blob: a11253a0fcabd6ef7362b9fcae4972ba06fc4966 [file] [log] [blame]
/*
* drivers/mtd/nand.c
*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
* Basic support for AG-AND chips is provided.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/doc/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ECC support.
* The AG-AND chips have nice features for speed improvement,
* which are not supported yet. Read / program 4 pages in one go.
* BBT table is not serialized, has to be fixed
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/nand_bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/leds.h>
#include <linux/io.h>
#include <linux/mtd/partitions.h>
/* Define default oob placement schemes for large and small page devices */
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2} }
};
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {
{.offset = 8,
. length = 8} }
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 38} }
};
static struct nand_ecclayout nand_oob_128 = {
.eccbytes = 48,
.eccpos = {
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127},
.oobfree = {
{.offset = 2,
.length = 78} }
};
static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
int new_state);
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
/*
* For devices which display every fart in the system on a separate LED. Is
* compiled away when LED support is disabled.
*/
DEFINE_LED_TRIGGER(nand_led_trigger);
static int check_offs_len(struct mtd_info *mtd,
loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd->priv;
int ret = 0;
/* Start address must align on block boundary */
if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
pr_debug("%s: unaligned address\n", __func__);
ret = -EINVAL;
}
/* Length must align on block boundary */
if (len & ((1 << chip->phys_erase_shift) - 1)) {
pr_debug("%s: length not block aligned\n", __func__);
ret = -EINVAL;
}
return ret;
}
/**
* nand_release_device - [GENERIC] release chip
* @mtd: MTD device structure
*
* Deselect, release chip lock and wake up anyone waiting on the device.
*/
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
/* De-select the NAND device */
chip->select_chip(mtd, -1);
/* Release the controller and the chip */
spin_lock(&chip->controller->lock);
chip->controller->active = NULL;
chip->state = FL_READY;
wake_up(&chip->controller->wq);
spin_unlock(&chip->controller->lock);
}
/**
* nand_read_byte - [DEFAULT] read one byte from the chip
* @mtd: MTD device structure
*
* Default read function for 8bit buswidth
*/
static uint8_t nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return readb(chip->IO_ADDR_R);
}
/**
* nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
* nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth with endianness conversion.
*
*/
static uint8_t nand_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
}
/**
* nand_read_word - [DEFAULT] read one word from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswidth without endianness conversion.
*/
static u16 nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return readw(chip->IO_ADDR_R);
}
/**
* nand_select_chip - [DEFAULT] control CE line
* @mtd: MTD device structure
* @chipnr: chipnumber to select, -1 for deselect
*
* Default select function for 1 chip devices.
*/
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd->priv;
switch (chipnr) {
case -1:
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
break;
case 0:
break;
default:
BUG();
}
}
/**
* nand_write_buf - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 8bit buswidth.
*/
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
writeb(buf[i], chip->IO_ADDR_W);
}
/**
* nand_read_buf - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 8bit buswidth.
*/
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = readb(chip->IO_ADDR_R);
}
/**
* nand_verify_buf - [DEFAULT] Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*
* Default verify function for 8bit buswidth.
*/
static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
if (buf[i] != readb(chip->IO_ADDR_R))
return -EFAULT;
return 0;
}
/**
* nand_write_buf16 - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 16bit buswidth.
*/
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
writew(p[i], chip->IO_ADDR_W);
}
/**
* nand_read_buf16 - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 16bit buswidth.
*/
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
p[i] = readw(chip->IO_ADDR_R);
}
/**
* nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*
* Default verify function for 16bit buswidth.
