; |
| } |
| |
| static void unset_consumer_device_supply(struct regulator_dev *rdev, |
| struct device *consumer_dev) |
| { |
| struct regulator_map *node, *n; |
| |
| list_for_each_entry_safe(node, n, ®ulator_map_list, list) { |
| if (rdev == node->regulator && |
| consumer_dev == node->dev) { |
| list_del(&node->list); |
| kfree(node); |
| return; |
| } |
| } |
| } |
| |
| #define REG_STR_SIZE 32 |
| |
| static struct regulator *create_regulator(struct regulator_dev *rdev, |
| struct device *dev, |
| const char *supply_name) |
| { |
| struct regulator *regulator; |
| char buf[REG_STR_SIZE]; |
| int err, size; |
| |
| regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); |
| if (regulator == NULL) |
| return NULL; |
| |
| mutex_lock(&rdev->mutex); |
| regulator->rdev = rdev; |
| list_add(®ulator->list, &rdev->consumer_list); |
| |
| if (dev) { |
| /* create a 'requested_microamps_name' sysfs entry */ |
| size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s", |
| supply_name); |
| if (size >= REG_STR_SIZE) |
| goto overflow_err; |
| |
| regulator->dev = dev; |
| regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); |
| if (regulator->dev_attr.attr.name == NULL) |
| goto attr_name_err; |
| |
| regulator->dev_attr.attr.owner = THIS_MODULE; |
| regulator->dev_attr.attr.mode = 0444; |
| regulator->dev_attr.show = device_requested_uA_show; |
| err = device_create_file(dev, ®ulator->dev_attr); |
| if (err < 0) { |
| printk(KERN_WARNING "%s: could not add regulator_dev" |
| " load sysfs\n", __func__); |
| goto attr_name_err; |
| } |
| |
| /* also add a link to the device sysfs entry */ |
| size = scnprintf(buf, REG_STR_SIZE, "%s-%s", |
| dev->kobj.name, supply_name); |
| if (size >= REG_STR_SIZE) |
| goto attr_err; |
| |
| regulator->supply_name = kstrdup(buf, GFP_KERNEL); |
| if (regulator->supply_name == NULL) |
| goto attr_err; |
| |
| err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, |
| buf); |
| if (err) { |
| printk(KERN_WARNING |
| "%s: could not add device link %s err %d\n", |
| __func__, dev->kobj.name, err); |
| device_remove_file(dev, ®ulator->dev_attr); |
| goto link_name_err; |
| } |
| } |
| mutex_unlock(&rdev->mutex); |
| return regulator; |
| link_name_err: |
| kfree(regulator->supply_name); |
| attr_err: |
| device_remove_file(regulator->dev, ®ulator->dev_attr); |
| attr_name_err: |
| kfree(regulator->dev_attr.attr.name); |
| overflow_err: |
| list_del(®ulator->list); |
| kfree(regulator); |
| mutex_unlock(&rdev->mutex); |
| return NULL; |
| } |
| |
| /** |
| * regulator_get - lookup and obtain a reference to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. Use of supply names |
| * configured via regulator_set_device_supply() is strongly |
| * encouraged. |
| */ |
| struct regulator *regulator_get(struct device *dev, const char *id) |
| { |
| struct regulator_dev *rdev; |
| struct regulator_map *map; |
| struct regulator *regulator = ERR_PTR(-ENODEV); |
| |
| if (id == NULL) { |
| printk(KERN_ERR "regulator: get() with no identifier\n"); |
| return regulator; |
| } |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| list_for_each_entry(map, ®ulator_map_list, list) { |
| if (dev == map->dev && |
| strcmp(map->supply, id) == 0) { |
| rdev = map->regulator; |
| goto found; |
| } |
| } |
| printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n", |
| id); |
| mutex_unlock(®ulator_list_mutex); |
| return regulator; |
| |
| found: |
| if (!try_module_get(rdev->owner)) |
| goto out; |
| |
| regulator = create_regulator(rdev, dev, id); |
| if (regulator == NULL) { |
| regulator = ERR_PTR(-ENOMEM); |
| module_put(rdev->owner); |
| } |
| |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| return regulator; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get); |
| |
| /** |
| * regulator_put - "free" the regulator source |
| * @regulator: regulator source |
| * |
| * Note: drivers must ensure that all regulator_enable calls made on this |
| * regulator source are balanced by regulator_disable calls prior to calling |
| * this function. |
| */ |
