| /* |
| * Main bcache entry point - handle a read or a write request and decide what to |
| * do with it; the make_request functions are called by the block layer. |
| * |
| * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "request.h" |
| #include "writeback.h" |
| |
| #include <linux/cgroup.h> |
| #include <linux/module.h> |
| #include <linux/hash.h> |
| #include <linux/random.h> |
| #include "blk-cgroup.h" |
| |
| #include <trace/events/bcache.h> |
| |
| #define CUTOFF_CACHE_ADD 95 |
| #define CUTOFF_CACHE_READA 90 |
| |
| struct kmem_cache *bch_search_cache; |
| |
| static void check_should_skip(struct cached_dev *, struct search *); |
| |
| /* Cgroup interface */ |
| |
| #ifdef CONFIG_CGROUP_BCACHE |
| static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 }; |
| |
| static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup) |
| { |
| struct cgroup_subsys_state *css; |
| return cgroup && |
| (css = cgroup_subsys_state(cgroup, bcache_subsys_id)) |
| ? container_of(css, struct bch_cgroup, css) |
| : &bcache_default_cgroup; |
| } |
| |
| struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio) |
| { |
| struct cgroup_subsys_state *css = bio->bi_css |
| ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id) |
| : task_subsys_state(current, bcache_subsys_id); |
| |
| return css |
| ? container_of(css, struct bch_cgroup, css) |
| : &bcache_default_cgroup; |
| } |
| |
| static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft, |
| struct file *file, |
| char __user *buf, size_t nbytes, loff_t *ppos) |
| { |
| char tmp[1024]; |
| int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes, |
| cgroup_to_bcache(cgrp)->cache_mode + 1); |
| |
| if (len < 0) |
| return len; |
| |
| return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); |
| } |
| |
| static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft, |
| const char *buf) |
| { |
| int v = bch_read_string_list(buf, bch_cache_modes); |
| if (v < 0) |
| return v; |
| |
| cgroup_to_bcache(cgrp)->cache_mode = v - 1; |
| return 0; |
| } |
| |
| static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft) |
| { |
| return cgroup_to_bcache(cgrp)->verify; |
| } |
| |
| static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val) |
| { |
| cgroup_to_bcache(cgrp)->verify = val; |
| return 0; |
| } |
| |
| static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft) |
| { |
| struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); |
| return atomic_read(&bcachecg->stats.cache_hits); |
| } |
| |
| static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft) |
| { |
| struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); |
| return atomic_read(&bcachecg->stats.cache_misses); |
| } |
| |
| static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp, |
| struct cftype *cft) |
| { |
| struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); |
| return atomic_read(&bcachecg->stats.cache_bypass_hits); |
| } |
| |
| static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp, |
| struct cftype *cft) |
| { |
| struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); |
| return atomic_read(&bcachecg->stats.cache_bypass_misses); |
| } |
| |
| static struct cftype bch_files[] = { |
| { |
| .name = "cache_mode", |
| .read = cache_mode_read, |
| .write_string = cache_mode_write, |
| }, |
| { |
| .name = "verify", |
| .read_u64 = bch_verify_read, |
| .write_u64 = bch_verify_write, |
| }, |
| { |
| .name = "cache_hits", |
| .read_u64 = bch_cache_hits_read, |
| }, |
| { |
| .name = "cache_misses", |
| .read_u64 = bch_cache_misses_read, |
| }, |
| { |
| .name = "cache_bypass_hits", |
| .read_u64 = bch_cache_bypass_hits_read, |
| }, |
| { |
| .name = "cache_bypass_misses", |
| .read_u64 = bch_cache_bypass_misses_read, |
| }, |
| { } /* terminate */ |
| }; |
| |
| static void init_bch_cgroup(struct bch_cgroup *cg) |
| { |
| cg->cache_mode = -1; |
| } |
| |
| static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup) |
| { |
| struct bch_cgroup *cg; |
| |
| cg = kzalloc(sizeof(*cg), GFP_KERNEL); |
| if (!cg) |
| return ERR_PTR(-ENOMEM); |
| init_bch_cgroup(cg); |
| return &cg->css; |
| } |
| |
| static void bcachecg_destroy(struct cgroup *cgroup) |
| { |
| struct bch_cgroup *cg = cgroup_to_bcache(cgroup); |
| free_css_id(&bcache_subsys, &cg->css); |
| kfree(cg); |
| } |
| |
| struct cgroup_subsys bcache_subsys = { |
| .create = bcachecg_create, |
| .destroy = bcachecg_destroy, |
| .subsys_id = bcache_subsys_id, |
| .name = "bcache", |
| .module = THIS_MODULE, |
| }; |
