| /* |
| * Port on Texas Instruments TMS320C6x architecture |
| * |
| * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated |
| * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/dma-mapping.h> |
| #include <linux/memblock.h> |
| #include <linux/seq_file.h> |
| #include <linux/bootmem.h> |
| #include <linux/clkdev.h> |
| #include <linux/initrd.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of_fdt.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/cache.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/fs.h> |
| #include <linux/of.h> |
| |
| |
| #include <asm/sections.h> |
| #include <asm/div64.h> |
| #include <asm/setup.h> |
| #include <asm/dscr.h> |
| #include <asm/clock.h> |
| #include <asm/soc.h> |
| |
| static const char *c6x_soc_name; |
| |
| int c6x_num_cores; |
| EXPORT_SYMBOL_GPL(c6x_num_cores); |
| |
| unsigned int c6x_silicon_rev; |
| EXPORT_SYMBOL_GPL(c6x_silicon_rev); |
| |
| /* |
| * Device status register. This holds information |
| * about device configuration needed by some drivers. |
| */ |
| unsigned int c6x_devstat; |
| EXPORT_SYMBOL_GPL(c6x_devstat); |
| |
| /* |
| * Some SoCs have fuse registers holding a unique MAC |
| * address. This is parsed out of the device tree with |
| * the resulting MAC being held here. |
| */ |
| unsigned char c6x_fuse_mac[6]; |
| |
| unsigned long memory_start; |
| unsigned long memory_end; |
| |
| unsigned long ram_start; |
| unsigned long ram_end; |
| |
| /* Uncached memory for DMA consistent use (memdma=) */ |
| static unsigned long dma_start __initdata; |
| static unsigned long dma_size __initdata; |
| |
| char c6x_command_line[COMMAND_LINE_SIZE]; |
| |
| #if defined(CONFIG_CMDLINE_BOOL) |
| static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) = |
| CONFIG_CMDLINE; |
| #endif |
| |
| struct cpuinfo_c6x { |
| const char *cpu_name; |
| const char *cpu_voltage; |
| const char *mmu; |
| const char *fpu; |
| char *cpu_rev; |
| unsigned int core_id; |
| char __cpu_rev[5]; |
| }; |
| |
| static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data); |
| |
| unsigned int ticks_per_ns_scaled; |
| EXPORT_SYMBOL(ticks_per_ns_scaled); |
| |
| unsigned int c6x_core_freq; |
| |
| static void __init get_cpuinfo(void) |
| { |
| unsigned cpu_id, rev_id, csr; |
| struct clk *coreclk = clk_get_sys(NULL, "core"); |
| unsigned long core_khz; |
| u64 tmp; |
| struct cpuinfo_c6x *p; |
| struct device_node *node, *np; |
| |
| p = &per_cpu(cpu_data, smp_processor_id()); |
| |
| if (!IS_ERR(coreclk)) |
| c6x_core_freq = clk_get_rate(coreclk); |
| else { |
| printk(KERN_WARNING |
| "Cannot find core clock frequency. Using 700MHz\n"); |
| c6x_core_freq = 700000000; |
| } |
| |
| core_khz = c6x_core_freq / 1000; |
| |
| tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE; |
| do_div(tmp, 1000000); |
| ticks_per_ns_scaled = tmp; |
| |
| csr = get_creg(CSR); |
| cpu_id = csr >> 24; |
| rev_id = (csr >> 16) & 0xff; |
| |
| p->mmu = "none"; |
| p->fpu = "none"; |
| p->cpu_voltage = "unknown"; |
| |
| switch (cpu_id) { |
| case 0: |
| p->cpu_name = "C67x"; |
| p->fpu = "yes"; |
| break; |
| case 2: |
| p->cpu_name = "C62x"; |
| break; |
| case 8: |
| p->cpu_name = "C64x"; |
| break; |
| case 12: |
| p->cpu_name = "C64x"; |
| break; |
| case 16: |
| p->cpu_name = "C64x+"; |
| p->cpu_voltage = "1.2"; |
| break; |
| default: |
| p->cpu_name = "unknown"; |
| break; |
| } |
| |
| if (cpu_id < 16) { |
| switch (rev_id) { |
| case 0x1: |
| if (cpu_id > 8) { |
| p->cpu_rev = "DM640/DM641/DM642/DM643"; |
| p->cpu_voltage = "1.2 - 1.4"; |
| } else { |
| p->cpu_rev = "C6201"; |
| p->cpu_voltage = "2.5"; |
| } |
| break; |
| case 0x2: |
| p->cpu_rev = "C6201B/C6202/C6211"; |
| p->cpu_voltage = "1.8"; |
| break; |
| case 0x3: |
| p->cpu_rev = "C6202B/C6203/C6204/C6205"; |
| p->cpu_voltage = "1.5"; |
| break; |
| case 0x201: |
| p->cpu_rev = "C6701 revision 0 (early CPU)"; |
| p->cpu_voltage = "1.8"; |
| break; |
| case 0x202: |
| p->cpu_rev = "C6701/C6711/C6712"; |
| p->cpu_voltage = "1.8"; |
| break; |
| case 0x801: |
| p->cpu_rev = "C64x"; |
| p->cpu_voltage = "1.5"; |
| break; |
| default: |