| void regulator_put(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev; |
| |
| if (regulator == NULL || IS_ERR(regulator)) |
| return; |
| |
| mutex_lock(®ulator_list_mutex); |
| rdev = regulator->rdev; |
| |
| if (WARN(regulator->enabled, "Releasing supply %s while enabled\n", |
| regulator->supply_name)) |
| _regulator_disable(rdev); |
| |
| /* remove any sysfs entries */ |
| if (regulator->dev) { |
| sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); |
| kfree(regulator->supply_name); |
| device_remove_file(regulator->dev, ®ulator->dev_attr); |
| kfree(regulator->dev_attr.attr.name); |
| } |
| list_del(®ulator->list); |
| kfree(regulator); |
| |
| module_put(rdev->owner); |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_put); |
| |
| /* locks held by regulator_enable() */ |
| static int _regulator_enable(struct regulator_dev *rdev) |
| { |
| int ret = -EINVAL; |
| |
| if (!rdev->constraints) { |
| printk(KERN_ERR "%s: %s has no constraints\n", |
| __func__, rdev->desc->name); |
| return ret; |
| } |
| |
| /* do we need to enable the supply regulator first */ |
| if (rdev->supply) { |
| ret = _regulator_enable(rdev->supply); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to enable %s: %d\n", |
| __func__, rdev->desc->name, ret); |
| return ret; |
| } |
| } |
| |
| /* check voltage and requested load before enabling */ |
| if (rdev->desc->ops->enable) { |
| |
| if (rdev->constraints && |
| (rdev->constraints->valid_ops_mask & |
| REGULATOR_CHANGE_DRMS)) |
| drms_uA_update(rdev); |
| |
| ret = rdev->desc->ops->enable(rdev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to enable %s: %d\n", |
| __func__, rdev->desc->name, ret); |
| return ret; |
| } |
| rdev->use_count++; |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_enable - enable regulator output |
| * @regulator: regulator source |
| * |
| * Enable the regulator output at the predefined voltage or current value. |
| * NOTE: the output value can be set by other drivers, boot loader or may be |
| * hardwired in the regulator. |
| * NOTE: calls to regulator_enable() must be balanced with calls to |
| * regulator_disable(). |
| */ |
| int regulator_enable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| mutex_lock(&rdev->mutex); |
| if (regulator->enabled == 0) |
| ret = _regulator_enable(rdev); |
| else if (regulator->enabled < 0) |
| ret = -EIO; |
| if (ret == 0) |
| regulator->enabled++; |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_enable); |
| |
| /* locks held by regulator_disable() */ |
| static int _regulator_disable(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| /* are we the last user and permitted to disable ? */ |
| if (rdev->use_count == 1 && !rdev->constraints->always_on) { |
| |
| /* we are last user */ |
| if (rdev->desc->ops->disable) { |
| ret = rdev->desc->ops->disable(rdev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to disable %s\n", |
| __func__, rdev->desc->name); |
| return ret; |
| } |
| } |
| |
| /* decrease our supplies ref count and disable if required */ |
| if (rdev->supply) |
| _regulator_disable(rdev->supply); |
| |
| rdev->use_count = 0; |
| } else if (rdev->use_count > 1) { |
| |
| if (rdev->constraints && |
| (rdev->constraints->valid_ops_mask & |
| REGULATOR_CHANGE_DRMS)) |
| drms_uA_update(rdev); |
| |
| rdev->use_count--; |
| } |
| return ret; |
| } |
| |
| /** |
| * regulator_disable - disable regulator output |
| * @regulator: regulator source |
| * |
| * Disable the regulator output voltage or current. |
| * NOTE: this will only disable the regulator output if no other consumer |
| * devices have it enabled. |
| * NOTE: calls to regulator_enable() must be balanced with calls to |
| * regulator_disable(). |
| */ |
| int regulator_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| mutex_lock(&rdev->mutex); |
| if (regulator->enabled == 1) { |
| ret = _regulator_disable(rdev); |
| if (ret == 0) |
| regulator->uA_load = 0; |
| } else if (WARN(regulator->enabled <= 0, |
| "unbalanced disables for supply %s\n", |
| regulator->supply_name)) |
| ret = -EIO; |
| if (ret == 0) |