| EXPORT_SYMBOL_GPL(bcache_subsys); |
| #endif |
| |
| static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) |
| { |
| #ifdef CONFIG_CGROUP_BCACHE |
| int r = bch_bio_to_cgroup(bio)->cache_mode; |
| if (r >= 0) |
| return r; |
| #endif |
| return BDEV_CACHE_MODE(&dc->sb); |
| } |
| |
| static bool verify(struct cached_dev *dc, struct bio *bio) |
| { |
| #ifdef CONFIG_CGROUP_BCACHE |
| if (bch_bio_to_cgroup(bio)->verify) |
| return true; |
| #endif |
| return dc->verify; |
| } |
| |
| static void bio_csum(struct bio *bio, struct bkey *k) |
| { |
| struct bio_vec *bv; |
| uint64_t csum = 0; |
| int i; |
| |
| bio_for_each_segment(bv, bio, i) { |
| void *d = kmap(bv->bv_page) + bv->bv_offset; |
| csum = bch_crc64_update(csum, d, bv->bv_len); |
| kunmap(bv->bv_page); |
| } |
| |
| k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); |
| } |
| |
| /* Insert data into cache */ |
| |
| static void bio_invalidate(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| struct bio *bio = op->cache_bio; |
| |
| pr_debug("invalidating %i sectors from %llu", |
| bio_sectors(bio), (uint64_t) bio->bi_sector); |
| |
| while (bio_sectors(bio)) { |
| unsigned len = min(bio_sectors(bio), 1U << 14); |
| |
| if (bch_keylist_realloc(&op->keys, 0, op->c)) |
| goto out; |
| |
| bio->bi_sector += len; |
| bio->bi_size -= len << 9; |
| |
| bch_keylist_add(&op->keys, |
| &KEY(op->inode, bio->bi_sector, len)); |
| } |
| |
| op->insert_data_done = true; |
| bio_put(bio); |
| out: |
| continue_at(cl, bch_journal, bcache_wq); |
| } |
| |
| struct open_bucket { |
| struct list_head list; |
| struct task_struct *last; |
| unsigned sectors_free; |
| BKEY_PADDED(key); |
| }; |
| |
| void bch_open_buckets_free(struct cache_set *c) |
| { |
| struct open_bucket *b; |
| |
| while (!list_empty(&c->data_buckets)) { |
| b = list_first_entry(&c->data_buckets, |
| struct open_bucket, list); |
| list_del(&b->list); |
| kfree(b); |
| } |
| } |
| |
| int bch_open_buckets_alloc(struct cache_set *c) |
| { |
| int i; |
| |
| spin_lock_init(&c->data_bucket_lock); |
| |
| for (i = 0; i < 6; i++) { |
| struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); |
| if (!b) |
| return -ENOMEM; |
| |
| list_add(&b->list, &c->data_buckets); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We keep multiple buckets open for writes, and try to segregate different |
| * write streams for better cache utilization: first we look for a bucket where |
| * the last write to it was sequential with the current write, and failing that |
| * we look for a bucket that was last used by the same task. |
| * |
| * The ideas is if you've got multiple tasks pulling data into the cache at the |
| * same time, you'll get better cache utilization if you try to segregate their |
| * data and preserve locality. |
| * |
| * For example, say you've starting Firefox at the same time you're copying a |
| * bunch of files. Firefox will likely end up being fairly hot and stay in the |
| * cache awhile, but the data you copied might not be; if you wrote all that |
| * data to the same buckets it'd get invalidated at the same time. |
| * |
| * Both of those tasks will be doing fairly random IO so we can't rely on |
| * detecting sequential IO to segregate their data, but going off of the task |
| * should be a sane heuristic. |
| */ |
| static struct open_bucket *pick_data_bucket(struct cache_set *c, |
| const struct bkey *search, |
| struct task_struct *task, |
| struct bkey *alloc) |
| { |
| struct open_bucket *ret, *ret_task = NULL; |
| |
| list_for_each_entry_reverse(ret, &c->data_buckets, list) |
| if (!bkey_cmp(&ret->key, search)) |
| goto found; |
| else if (ret->last == task) |
| ret_task = ret; |
| |
| ret = ret_task ?: list_first_entry(&c->data_buckets, |
| struct open_bucket, list); |
| found: |
| if (!ret->sectors_free && KEY_PTRS(alloc)) { |
| ret->sectors_free = c->sb.bucket_size; |
| bkey_copy(&ret->key, alloc); |
| bkey_init(alloc); |
| } |
| |
| if (!ret->sectors_free) |
| ret = NULL; |
| |
| return ret; |
| } |
| |
| /* |
| * Allocates some space in the cache to write to, and k to point to the newly |
| * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the |
| * end of the newly allocated space). |
| * |
| * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many |
| * sectors were actually allocated. |
| * |
| * If s->writeback is true, will not fail. |
| */ |
| static bool bch_alloc_sectors(struct bkey *k, unsigned sectors, |
| struct search *s) |
| { |
| struct cache_set *c = s->op.c; |
| struct open_bucket *b; |