*/
static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
if (p[i] != readw(chip->IO_ADDR_R))
return -EFAULT;
return 0;
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
int page, chipnr, res = 0, i = 0;
struct nand_chip *chip = mtd->priv;
u16 bad;
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
if (getchip) {
chipnr = (int)(ofs >> chip->chip_shift);
nand_get_device(chip, mtd, FL_READING);
/* Select the NAND device */
chip->select_chip(mtd, chipnr);
}
do {
if (chip->options & NAND_BUSWIDTH_16) {
chip->cmdfunc(mtd, NAND_CMD_READOOB,
chip->badblockpos & 0xFE, page);
bad = cpu_to_le16(chip->read_word(mtd));
if (chip->badblockpos & 0x1)
bad >>= 8;
else
bad &= 0xFF;
} else {
chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
page);
bad = chip->read_byte(mtd);
}
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
ofs += mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
i++;
} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
if (getchip)
nand_release_device(mtd);
return res;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by a hardware
* specific driver. We try operations in the following order, according to our
* bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
* (1) erase the affected block, to allow OOB marker to be written cleanly
* (2) update in-memory BBT
* (3) write bad block marker to OOB area of affected block
* (4) update flash-based BBT
* Note that we retain the first error encountered in (3) or (4), finish the
* procedures, and dump the error in the end.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd->priv;
uint8_t buf[2] = { 0, 0 };
int block, res, ret = 0, i = 0;
int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
if (write_oob) {
struct erase_info einfo;
/* Attempt erase before marking OOB */
memset(&einfo, 0, sizeof(einfo));
einfo.mtd = mtd;
einfo.addr = ofs;
einfo.len = 1 << chip->phys_erase_shift;
nand_erase_nand(mtd, &einfo, 0);
}
/* Get block number */
block = (int)(ofs >> chip->bbt_erase_shift);
/* Mark block bad in memory-based BBT */
if (chip->bbt)
chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Write bad block marker to OOB */
if (write_oob) {
struct mtd_oob_ops ops;
loff_t wr_ofs = ofs;
nand_get_device(chip, mtd, FL_WRITING);
ops.datbuf = NULL;
ops.oobbuf = buf;
ops.ooboffs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
ops.ooboffs &= ~0x01;
ops.len = ops.ooblen = 2;
} else {
ops.len = ops.ooblen = 1;
}
ops.mode = MTD_OPS_PLACE_OOB;
/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
wr_ofs += mtd->erasesize - mtd->writesize;
do {
res = nand_do_write_oob(mtd, wr_ofs, &ops);
if (!ret)
ret = res;
i++;
wr_ofs += mtd->writesize;
} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
nand_release_device(mtd);
}
/* Update flash-based bad block table */
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
res = nand_update_bbt(mtd, ofs);
if (!ret)
ret = res;
}
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @mtd: MTD device structure
*
* Check, if the device is write protected. The function expects, that the
* device is already selected.
*/
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
/* Broken xD cards report WP despite being writable */
if (chip->options & NAND_BROKEN_XD)
return 0;
/* Check the WP bit */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
int allowbbt)
{
struct nand_chip *chip = mtd->priv;
if (!chip->bbt)
return chip->block_bad(mtd, ofs, getchip);
/* Return info from the table */
return nand_isbad_bbt(mtd, ofs, allowbbt);
}
/**
* panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
* @mtd: MTD device structure
* @timeo: Timeout
*
* Helper function for nand_wait_ready used when needing to wait in interrupt
* context.
*/
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
struct nand_chip *chip = mtd->priv;
int i;
/* Wait for the device to get ready */
for (i = 0; i < timeo; i++) {
if (chip->dev_ready(mtd))
break;
touch_softlockup_watchdog();
mdelay(1);
}
}
/* Wait for the ready pin, after a command. The timeout is caught later. */
void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
unsigned long timeo = jiffies + 2;
/* 400ms timeout */
if (in_interrupt() || oops_in_progress)
return panic_nand_wait_ready(mtd, 400);
led_trigger_event(nand_led_trigger, LED_FULL);
/* Wait until command is processed or timeout occurs */
do {
if (chip->dev_ready(mtd))
break;
touch_softlockup_watchdog();
} while (time_before(jiffies, timeo));
led_trigger_event(nand_led_trigger, LED_OFF);
}
EXPORT_SYMBOL_GPL(nand_wait_ready);
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This function is used for small page devices
* (256/512 Bytes per page).