| p->cpu_rev = "unknown"; |
| } |
| } else { |
| p->cpu_rev = p->__cpu_rev; |
| snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id); |
| } |
| |
| p->core_id = get_coreid(); |
| |
| node = of_find_node_by_name(NULL, "cpus"); |
| if (node) { |
| for_each_child_of_node(node, np) |
| if (!strcmp("cpu", np->name)) |
| ++c6x_num_cores; |
| of_node_put(node); |
| } |
| |
| node = of_find_node_by_name(NULL, "soc"); |
| if (node) { |
| if (of_property_read_string(node, "model", &c6x_soc_name)) |
| c6x_soc_name = "unknown"; |
| of_node_put(node); |
| } else |
| c6x_soc_name = "unknown"; |
| |
| printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n", |
| p->core_id, p->cpu_name, p->cpu_rev, |
| p->cpu_voltage, c6x_core_freq / 1000000); |
| } |
| |
| /* |
| * Early parsing of the command line |
| */ |
| static u32 mem_size __initdata; |
| |
| /* "mem=" parsing. */ |
| static int __init early_mem(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| |
| mem_size = memparse(p, &p); |
| /* don't remove all of memory when handling "mem={invalid}" */ |
| if (mem_size == 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| early_param("mem", early_mem); |
| |
| /* "memdma=<size>[@<address>]" parsing. */ |
| static int __init early_memdma(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| |
| dma_size = memparse(p, &p); |
| if (*p == '@') |
| dma_start = memparse(p, &p); |
| |
| return 0; |
| } |
| early_param("memdma", early_memdma); |
| |
| int __init c6x_add_memory(phys_addr_t start, unsigned long size) |
| { |
| static int ram_found __initdata; |
| |
| /* We only handle one bank (the one with PAGE_OFFSET) for now */ |
| if (ram_found) |
| return -EINVAL; |
| |
| if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size)) |
| return 0; |
| |
| ram_start = start; |
| ram_end = start + size; |
| |
| ram_found = 1; |
| return 0; |
| } |
| |
| /* |
| * Do early machine setup and device tree parsing. This is called very |
| * early on the boot process. |
| */ |
| notrace void __init machine_init(unsigned long dt_ptr) |
| { |
| struct boot_param_header *dtb = __va(dt_ptr); |
| struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start; |
| |
| /* interrupts must be masked */ |
| set_creg(IER, 2); |
| |
| /* |
| * Set the Interrupt Service Table (IST) to the beginning of the |
| * vector table. |
| */ |
| set_ist(_vectors_start); |
| |
| lockdep_init(); |
| |
| /* |
| * dtb is passed in from bootloader. |
| * fdt is linked in blob. |
| */ |
| if (dtb && dtb != fdt) |
| fdt = dtb; |
| |
| /* Do some early initialization based on the flat device tree */ |
| early_init_devtree(fdt); |
| |
| /* parse_early_param needs a boot_command_line */ |
| strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE); |
| parse_early_param(); |
| } |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| int bootmap_size; |
| struct memblock_region *reg; |
| |
| printk(KERN_INFO "Initializing kernel\n"); |
| |
| /* Initialize command line */ |
| *cmdline_p = c6x_command_line; |
| |
| memory_end = ram_end; |
| memory_end &= ~(PAGE_SIZE - 1); |
| |
| if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end) |
| memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size); |
| |
| /* add block that this kernel can use */ |
| memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET); |
| |
| /* reserve kernel text/data/bss */ |
| memblock_reserve(PAGE_OFFSET, |
| PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET)); |
| |
| if (dma_size) { |
| /* align to cacheability granularity */ |
| dma_size = CACHE_REGION_END(dma_size); |
| |
| if (!dma_start) |
| dma_start = memory_end - dma_size; |
| |
| /* align to cacheability granularity */ |
| dma_start = CACHE_REGION_START(dma_start); |
| |
| /* reserve DMA memory taken from kernel memory */ |
| if (memblock_is_region_memory(dma_start, dma_size)) |
| memblock_reserve(dma_start, dma_size); |
| } |
| |
| memory_start = PAGE_ALIGN((unsigned int) &_end); |
| |
| printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n", |
| memory_start, memory_end); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* |