| regulator->enabled--; |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable); |
| |
| /* locks held by regulator_force_disable() */ |
| static int _regulator_force_disable(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| /* force disable */ |
| if (rdev->desc->ops->disable) { |
| /* ah well, who wants to live forever... */ |
| ret = rdev->desc->ops->disable(rdev); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to force disable %s\n", |
| __func__, rdev->desc->name); |
| return ret; |
| } |
| /* notify other consumers that power has been forced off */ |
| _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE, |
| NULL); |
| } |
| |
| /* decrease our supplies ref count and disable if required */ |
| if (rdev->supply) |
| _regulator_disable(rdev->supply); |
| |
| rdev->use_count = 0; |
| return ret; |
| } |
| |
| /** |
| * regulator_force_disable - force disable regulator output |
| * @regulator: regulator source |
| * |
| * Forcibly disable the regulator output voltage or current. |
| * NOTE: this *will* disable the regulator output even if other consumer |
| * devices have it enabled. This should be used for situations when device |
| * damage will likely occur if the regulator is not disabled (e.g. over temp). |
| */ |
| int regulator_force_disable(struct regulator *regulator) |
| { |
| int ret; |
| |
| mutex_lock(®ulator->rdev->mutex); |
| regulator->enabled = 0; |
| regulator->uA_load = 0; |
| ret = _regulator_force_disable(regulator->rdev); |
| mutex_unlock(®ulator->rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_force_disable); |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->is_enabled) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->is_enabled(rdev); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| |
| /** |
| * regulator_is_enabled - is the regulator output enabled |
| * @regulator: regulator source |
| * |
| * Returns positive if the regulator driver backing the source/client |
| * has requested that the device be enabled, zero if it hasn't, else a |
| * negative errno code. |
| * |
| * Note that the device backing this regulator handle can have multiple |
| * users, so it might be enabled even if regulator_enable() was never |
| * called for this particular source. |
| */ |
| int regulator_is_enabled(struct regulator *regulator) |
| { |
| return _regulator_is_enabled(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_enabled); |
| |
| /** |
| * regulator_set_voltage - set regulator output voltage |
| * @regulator: regulator source |
| * @min_uV: Minimum required voltage in uV |
| * @max_uV: Maximum acceptable voltage in uV |
| * |
| * Sets a voltage regulator to the desired output voltage. This can be set |
| * during any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the voltage will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new voltage when enabled. |
| * |
| * NOTE: If the regulator is shared between several devices then the lowest |
| * request voltage that meets the system constraints will be used. |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_voltage) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| regulator->min_uV = min_uV; |
| regulator->max_uV = max_uV; |
| ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV); |
| |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage); |
| |
| static int _regulator_get_voltage(struct regulator_dev *rdev) |
| { |
| /* sanity check */ |
| if (rdev->desc->ops->get_voltage) |
| return rdev->desc->ops->get_voltage(rdev); |
| else |
| return -EINVAL; |
| } |
| |
| /** |
| * regulator_get_voltage - get regulator output voltage |
| * @regulator: regulator source |
| * |
| * This returns the current regulator voltage in uV. |
| * |
| * NOTE: If the regulator is disabled it will return the voltage value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_voltage(struct regulator *regulator) |
| { |
| int ret; |
| |
| mutex_lock(®ulator->rdev->mutex); |
| |
| ret = _regulator_get_voltage(regulator->rdev); |
| |
| mutex_unlock(®ulator->rdev->mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage); |
| |
| /** |