*/
static void nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd->priv;
int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
/* Write out the command to the device */
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->writesize) {
/* OOB area */
column -= mtd->writesize;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
chip->cmd_ctrl(mtd, readcmd, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
chip->cmd_ctrl(mtd, command, ctrl);
/* Address cycle, when necessary */
ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
/* One more address cycle for devices > 32MiB */
if (chip->chipsize > (32 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status and sequential
* in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd,
NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
;
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* nand_command_lp - [DEFAULT] Send command to NAND large page device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This is the version for the new large page
* devices. We don't have the separate regions as we have in the small page
* devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
*/
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd->priv;
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Command latch cycle */
chip->cmd_ctrl(mtd, command & 0xff,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
if (column != -1 || page_addr != -1) {
int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
chip->cmd_ctrl(mtd, column >> 8, ctrl);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
chip->cmd_ctrl(mtd, page_addr >> 8,
NAND_NCE | NAND_ALE);
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16,
NAND_NCE | NAND_ALE);
}
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Program and erase have their own busy handlers status, sequential
* in, and deplete1 need no delay.
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
return;
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
/* Read error status commands require only a short delay */
udelay(chip->chip_delay);
return;
case NAND_CMD_RESET:
if (chip->dev_ready)
break;
udelay(chip->chip_delay);
chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
;
return;
case NAND_CMD_RNDOUT:
/* No ready / busy check necessary */
chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
return;
case NAND_CMD_READ0:
chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE,
NAND_NCE | NAND_CTRL_CHANGE);
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay.
*/
if (!chip->dev_ready) {
udelay(chip->chip_delay);
return;
}
}
/*
* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine.
*/
ndelay(100);
nand_wait_ready(mtd);
}
/**
* panic_nand_get_device - [GENERIC] Get chip for selected access
* @chip: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Used when in panic, no locks are taken.
*/
static void panic_nand_get_device(struct nand_chip *chip,
struct mtd_info *mtd, int new_state)
{
/* Hardware controller shared among independent devices */
chip->controller->active = chip;
chip->state = new_state;
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @chip: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int
nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
{
spinlock_t *lock = &chip->controller->lock;
wait_queue_head_t *wq = &chip->controller->wq;
DECLARE_WAITQUEUE(wait, current);
retry:
spin_lock(lock);
/* Hardware controller shared among independent devices */
if (!chip->controller->active)
chip->controller->active = chip;
if (chip->controller->active == chip && chip->state == FL_READY) {
chip->state = new_state;
spin_unlock(lock);
return 0;
}
if (new_state == FL_PM_SUSPENDED) {
if (chip->controller->active->state == FL_PM_SUSPENDED) {
chip->state = FL_PM_SUSPENDED;
spin_unlock(lock);
return 0;
}
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(wq, &wait);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
goto retry;
}
/**
* panic_nand_wait - [GENERIC] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
* @timeo: timeout
*
* Wait for command done. This is a helper function for nand_wait used when
* we are in interrupt context. May happen when in panic and trying to write
* an oops through mtdoops.
*/
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
unsigned long timeo)
{
int i;
for (i = 0; i < timeo; i++) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
if (chip->read_byte(mtd) & NAND_STATUS_READY)
break;
}
mdelay(1);
}
}
/**
* nand_wait - [DEFAULT] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
*
* Wait for command done. This applies to erase and program only. Erase can
* take up to 400ms and program up to 20ms according to general NAND and
* SmartMedia specs.
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = jiffies;
int status, state = chip->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
led_trigger_event(nand_led_trigger, LED_FULL);
/*
* Apply this short delay always to ensure that we do wait tWB in any
* case on any machine.