| BKEY_PADDED(key) alloc; |
| struct closure cl, *w = NULL; |
| unsigned i; |
| |
| if (s->writeback) { |
| closure_init_stack(&cl); |
| w = &cl; |
| } |
| |
| /* |
| * We might have to allocate a new bucket, which we can't do with a |
| * spinlock held. So if we have to allocate, we drop the lock, allocate |
| * and then retry. KEY_PTRS() indicates whether alloc points to |
| * allocated bucket(s). |
| */ |
| |
| bkey_init(&alloc.key); |
| spin_lock(&c->data_bucket_lock); |
| |
| while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) { |
| unsigned watermark = s->op.write_prio |
| ? WATERMARK_MOVINGGC |
| : WATERMARK_NONE; |
| |
| spin_unlock(&c->data_bucket_lock); |
| |
| if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w)) |
| return false; |
| |
| spin_lock(&c->data_bucket_lock); |
| } |
| |
| /* |
| * If we had to allocate, we might race and not need to allocate the |
| * second time we call find_data_bucket(). If we allocated a bucket but |
| * didn't use it, drop the refcount bch_bucket_alloc_set() took: |
| */ |
| if (KEY_PTRS(&alloc.key)) |
| __bkey_put(c, &alloc.key); |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) |
| EBUG_ON(ptr_stale(c, &b->key, i)); |
| |
| /* Set up the pointer to the space we're allocating: */ |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) |
| k->ptr[i] = b->key.ptr[i]; |
| |
| sectors = min(sectors, b->sectors_free); |
| |
| SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); |
| SET_KEY_SIZE(k, sectors); |
| SET_KEY_PTRS(k, KEY_PTRS(&b->key)); |
| |
| /* |
| * Move b to the end of the lru, and keep track of what this bucket was |
| * last used for: |
| */ |
| list_move_tail(&b->list, &c->data_buckets); |
| bkey_copy_key(&b->key, k); |
| b->last = s->task; |
| |
| b->sectors_free -= sectors; |
| |
| for (i = 0; i < KEY_PTRS(&b->key); i++) { |
| SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); |
| |
| atomic_long_add(sectors, |
| &PTR_CACHE(c, &b->key, i)->sectors_written); |
| } |
| |
| if (b->sectors_free < c->sb.block_size) |
| b->sectors_free = 0; |
| |
| /* |
| * k takes refcounts on the buckets it points to until it's inserted |
| * into the btree, but if we're done with this bucket we just transfer |
| * get_data_bucket()'s refcount. |
| */ |
| if (b->sectors_free) |
| for (i = 0; i < KEY_PTRS(&b->key); i++) |
| atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); |
| |
| spin_unlock(&c->data_bucket_lock); |
| return true; |
| } |
| |
| static void bch_insert_data_error(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| |
| /* |
| * Our data write just errored, which means we've got a bunch of keys to |
| * insert that point to data that wasn't succesfully written. |
| * |
| * We don't have to insert those keys but we still have to invalidate |
| * that region of the cache - so, if we just strip off all the pointers |
| * from the keys we'll accomplish just that. |
| */ |
| |
| struct bkey *src = op->keys.bottom, *dst = op->keys.bottom; |
| |
| while (src != op->keys.top) { |
| struct bkey *n = bkey_next(src); |
| |
| SET_KEY_PTRS(src, 0); |
| bkey_copy(dst, src); |
| |
| dst = bkey_next(dst); |
| src = n; |
| } |
| |
| op->keys.top = dst; |
| |
| bch_journal(cl); |
| } |
| |
| static void bch_insert_data_endio(struct bio *bio, int error) |
| { |
| struct closure *cl = bio->bi_private; |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| struct search *s = container_of(op, struct search, op); |
| |
| if (error) { |
| /* TODO: We could try to recover from this. */ |
| if (s->writeback) |
| s->error = error; |
| else if (s->write) |
| set_closure_fn(cl, bch_insert_data_error, bcache_wq); |
| else |
| set_closure_fn(cl, NULL, NULL); |
| } |
| |
| bch_bbio_endio(op->c, bio, error, "writing data to cache"); |
| } |
| |
| static void bch_insert_data_loop(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| struct search *s = container_of(op, struct search, op); |
| struct bio *bio = op->cache_bio, *n; |
| |
| if (op->skip) |
| return bio_invalidate(cl); |
| |
| if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { |
| set_gc_sectors(op->c); |
| bch_queue_gc(op->c); |
| } |
| |
| /* |
| * Journal writes are marked REQ_FLUSH; if the original write was a |
| * flush, it'll wait on the journal write. |
| */ |
| bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); |
| |
| do { |
| unsigned i; |
| struct bkey *k; |
| struct bio_set *split = s->d |
| ? s->d->bio_split : op->c->bio_split; |
| |
| /* 1 for the device pointer and 1 for the chksum */ |