| * regulator_set_current_limit - set regulator output current limit |
| * @regulator: regulator source |
| * @min_uA: Minimuum supported current in uA |
| * @max_uA: Maximum supported current in uA |
| * |
| * Sets current sink to the desired output current. This can be set during |
| * any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the current will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new current when enabled. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_current_limit(struct regulator *regulator, |
| int min_uA, int max_uA) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_current_limit) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_current_limit); |
| |
| static int _regulator_get_current_limit(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->get_current_limit) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->get_current_limit(rdev); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| |
| /** |
| * regulator_get_current_limit - get regulator output current |
| * @regulator: regulator source |
| * |
| * This returns the current supplied by the specified current sink in uA. |
| * |
| * NOTE: If the regulator is disabled it will return the current value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_current_limit(struct regulator *regulator) |
| { |
| return _regulator_get_current_limit(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_current_limit); |
| |
| /** |
| * regulator_set_mode - set regulator operating mode |
| * @regulator: regulator source |
| * @mode: operating mode - one of the REGULATOR_MODE constants |
| * |
| * Set regulator operating mode to increase regulator efficiency or improve |
| * regulation performance. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_mode(struct regulator *regulator, unsigned int mode) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_mode) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_mode(rdev, mode); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_mode(rdev, mode); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_mode); |
| |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| mutex_lock(&rdev->mutex); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->get_mode) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->get_mode(rdev); |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| |
| /** |
| * regulator_get_mode - get regulator operating mode |
| * @regulator: regulator source |
| * |
| * Get the current regulator operating mode. |
| */ |
| unsigned int regulator_get_mode(struct regulator *regulator) |
| { |
| return _regulator_get_mode(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_mode); |
| |
| /** |
| * regulator_set_optimum_mode - set regulator optimum operating mode |
| * @regulator: regulator source |
| * @uA_load: load current |
| * |
| * Notifies the regulator core of a new device load. This is then used by |
| * DRMS (if enabled by constraints) to set the most efficient regulator |
| * operating mode for the new regulator loading. |
| * |
| * Consumer devices notify their supply regulator of the maximum power |
| * they will require (can be taken from device datasheet in the power |
| * consumption tables) when they change operational status and hence power |
| * state. Examples of operational state changes that can affect power |
| * consumption are :- |
| * |
| * o Device is opened / closed. |
| * o Device I/O is about to begin or has just finished. |
| * o Device is idling in between work. |
| * |
| * This information is also exported via sysfs to userspace. |
| * |
| * DRMS will sum the total requested load on the regulator and change |
| * to the most efficient operating mode if platform constraints allow. |
| * |
| * Returns the new regulator mode or error. |
| */ |
| int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator *consumer; |
| int ret, output_uV, input_uV, total_uA_load = 0; |
| unsigned int mode; |
| |
| mutex_lock(&rdev->mutex); |
| |
| regulator->uA_load = uA_load; |
| ret = regulator_check_drms(rdev); |
| if (ret < 0) |
| goto out; |