*/
ndelay(100);
if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
if (in_interrupt() || oops_in_progress)
panic_nand_wait(mtd, chip, timeo);
else {
while (time_before(jiffies, timeo)) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
break;
} else {
if (chip->read_byte(mtd) & NAND_STATUS_READY)
break;
}
cond_resched();
}
}
led_trigger_event(nand_led_trigger, LED_OFF);
status = (int)chip->read_byte(mtd);
return status;
}
/**
* __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
* @invert: when = 0, unlock the range of blocks within the lower and
* upper boundary address
* when = 1, unlock the range of blocks outside the boundaries
* of the lower and upper boundary address
*
* Returs unlock status.
*/
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
uint64_t len, int invert)
{
int ret = 0;
int status, page;
struct nand_chip *chip = mtd->priv;
/* Submit address of first page to unlock */
page = ofs >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
/* Submit address of last page to unlock */
page = (ofs + len) >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
(page | invert) & chip->pagemask);
/* Call wait ready function */
status = chip->waitfunc(mtd, chip);
/* See if device thinks it succeeded */
if (status & 0x01) {
pr_debug("%s: error status = 0x%08x\n",
__func__, status);
ret = -EIO;
}
return ret;
}
/**
* nand_unlock - [REPLACEABLE] unlocks specified locked blocks
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
*
* Returns unlock status.
*/
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret = 0;
int chipnr;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)ofs, len);
if (check_offs_len(mtd, ofs, len))
ret = -EINVAL;
/* Align to last block address if size addresses end of the device */
if (ofs + len == mtd->size)
len -= mtd->erasesize;
nand_get_device(chip, mtd, FL_UNLOCKING);
/* Shift to get chip number */
chipnr = ofs >> chip->chip_shift;
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
ret = -EIO;
goto out;
}
ret = __nand_unlock(mtd, ofs, len, 0);
out:
nand_release_device(mtd);
return ret;
}
EXPORT_SYMBOL(nand_unlock);
/**
* nand_lock - [REPLACEABLE] locks all blocks present in the device
* @mtd: mtd info
* @ofs: offset to start unlock from
* @len: length to unlock
*
* This feature is not supported in many NAND parts. 'Micron' NAND parts do
* have this feature, but it allows only to lock all blocks, not for specified
* range for block. Implementing 'lock' feature by making use of 'unlock', for
* now.
*
* Returns lock status.
*/
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret = 0;
int chipnr, status, page;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)ofs, len);
if (check_offs_len(mtd, ofs, len))
ret = -EINVAL;
nand_get_device(chip, mtd, FL_LOCKING);
/* Shift to get chip number */
chipnr = ofs >> chip->chip_shift;
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
status = MTD_ERASE_FAILED;
ret = -EIO;
goto out;
}
/* Submit address of first page to lock */
page = ofs >> chip->page_shift;
chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
/* Call wait ready function */
status = chip->waitfunc(mtd, chip);
/* See if device thinks it succeeded */
if (status & 0x01) {
pr_debug("%s: error status = 0x%08x\n",
__func__, status);
ret = -EIO;
goto out;
}
ret = __nand_unlock(mtd, ofs, len, 0x1);
out:
nand_release_device(mtd);
return ret;
}
EXPORT_SYMBOL(nand_lock);
/**
* nand_read_page_raw - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
chip->read_buf(mtd, buf, mtd->writesize);
if (oob_required)
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* We need a special oob layout and handling even when OOB isn't used.