| if (bch_keylist_realloc(&op->keys, |
| 1 + (op->csum ? 1 : 0), |
| op->c)) |
| continue_at(cl, bch_journal, bcache_wq); |
| |
| k = op->keys.top; |
| bkey_init(k); |
| SET_KEY_INODE(k, op->inode); |
| SET_KEY_OFFSET(k, bio->bi_sector); |
| |
| if (!bch_alloc_sectors(k, bio_sectors(bio), s)) |
| goto err; |
| |
| n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split); |
| |
| n->bi_end_io = bch_insert_data_endio; |
| n->bi_private = cl; |
| |
| if (s->writeback) { |
| SET_KEY_DIRTY(k, true); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| SET_GC_MARK(PTR_BUCKET(op->c, k, i), |
| GC_MARK_DIRTY); |
| } |
| |
| SET_KEY_CSUM(k, op->csum); |
| if (KEY_CSUM(k)) |
| bio_csum(n, k); |
| |
| trace_bcache_cache_insert(k); |
| bch_keylist_push(&op->keys); |
| |
| n->bi_rw |= REQ_WRITE; |
| bch_submit_bbio(n, op->c, k, 0); |
| } while (n != bio); |
| |
| op->insert_data_done = true; |
| continue_at(cl, bch_journal, bcache_wq); |
| err: |
| /* bch_alloc_sectors() blocks if s->writeback = true */ |
| BUG_ON(s->writeback); |
| |
| /* |
| * But if it's not a writeback write we'd rather just bail out if |
| * there aren't any buckets ready to write to - it might take awhile and |
| * we might be starving btree writes for gc or something. |
| */ |
| |
| if (s->write) { |
| /* |
| * Writethrough write: We can't complete the write until we've |
| * updated the index. But we don't want to delay the write while |
| * we wait for buckets to be freed up, so just invalidate the |
| * rest of the write. |
| */ |
| op->skip = true; |
| return bio_invalidate(cl); |
| } else { |
| /* |
| * From a cache miss, we can just insert the keys for the data |
| * we have written or bail out if we didn't do anything. |
| */ |
| op->insert_data_done = true; |
| bio_put(bio); |
| |
| if (!bch_keylist_empty(&op->keys)) |
| continue_at(cl, bch_journal, bcache_wq); |
| else |
| closure_return(cl); |
| } |
| } |
| |
| /** |
| * bch_insert_data - stick some data in the cache |
| * |
| * This is the starting point for any data to end up in a cache device; it could |
| * be from a normal write, or a writeback write, or a write to a flash only |
| * volume - it's also used by the moving garbage collector to compact data in |
| * mostly empty buckets. |
| * |
| * It first writes the data to the cache, creating a list of keys to be inserted |
| * (if the data had to be fragmented there will be multiple keys); after the |
| * data is written it calls bch_journal, and after the keys have been added to |
| * the next journal write they're inserted into the btree. |
| * |
| * It inserts the data in op->cache_bio; bi_sector is used for the key offset, |
| * and op->inode is used for the key inode. |
| * |
| * If op->skip is true, instead of inserting the data it invalidates the region |
| * of the cache represented by op->cache_bio and op->inode. |
| */ |
| void bch_insert_data(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| |
| bch_keylist_init(&op->keys); |
| bio_get(op->cache_bio); |
| bch_insert_data_loop(cl); |
| } |
| |
| void bch_btree_insert_async(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| struct search *s = container_of(op, struct search, op); |
| |
| if (bch_btree_insert(op, op->c, &op->keys)) { |
| s->error = -ENOMEM; |
| op->insert_data_done = true; |
| } |
| |
| if (op->insert_data_done) { |
| bch_keylist_free(&op->keys); |
| closure_return(cl); |
| } else |
| continue_at(cl, bch_insert_data_loop, bcache_wq); |
| } |
| |
| /* Common code for the make_request functions */ |
| |
| static void request_endio(struct bio *bio, int error) |
| { |
| struct closure *cl = bio->bi_private; |
| |
| if (error) { |
| struct search *s = container_of(cl, struct search, cl); |
| s->error = error; |
| /* Only cache read errors are recoverable */ |
| s->recoverable = false; |
| } |
| |
| bio_put(bio); |
| closure_put(cl); |
| } |
| |
| void bch_cache_read_endio(struct bio *bio, int error) |
| { |
| struct bbio *b = container_of(bio, struct bbio, bio); |
| struct closure *cl = bio->bi_private; |
| struct search *s = container_of(cl, struct search, cl); |
| |
| /* |
| * If the bucket was reused while our bio was in flight, we might have |
| * read the wrong data. Set s->error but not error so it doesn't get |
| * counted against the cache device, but we'll still reread the data |
| * from the backing device. |
| */ |
| |
| if (error) |
| s->error = error; |
| else if (ptr_stale(s->op.c, &b->key, 0)) { |
| atomic_long_inc(&s->op.c->cache_read_races); |
| s->error = -EINTR; |
| } |
| |