| ret = -EINVAL; |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->get_optimum_mode) |
| goto out; |
| |
| /* get output voltage */ |
| output_uV = rdev->desc->ops->get_voltage(rdev); |
| if (output_uV <= 0) { |
| printk(KERN_ERR "%s: invalid output voltage found for %s\n", |
| __func__, rdev->desc->name); |
| goto out; |
| } |
| |
| /* get input voltage */ |
| if (rdev->supply && rdev->supply->desc->ops->get_voltage) |
| input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply); |
| else |
| input_uV = rdev->constraints->input_uV; |
| if (input_uV <= 0) { |
| printk(KERN_ERR "%s: invalid input voltage found for %s\n", |
| __func__, rdev->desc->name); |
| goto out; |
| } |
| |
| /* calc total requested load for this regulator */ |
| list_for_each_entry(consumer, &rdev->consumer_list, list) |
| total_uA_load += consumer->uA_load; |
| |
| mode = rdev->desc->ops->get_optimum_mode(rdev, |
| input_uV, output_uV, |
| total_uA_load); |
| ret = regulator_check_mode(rdev, mode); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to get optimum mode for %s @" |
| " %d uA %d -> %d uV\n", __func__, rdev->desc->name, |
| total_uA_load, input_uV, output_uV); |
| goto out; |
| } |
| |
| ret = rdev->desc->ops->set_mode(rdev, mode); |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n", |
| __func__, mode, rdev->desc->name); |
| goto out; |
| } |
| ret = mode; |
| out: |
| mutex_unlock(&rdev->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); |
| |
| /** |
| * regulator_register_notifier - register regulator event notifier |
| * @regulator: regulator source |
| * @notifier_block: notifier block |
| * |
| * Register notifier block to receive regulator events. |
| */ |
| int regulator_register_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_register_notifier); |
| |
| /** |
| * regulator_unregister_notifier - unregister regulator event notifier |
| * @regulator: regulator source |
| * @notifier_block: notifier block |
| * |
| * Unregister regulator event notifier block. |
| */ |
| int regulator_unregister_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister_notifier); |
| |
| /* notify regulator consumers and downstream regulator consumers */ |
| static void _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| struct regulator_dev *_rdev; |
| |
| /* call rdev chain first */ |
| mutex_lock(&rdev->mutex); |
| blocking_notifier_call_chain(&rdev->notifier, event, NULL); |
| mutex_unlock(&rdev->mutex); |
| |
| /* now notify regulator we supply */ |
| list_for_each_entry(_rdev, &rdev->supply_list, slist) |
| _notifier_call_chain(_rdev, event, data); |
| } |
| |
| /** |
| * regulator_bulk_get - get multiple regulator consumers |
| * |
| * @dev: Device to supply |
| * @num_consumers: Number of consumers to register |
| * @consumers: Configuration of consumers; clients are stored here. |
| * |
| * @return 0 on success, an errno on failure. |
| * |
| * This helper function allows drivers to get several regulator |
| * consumers in one operation. If any of the regulators cannot be |
| * acquired then any regulators that were allocated will be freed |
| * before returning to the caller. |
| */ |
| int regulator_bulk_get(struct device *dev, int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) |
| consumers[i].consumer = NULL; |
| |
| for (i = 0; i < num_consumers; i++) { |
| consumers[i].consumer = regulator_get(dev, |
| consumers[i].supply); |
| if (IS_ERR(consumers[i].consumer)) { |
| dev_err(dev, "Failed to get supply '%s'\n", |
| consumers[i].supply); |
| ret = PTR_ERR(consumers[i].consumer); |
| consumers[i].consumer = NULL; |
| goto err; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| for (i = 0; i < num_consumers && consumers[i].consumer; i++) |
| regulator_put(consumers[i].consumer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_get); |
| |
| /** |
| * regulator_bulk_enable - enable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to enable multiple regulator |
| * clients in a single API call. If any consumers cannot be enabled |
| * then any others that were enabled will be disabled again prior to |
| * return. |
| */ |