| * Reserve initrd memory if in kernel memory. |
| */ |
| if (initrd_start < initrd_end) |
| if (memblock_is_region_memory(initrd_start, |
| initrd_end - initrd_start)) |
| memblock_reserve(initrd_start, |
| initrd_end - initrd_start); |
| #endif |
| |
| init_mm.start_code = (unsigned long) &_stext; |
| init_mm.end_code = (unsigned long) &_etext; |
| init_mm.end_data = memory_start; |
| init_mm.brk = memory_start; |
| |
| /* |
| * Give all the memory to the bootmap allocator, tell it to put the |
| * boot mem_map at the start of memory |
| */ |
| bootmap_size = init_bootmem_node(NODE_DATA(0), |
| memory_start >> PAGE_SHIFT, |
| PAGE_OFFSET >> PAGE_SHIFT, |
| memory_end >> PAGE_SHIFT); |
| memblock_reserve(memory_start, bootmap_size); |
| |
| unflatten_device_tree(); |
| |
| c6x_cache_init(); |
| |
| /* Set the whole external memory as non-cacheable */ |
| disable_caching(ram_start, ram_end - 1); |
| |
| /* Set caching of external RAM used by Linux */ |
| for_each_memblock(memory, reg) |
| enable_caching(CACHE_REGION_START(reg->base), |
| CACHE_REGION_START(reg->base + reg->size - 1)); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* |
| * Enable caching for initrd which falls outside kernel memory. |
| */ |
| if (initrd_start < initrd_end) { |
| if (!memblock_is_region_memory(initrd_start, |
| initrd_end - initrd_start)) |
| enable_caching(CACHE_REGION_START(initrd_start), |
| CACHE_REGION_START(initrd_end - 1)); |
| } |
| #endif |
| |
| /* |
| * Disable caching for dma coherent memory taken from kernel memory. |
| */ |
| if (dma_size && memblock_is_region_memory(dma_start, dma_size)) |
| disable_caching(dma_start, |
| CACHE_REGION_START(dma_start + dma_size - 1)); |
| |
| /* Initialize the coherent memory allocator */ |
| coherent_mem_init(dma_start, dma_size); |
| |
| /* |
| * Free all memory as a starting point. |
| */ |
| free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET); |
| |
| /* |
| * Then reserve memory which is already being used. |
| */ |
| for_each_memblock(reserved, reg) { |
| pr_debug("reserved - 0x%08x-0x%08x\n", |
| (u32) reg->base, (u32) reg->size); |
| reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); |
| } |
| |
| max_low_pfn = PFN_DOWN(memory_end); |
| min_low_pfn = PFN_UP(memory_start); |
| max_mapnr = max_low_pfn - min_low_pfn; |
| |
| /* Get kmalloc into gear */ |
| paging_init(); |
| |
| /* |
| * Probe for Device State Configuration Registers. |
| * We have to do this early in case timer needs to be enabled |
| * through DSCR. |
| */ |
| dscr_probe(); |
| |
| /* We do this early for timer and core clock frequency */ |
| c64x_setup_clocks(); |
| |
| /* Get CPU info */ |
| get_cpuinfo(); |
| |
| #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| #endif |
| } |
| |
| #define cpu_to_ptr(n) ((void *)((long)(n)+1)) |
| #define ptr_to_cpu(p) ((long)(p) - 1) |
| |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| int n = ptr_to_cpu(v); |
| struct cpuinfo_c6x *p = &per_cpu(cpu_data, n); |
| |
| if (n == 0) { |
| seq_printf(m, |
| "soc\t\t: %s\n" |
| "soc revision\t: 0x%x\n" |
| "soc cores\t: %d\n", |
| c6x_soc_name, c6x_silicon_rev, c6x_num_cores); |
| } |
| |
| seq_printf(m, |
| "\n" |
| "processor\t: %d\n" |
| "cpu\t\t: %s\n" |
| "core revision\t: %s\n" |
| "core voltage\t: %s\n" |
| "core id\t\t: %d\n" |
| "mmu\t\t: %s\n" |
| "fpu\t\t: %s\n" |
| "cpu MHz\t\t: %u\n" |
| "bogomips\t: %lu.%02lu\n\n", |
| n, |
| p->cpu_name, p->cpu_rev, p->cpu_voltage, |
| p->core_id, p->mmu, p->fpu, |
| (c6x_core_freq + 500000) / 1000000, |
| (loops_per_jiffy/(500000/HZ)), |
| (loops_per_jiffy/(5000/HZ))%100); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL; |
| } |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return NULL; |
| } |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| c_start, |
| c_stop, |
| c_next, |
| show_cpuinfo |
| }; |
| |
| static struct cpu cpu_devices[NR_CPUS]; |
| |
| static int __init topology_init(void) |
| { |
| int i; |
| |
| for_each_present_cpu(i) |
| register_cpu(&cpu_devices[i], i); |
| |
| return 0; |
| } |
| |
| subsys_initcall(topology_init); |