| bch_bbio_endio(s->op.c, bio, error, "reading from cache"); |
| } |
| |
| static void bio_complete(struct search *s) |
| { |
| if (s->orig_bio) { |
| int cpu, rw = bio_data_dir(s->orig_bio); |
| unsigned long duration = jiffies - s->start_time; |
| |
| cpu = part_stat_lock(); |
| part_round_stats(cpu, &s->d->disk->part0); |
| part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); |
| part_stat_unlock(); |
| |
| trace_bcache_request_end(s, s->orig_bio); |
| bio_endio(s->orig_bio, s->error); |
| s->orig_bio = NULL; |
| } |
| } |
| |
| static void do_bio_hook(struct search *s) |
| { |
| struct bio *bio = &s->bio.bio; |
| memcpy(bio, s->orig_bio, sizeof(struct bio)); |
| |
| bio->bi_end_io = request_endio; |
| bio->bi_private = &s->cl; |
| atomic_set(&bio->bi_cnt, 3); |
| } |
| |
| static void search_free(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| bio_complete(s); |
| |
| if (s->op.cache_bio) |
| bio_put(s->op.cache_bio); |
| |
| if (s->unaligned_bvec) |
| mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec); |
| |
| closure_debug_destroy(cl); |
| mempool_free(s, s->d->c->search); |
| } |
| |
| static struct search *search_alloc(struct bio *bio, struct bcache_device *d) |
| { |
| struct bio_vec *bv; |
| struct search *s = mempool_alloc(d->c->search, GFP_NOIO); |
| memset(s, 0, offsetof(struct search, op.keys)); |
| |
| __closure_init(&s->cl, NULL); |
| |
| s->op.inode = d->id; |
| s->op.c = d->c; |
| s->d = d; |
| s->op.lock = -1; |
| s->task = current; |
| s->orig_bio = bio; |
| s->write = (bio->bi_rw & REQ_WRITE) != 0; |
| s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; |
| s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0; |
| s->recoverable = 1; |
| s->start_time = jiffies; |
| do_bio_hook(s); |
| |
| if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) { |
| bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO); |
| memcpy(bv, bio_iovec(bio), |
| sizeof(struct bio_vec) * bio_segments(bio)); |
| |
| s->bio.bio.bi_io_vec = bv; |
| s->unaligned_bvec = 1; |
| } |
| |
| return s; |
| } |
| |
| static void btree_read_async(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| |
| int ret = btree_root(search_recurse, op->c, op); |
| |
| if (ret == -EAGAIN) |
| continue_at(cl, btree_read_async, bcache_wq); |
| |
| closure_return(cl); |
| } |
| |
| /* Cached devices */ |
| |
| static void cached_dev_bio_complete(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| search_free(cl); |
| cached_dev_put(dc); |
| } |
| |
| /* Process reads */ |
| |
| static void cached_dev_read_complete(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| |
| if (s->op.insert_collision) |
| bch_mark_cache_miss_collision(s); |
| |
| if (s->op.cache_bio) { |
| int i; |
| struct bio_vec *bv; |
| |
| __bio_for_each_segment(bv, s->op.cache_bio, i, 0) |
| __free_page(bv->bv_page); |
| } |
| |
| cached_dev_bio_complete(cl); |
| } |
| |
| static void request_read_error(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct bio_vec *bv; |
| int i; |
| |
| if (s->recoverable) { |
| /* Retry from the backing device: */ |
| trace_bcache_read_retry(s->orig_bio); |
| |
| s->error = 0; |
| bv = s->bio.bio.bi_io_vec; |
| do_bio_hook(s); |
| s->bio.bio.bi_io_vec = bv; |
| |
| if (!s->unaligned_bvec) |
| bio_for_each_segment(bv, s->orig_bio, i) |
| bv->bv_offset = 0, bv->bv_len = PAGE_SIZE; |
| else |
| memcpy(s->bio.bio.bi_io_vec, |
| bio_iovec(s->orig_bio), |
| sizeof(struct bio_vec) * |
| bio_segments(s->orig_bio)); |
| |
| /* XXX: invalidate cache */ |
| |
| closure_bio_submit(&s->bio.bio, &s->cl, s->d); |
| } |
| |
| continue_at(cl, cached_dev_read_complete, NULL); |
| } |
| |
| static void request_read_done(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| /* |
| * s->cache_bio != NULL implies that we had a cache miss; cache_bio now |
| * contains data ready to be inserted into the cache. |
| * |
| * First, we copy the data we just read from cache_bio's bounce buffers |
| * to the buffers the original bio pointed to: |
| */ |
| |
| if (s->op.cache_bio) { |
| bio_reset(s->op.cache_bio); |
| s->op.cache_bio->bi_sector = s->cache_miss->bi_sector; |
| s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev; |
| s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; |
| bch_bio_map(s->op.cache_bio, NULL); |
| |
| bio_copy_data(s->cache_miss, s->op.cache_bio); |
| |
| bio_put(s->cache_miss); |
| s->cache_miss = NULL; |
| } |
| |
| if (verify(dc, &s->bio.bio) && s->recoverable) |
| bch_data_verify(s); |
| |
| bio_complete(s); |
| |
| if (s->op.cache_bio && |