| int regulator_bulk_enable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) { |
| ret = regulator_enable(consumers[i].consumer); |
| if (ret != 0) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply); |
| for (i = 0; i < num_consumers; i++) |
| regulator_disable(consumers[i].consumer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_enable); |
| |
| /** |
| * regulator_bulk_disable - disable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to disable multiple regulator |
| * clients in a single API call. If any consumers cannot be enabled |
| * then any others that were disabled will be disabled again prior to |
| * return. |
| */ |
| int regulator_bulk_disable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) { |
| ret = regulator_disable(consumers[i].consumer); |
| if (ret != 0) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply); |
| for (i = 0; i < num_consumers; i++) |
| regulator_enable(consumers[i].consumer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_disable); |
| |
| /** |
| * regulator_bulk_free - free multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * |
| * This convenience API allows consumers to free multiple regulator |
| * clients in a single API call. |
| */ |
| void regulator_bulk_free(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| |
| for (i = 0; i < num_consumers; i++) { |
| regulator_put(consumers[i].consumer); |
| consumers[i].consumer = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_free); |
| |
| /** |
| * regulator_notifier_call_chain - call regulator event notifier |
| * @regulator: regulator source |
| * @event: notifier block |
| * @data: |
| * |
| * Called by regulator drivers to notify clients a regulator event has |
| * occurred. We also notify regulator clients downstream. |
| */ |
| int regulator_notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| _notifier_call_chain(rdev, event, data); |
| return NOTIFY_DONE; |
| |
| } |
| EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); |
| |
| /** |
| * regulator_register - register regulator |
| * @regulator: regulator source |
| * @reg_data: private regulator data |
| * |
| * Called by regulator drivers to register a regulator. |
| * Returns 0 on success. |
| */ |
| struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc, |
| struct device *dev, void *driver_data) |
| { |
| static atomic_t regulator_no = ATOMIC_INIT(0); |
| struct regulator_dev *rdev; |
| struct regulator_init_data *init_data = dev->platform_data; |
| int ret, i; |
| |
| if (regulator_desc == NULL) |
| return ERR_PTR(-EINVAL); |
| |
| if (regulator_desc->name == NULL || regulator_desc->ops == NULL) |
| return ERR_PTR(-EINVAL); |
| |
| if (!regulator_desc->type == REGULATOR_VOLTAGE && |
| !regulator_desc->type == REGULATOR_CURRENT) |
| return ERR_PTR(-EINVAL); |
| |
| if (!init_data) |
| return ERR_PTR(-EINVAL); |
| |
| rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); |
| if (rdev == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| mutex_init(&rdev->mutex); |
| rdev->reg_data = driver_data; |
| rdev->owner = regulator_desc->owner; |
| rdev->desc = regulator_desc; |
| INIT_LIST_HEAD(&rdev->consumer_list); |
| INIT_LIST_HEAD(&rdev->supply_list); |
| INIT_LIST_HEAD(&rdev->list); |
| INIT_LIST_HEAD(&rdev->slist); |
| BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); |
| |
| /* preform any regulator specific init */ |
| if (init_data->regulator_init) { |
| ret = init_data->regulator_init(rdev->reg_data); |
| if (ret < 0) |
| goto clean; |
| } |
| |
| /* set regulator constraints */ |
| ret = set_machine_constraints(rdev, &init_data->constraints); |
| if (ret < 0) |
| goto clean; |
| |
| /* register with sysfs */ |
| rdev->dev.class = ®ulator_class; |
| rdev->dev.parent = dev; |
| dev_set_name(&rdev->dev, "regulator.%d", |
| atomic_inc_return(®ulator_no) - 1); |
| ret = device_register(&rdev->dev); |
| if (ret != 0) |
| goto clean; |
| |
| dev_set_drvdata(&rdev->dev, rdev); |
| |
| /* set supply regulator if it exists */ |
| if (init_data->supply_regulator_dev) { |
| ret = set_supply(rdev, |