| !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) { |
| s->op.type = BTREE_REPLACE; |
| closure_call(&s->op.cl, bch_insert_data, NULL, cl); |
| } |
| |
| continue_at(cl, cached_dev_read_complete, NULL); |
| } |
| |
| static void request_read_done_bh(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip); |
| trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip); |
| |
| if (s->error) |
| continue_at_nobarrier(cl, request_read_error, bcache_wq); |
| else if (s->op.cache_bio || verify(dc, &s->bio.bio)) |
| continue_at_nobarrier(cl, request_read_done, bcache_wq); |
| else |
| continue_at_nobarrier(cl, cached_dev_read_complete, NULL); |
| } |
| |
| static int cached_dev_cache_miss(struct btree *b, struct search *s, |
| struct bio *bio, unsigned sectors) |
| { |
| int ret = 0; |
| unsigned reada = 0; |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| struct bio *miss; |
| |
| if (s->cache_miss || s->op.skip) { |
| miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); |
| if (miss == bio) |
| s->op.lookup_done = true; |
| goto out_submit; |
| } |
| |
| if (!(bio->bi_rw & REQ_RAHEAD) && |
| !(bio->bi_rw & REQ_META) && |
| s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA) |
| reada = min_t(sector_t, dc->readahead >> 9, |
| bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); |
| |
| s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada); |
| |
| s->op.replace = KEY(s->op.inode, bio->bi_sector + |
| s->cache_bio_sectors, s->cache_bio_sectors); |
| |
| ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace); |
| if (ret) |
| return ret; |
| |
| miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); |
| if (miss == bio) |
| s->op.lookup_done = true; |
| else |
| /* btree_search_recurse()'s btree iterator is no good anymore */ |
| ret = -EINTR; |
| |
| s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT, |
| DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS), |
| dc->disk.bio_split); |
| |
| if (!s->op.cache_bio) |
| goto out_submit; |
| |
| s->op.cache_bio->bi_sector = miss->bi_sector; |
| s->op.cache_bio->bi_bdev = miss->bi_bdev; |
| s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; |
| |
| s->op.cache_bio->bi_end_io = request_endio; |
| s->op.cache_bio->bi_private = &s->cl; |
| |
| bch_bio_map(s->op.cache_bio, NULL); |
| if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO)) |
| goto out_put; |
| |
| s->cache_miss = miss; |
| bio_get(s->op.cache_bio); |
| |
| closure_bio_submit(s->op.cache_bio, &s->cl, s->d); |
| |
| return ret; |
| out_put: |
| bio_put(s->op.cache_bio); |
| s->op.cache_bio = NULL; |
| out_submit: |
| miss->bi_end_io = request_endio; |
| miss->bi_private = &s->cl; |
| closure_bio_submit(miss, &s->cl, s->d); |
| return ret; |
| } |
| |
| static void request_read(struct cached_dev *dc, struct search *s) |
| { |
| struct closure *cl = &s->cl; |
| |
| check_should_skip(dc, s); |
| closure_call(&s->op.cl, btree_read_async, NULL, cl); |
| |
| continue_at(cl, request_read_done_bh, NULL); |
| } |
| |
| /* Process writes */ |
| |
| static void cached_dev_write_complete(struct closure *cl) |
| { |
| struct search *s = container_of(cl, struct search, cl); |
| struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); |
| |
| up_read_non_owner(&dc->writeback_lock); |
| cached_dev_bio_complete(cl); |
| } |
| |
| static void request_write(struct cached_dev *dc, struct search *s) |
| { |
| struct closure *cl = &s->cl; |
| struct bio *bio = &s->bio.bio; |
| struct bkey start, end; |
| start = KEY(dc->disk.id, bio->bi_sector, 0); |
| end = KEY(dc->disk.id, bio_end_sector(bio), 0); |
| |
| bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end); |
| |
| check_should_skip(dc, s); |
| down_read_non_owner(&dc->writeback_lock); |
| |
| if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { |
| s->op.skip = false; |
| s->writeback = true; |
| } |
| |
| if (bio->bi_rw & REQ_DISCARD) |
| goto skip; |
| |
| if (should_writeback(dc, s->orig_bio, |
| cache_mode(dc, bio), |
| s->op.skip)) { |
| s->op.skip = false; |
| s->writeback = true; |
| } |
| |
| if (s->op.skip) |
| goto skip; |
| |
| trace_bcache_write(s->orig_bio, s->writeback, s->op.skip); |
| |
| if (!s->writeback) { |
| s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO, |
| dc->disk.bio_split); |
| |
| closure_bio_submit(bio, cl, s->d); |
| } else { |
| bch_writeback_add(dc); |
| s->op.cache_bio = bio; |
| |
| if (bio->bi_rw & REQ_FLUSH) { |
| /* Also need to send a flush to the backing device */ |
| struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, |
| dc->disk.bio_split); |
| |
| flush->bi_rw = WRITE_FLUSH; |
| flush->bi_bdev = bio->bi_bdev; |
| flush->bi_end_io = request_endio; |
| flush->bi_private = cl; |
| |
| closure_bio_submit(flush, cl, s->d); |
| } |
| } |
| out: |
| closure_call(&s->op.cl, bch_insert_data, NULL, cl); |
| continue_at(cl, cached_dev_write_complete, NULL); |
| skip: |
| s->op.skip = true; |
| s->op.cache_bio = s->orig_bio; |
| bio_get(s->op.cache_bio); |
| |
| if ((bio->bi_rw & REQ_DISCARD) && |
| !blk_queue_discard(bdev_get_queue(dc->bdev))) |
| goto out; |
| |
| closure_bio_submit(bio, cl, s->d); |
| goto out; |
| } |
| |
| static void request_nodata(struct cached_dev *dc, struct search *s) |
| { |
| struct closure *cl = &s->cl; |
| struct bio *bio = &s->bio.bio; |
| |
| if (bio->bi_rw & REQ_DISCARD) { |
| request_write(dc, s); |
| return; |
| } |
| |
| if (s->op.flush_journal) |
| bch_journal_meta(s->op.c, cl); |
| |
| closure_bio_submit(bio, cl, s->d); |
| |
| continue_at(cl, cached_dev_bio_complete, NULL); |
| } |
| |
| /* Cached devices - read & write stuff */ |
| |
| unsigned bch_get_congested(struct cache_set *c) |
| { |
| int i; |
| long rand; |
| |
| if (!c->congested_read_threshold_us && |
| !c->congested_write_threshold_us) |
| return 0; |
| |
| i = (local_clock_us() - c->congested_last_us) / 1024; |
| if (i < 0) |
| return 0; |
| |
| i += atomic_read(&c->congested); |
| if (i >= 0) |
| return 0; |
| |
| i += CONGESTED_MAX; |
| |
| if (i > 0) |
| i = fract_exp_two(i, 6); |
| |
| rand = get_random_int(); |
| i -= bitmap_weight(&rand, BITS_PER_LONG); |
| |
| return i > 0 ? i : 1; |
| } |
| |
| static void add_sequential(struct task_struct *t) |
| { |
| ewma_add(t->sequential_io_avg, |
| t->sequential_io, 8, 0); |
| |
| t->sequential_io = 0; |
| } |
| |
| static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) |
| { |
| return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; |
| } |
| |
| static void check_should_skip(struct cached_dev *dc, struct search *s) |
| { |
| struct cache_set *c = s->op.c; |
| struct bio *bio = &s->bio.bio; |
| unsigned mode = cache_mode(dc, bio); |
| unsigned sectors, congested = bch_get_congested(c); |
| |
| if (atomic_read(&dc->disk.detaching) || |
| c->gc_stats.in_use > CUTOFF_CACHE_ADD || |
| (bio->bi_rw & REQ_DISCARD)) |
| goto skip; |
| |
| if (mode == CACHE_MODE_NONE || |
| (mode == CACHE_MODE_WRITEAROUND && |
| (bio->bi_rw & REQ_WRITE))) |
| goto skip; |
| |
| if (bio->bi_sector & (c->sb.block_size - 1) || |
| bio_sectors(bio) & (c->sb.block_size - 1)) { |
| pr_debug("skipping unaligned io"); |
| goto skip; |
| } |
| |
| if (!congested && !dc->sequential_cutoff) |
| goto rescale; |
| |
| if (!congested && |
| mode == CACHE_MODE_WRITEBACK && |
| (bio->bi_rw & REQ_WRITE) && |
| (bio->bi_rw & REQ_SYNC)) |
| goto rescale; |
| |
| if (dc->sequential_merge) { |
| struct io *i; |
| |
| spin_lock(&dc->io_lock); |
| |
| hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash) |
| if (i->last == bio->bi_sector && |
| time_before(jiffies, i->jiffies)) |
| goto found; |
| |
| i = list_first_entry(&dc->io_lru, struct io, lru); |
| |
| add_sequential(s->task); |
| i->sequential = 0; |
| found: |
| if (i->sequential + bio->bi_size > i->sequential) |
| i->sequential += bio->bi_size; |
| |
| i->last = bio_end_sector(bio); |
| i->jiffies = jiffies + msecs_to_jiffies(5000); |
| s->task->sequential_io = i->sequential; |
| |
| hlist_del(&i->hash); |
| hlist_add_head(&i->hash, iohash(dc, i->last)); |
| list_move_tail(&i->lru, &dc->io_lru); |
| |
| spin_unlock(&dc->io_lock); |
| } else { |
| s->task->sequential_io = bio->bi_size; |
| |
| add_sequential(s->task); |
| } |
| |
| sectors = max(s->task->sequential_io, |
| s->task->sequential_io_avg) >> 9; |
| |
| if (dc->sequential_cutoff && |
| sectors >= dc->sequential_cutoff >> 9) { |
| trace_bcache_bypass_sequential(s->orig_bio); |
| goto skip; |
| } |
| |
| if (congested && sectors >= congested) { |
| trace_bcache_bypass_congested(s->orig_bio); |
| goto skip; |
| } |
| |
| rescale: |
| bch_rescale_priorities(c, bio_sectors(bio)); |
| return; |
| skip: |
| bch_mark_sectors_bypassed(s, bio_sectors(bio)); |
| s->op.skip = true; |
| } |
| |
| static void cached_dev_make_request(struct request_queue *q, struct bio *bio) |
| { |
| struct search *s; |
| struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| int cpu, rw = bio_data_dir(bio); |
| |
| cpu = part_stat_lock(); |
| part_stat_inc(cpu, &d->disk->part0, ios[rw]); |
| part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); |