| dev_get_drvdata(init_data->supply_regulator_dev)); |
| if (ret < 0) |
| goto scrub; |
| } |
| |
| /* add consumers devices */ |
| for (i = 0; i < init_data->num_consumer_supplies; i++) { |
| ret = set_consumer_device_supply(rdev, |
| init_data->consumer_supplies[i].dev, |
| init_data->consumer_supplies[i].supply); |
| if (ret < 0) { |
| for (--i; i >= 0; i--) |
| unset_consumer_device_supply(rdev, |
| init_data->consumer_supplies[i].dev); |
| goto scrub; |
| } |
| } |
| |
| list_add(&rdev->list, ®ulator_list); |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| return rdev; |
| |
| scrub: |
| device_unregister(&rdev->dev); |
| clean: |
| kfree(rdev); |
| rdev = ERR_PTR(ret); |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(regulator_register); |
| |
| /** |
| * regulator_unregister - unregister regulator |
| * @regulator: regulator source |
| * |
| * Called by regulator drivers to unregister a regulator. |
| */ |
| void regulator_unregister(struct regulator_dev *rdev) |
| { |
| if (rdev == NULL) |
| return; |
| |
| mutex_lock(®ulator_list_mutex); |
| list_del(&rdev->list); |
| if (rdev->supply) |
| sysfs_remove_link(&rdev->dev.kobj, "supply"); |
| device_unregister(&rdev->dev); |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister); |
| |
| /** |
| * regulator_suspend_prepare: prepare regulators for system wide suspend |
| * @state: system suspend state |
| * |
| * Configure each regulator with it's suspend operating parameters for state. |
| * This will usually be called by machine suspend code prior to supending. |
| */ |
| int regulator_suspend_prepare(suspend_state_t state) |
| { |
| struct regulator_dev *rdev; |
| int ret = 0; |
| |
| /* ON is handled by regulator active state */ |
| if (state == PM_SUSPEND_ON) |
| return -EINVAL; |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(rdev, ®ulator_list, list) { |
| |
| mutex_lock(&rdev->mutex); |
| ret = suspend_prepare(rdev, state); |
| mutex_unlock(&rdev->mutex); |
| |
| if (ret < 0) { |
| printk(KERN_ERR "%s: failed to prepare %s\n", |
| __func__, rdev->desc->name); |
| goto out; |
| } |
| } |
| out: |
| mutex_unlock(®ulator_list_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_suspend_prepare); |
| |
| /** |
| * rdev_get_drvdata - get rdev regulator driver data |
| * @regulator: regulator |
| * |
| * Get rdev regulator driver private data. This call can be used in the |
| * regulator driver context. |
| */ |
| void *rdev_get_drvdata(struct regulator_dev *rdev) |
| { |
| return rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_drvdata); |
| |
| /** |
| * regulator_get_drvdata - get regulator driver data |
| * @regulator: regulator |
| * |
| * Get regulator driver private data. This call can be used in the consumer |
| * driver context when non API regulator specific functions need to be called. |
| */ |
| void *regulator_get_drvdata(struct regulator *regulator) |
| { |
| return regulator->rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_drvdata); |
| |
| /** |
| * regulator_set_drvdata - set regulator driver data |
| * @regulator: regulator |
| * @data: data |
| */ |
| void regulator_set_drvdata(struct regulator *regulator, void *data) |
| { |
| regulator->rdev->reg_data = data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_drvdata); |
| |
| /** |
| * regulator_get_id - get regulator ID |
| * @regulator: regulator |
| */ |
| int rdev_get_id(struct regulator_dev *rdev) |
| { |
| return rdev->desc->id; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_id); |
| |
| struct device *rdev_get_dev(struct regulator_dev *rdev) |
| { |
| return &rdev->dev; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_dev); |
| |
| void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) |
| { |
| return reg_init_data->driver_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); |
| |
| static int __init regulator_init(void) |
| { |
| printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION); |
| return class_register(®ulator_class); |
| } |
| |
| /* init early to allow our consumers to complete system booting */ |
| core_initcall(regulator_init); |