| part_stat_unlock(); |
| |
| bio->bi_bdev = dc->bdev; |
| bio->bi_sector += dc->sb.data_offset; |
| |
| if (cached_dev_get(dc)) { |
| s = search_alloc(bio, d); |
| trace_bcache_request_start(s, bio); |
| |
| if (!bio_has_data(bio)) |
| request_nodata(dc, s); |
| else if (rw) |
| request_write(dc, s); |
| else |
| request_read(dc, s); |
| } else { |
| if ((bio->bi_rw & REQ_DISCARD) && |
| !blk_queue_discard(bdev_get_queue(dc->bdev))) |
| bio_endio(bio, 0); |
| else |
| bch_generic_make_request(bio, &d->bio_split_hook); |
| } |
| } |
| |
| static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); |
| } |
| |
| static int cached_dev_congested(void *data, int bits) |
| { |
| struct bcache_device *d = data; |
| struct cached_dev *dc = container_of(d, struct cached_dev, disk); |
| struct request_queue *q = bdev_get_queue(dc->bdev); |
| int ret = 0; |
| |
| if (bdi_congested(&q->backing_dev_info, bits)) |
| return 1; |
| |
| if (cached_dev_get(dc)) { |
| unsigned i; |
| struct cache *ca; |
| |
| for_each_cache(ca, d->c, i) { |
| q = bdev_get_queue(ca->bdev); |
| ret |= bdi_congested(&q->backing_dev_info, bits); |
| } |
| |
| cached_dev_put(dc); |
| } |
| |
| return ret; |
| } |
| |
| void bch_cached_dev_request_init(struct cached_dev *dc) |
| { |
| struct gendisk *g = dc->disk.disk; |
| |
| g->queue->make_request_fn = cached_dev_make_request; |
| g->queue->backing_dev_info.congested_fn = cached_dev_congested; |
| dc->disk.cache_miss = cached_dev_cache_miss; |
| dc->disk.ioctl = cached_dev_ioctl; |
| } |
| |
| /* Flash backed devices */ |
| |
| static int flash_dev_cache_miss(struct btree *b, struct search *s, |
| struct bio *bio, unsigned sectors) |
| { |
| struct bio_vec *bv; |
| int i; |
| |
| /* Zero fill bio */ |
| |
| bio_for_each_segment(bv, bio, i) { |
| unsigned j = min(bv->bv_len >> 9, sectors); |
| |
| void *p = kmap(bv->bv_page); |
| memset(p + bv->bv_offset, 0, j << 9); |
| kunmap(bv->bv_page); |
| |
| sectors -= j; |
| } |
| |
| bio_advance(bio, min(sectors << 9, bio->bi_size)); |
| |
| if (!bio->bi_size) |
| s->op.lookup_done = true; |
| |
| return 0; |
| } |
| |
| static void flash_dev_make_request(struct request_queue *q, struct bio *bio) |
| { |
| struct search *s; |
| struct closure *cl; |
| struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; |
| int cpu, rw = bio_data_dir(bio); |
| |
| cpu = part_stat_lock(); |
| part_stat_inc(cpu, &d->disk->part0, ios[rw]); |
| part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); |
| part_stat_unlock(); |
| |
| s = search_alloc(bio, d); |
| cl = &s->cl; |
| bio = &s->bio.bio; |
| |
| trace_bcache_request_start(s, bio); |
| |
| if (bio_has_data(bio) && !rw) { |
| closure_call(&s->op.cl, btree_read_async, NULL, cl); |
| } else if (bio_has_data(bio) || s->op.skip) { |
| bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, |
| &KEY(d->id, bio->bi_sector, 0), |
| &KEY(d->id, bio_end_sector(bio), 0)); |
| |
| s->writeback = true; |
| s->op.cache_bio = bio; |
| |
| closure_call(&s->op.cl, bch_insert_data, NULL, cl); |
| } else { |
| /* No data - probably a cache flush */ |
| if (s->op.flush_journal) |
| bch_journal_meta(s->op.c, cl); |
| } |
| |
| continue_at(cl, search_free, NULL); |
| } |
| |
| static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| return -ENOTTY; |
| } |
| |
| static int flash_dev_congested(void *data, int bits) |
| { |
| struct bcache_device *d = data; |
| struct request_queue *q; |
| struct cache *ca; |
| unsigned i; |
| int ret = 0; |
| |
| for_each_cache(ca, d->c, i) { |
| q = bdev_get_queue(ca->bdev); |
| ret |= bdi_congested(&q->backing_dev_info, bits); |
| } |
| |
| return ret; |
| } |
| |
| void bch_flash_dev_request_init(struct bcache_device *d) |
| { |
| struct gendisk *g = d->disk; |
| |
| g->queue->make_request_fn = flash_dev_make_request; |
| g->queue->backing_dev_info.congested_fn = flash_dev_congested; |
| d->cache_miss = flash_dev_cache_miss; |
| d->ioctl = flash_dev_ioctl; |
| } |
| |
| void bch_request_exit(void) |
| { |
| #ifdef CONFIG_CGROUP_BCACHE |
| cgroup_unload_subsys(&bcache_subsys); |
| #endif |
| if (bch_search_cache) |
| kmem_cache_destroy(bch_search_cache); |
| } |
| |
| int __init bch_request_init(void) |
| { |
| bch_search_cache = KMEM_CACHE(search, 0); |
| if (!bch_search_cache) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_CGROUP_BCACHE |
| cgroup_load_subsys(&bcache_subsys); |
| init_bch_cgroup(&bcache_default_cgroup); |
| |
| cgroup_add_cftypes(&bcache_subsys, bch_files); |
| #endif |
| return 0; |
| } |