*/
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size;
for (steps = chip->ecc.steps; steps > 0; steps--) {
chip->read_buf(mtd, buf, eccsize);
buf += eccsize;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->read_buf(mtd, oob, size);
return 0;
}
/**
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*/
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @data_offs: offset of requested data within the page
* @readlen: data length
* @bufpoi: buffer to store read data
*/
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
{
int start_step, end_step, num_steps;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p;
int data_col_addr, i, gaps = 0;
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
int index = 0;
unsigned int max_bitflips = 0;
/* Column address within the page aligned to ECC size (256bytes) */
start_step = data_offs / chip->ecc.size;
end_step = (data_offs + readlen - 1) / chip->ecc.size;
num_steps = end_step - start_step + 1;
/* Data size aligned to ECC ecc.size */
datafrag_len = num_steps * chip->ecc.size;
eccfrag_len = num_steps * chip->ecc.bytes;
data_col_addr = start_step * chip->ecc.size;
/* If we read not a page aligned data */
if (data_col_addr != 0)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
p = bufpoi + data_col_addr;
chip->read_buf(mtd, p, datafrag_len);
/* Calculate ECC */
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
/*
* The performance is faster if we position offsets according to
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
for (i = 0; i < eccfrag_len - 1; i++) {
if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
eccpos[i + start_step * chip->ecc.bytes + 1]) {
gaps = 1;
break;
}
}
if (gaps) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
} else {
/*
* Send the command to read the particular ECC bytes take care
* about buswidth alignment in read_buf.
*/
index = start_step * chip->ecc.bytes;
aligned_pos = eccpos[index] & ~(busw - 1);
aligned_len = eccfrag_len;
if (eccpos[index] & (busw - 1))
aligned_len++;
if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
aligned_len++;
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + aligned_pos, -1);
chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
}
for (i = 0; i < eccfrag_len; i++)
chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
p = bufpoi + data_col_addr;
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
int stat;
stat = chip->ecc.correct(mtd, p,
&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
unsigned int max_bitflips = 0;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Hardware ECC for large page chips, require OOB to be read first. For this
* ECC mode, the write_page method is re-used from ECC_HW. These methods
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
* the data area, by overwriting the NAND manufacturer bad block markings.
*/
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *ecc_calc = chip->buffers->ecccalc;
unsigned int max_bitflips = 0;
/* Read the OOB area first */
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
unsigned int max_bitflips = 0;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
chip->read_buf(mtd, oob, eccbytes);
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->read_buf(mtd, oob, i);
return max_bitflips;
}
/**
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
* @chip: nand chip structure
* @oob: oob destination address
* @ops: oob ops structure
* @len: size of oob to transfer
*/
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
struct mtd_oob_ops *ops, size_t len)
{
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, roffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Read request not from offset 0? */
if (unlikely(roffs)) {
if (roffs >= free->length) {
roffs -= free->length;
continue;
}
boffs = free->offset + roffs;
bytes = min_t(size_t, len,
(free->length - roffs));
roffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(oob, chip->oob_poi + boffs, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
/**
* nand_do_read_ops - [INTERN] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob ops structure
*
* Internal function. Called with chip held.
*/
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int chipnr, page, realpage, col, bytes, aligned, oob_required;
struct nand_chip *chip = mtd->priv;
struct mtd_ecc_stats stats;
int ret = 0;
uint32_t readlen = ops->len;
uint32_t oobreadlen = ops->ooblen;
uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
mtd->oobavail : mtd->oobsize;
uint8_t *bufpoi, *oob, *buf;
unsigned int max_bitflips = 0;
stats = mtd->ecc_stats;
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
col = (int)(from & (mtd->writesize - 1));
buf = ops->datbuf;
oob = ops->oobbuf;
oob_required = oob ? 1 : 0;
while (1) {
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
/* Is the current page in the buffer? */
if (realpage != chip->pagebuf || oob) {
bufpoi = aligned ? buf : chip->buffers->databuf;
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
/*
* Now read the page into the buffer. Absent an error,
* the read methods return max bitflips per ecc step.
*/
if (unlikely(ops->mode == MTD_OPS_RAW))
ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
oob_required,
page);
else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
ret = chip->ecc.read_subpage(mtd, chip,
col, bytes, bufpoi);
else
ret = chip->ecc.read_page(mtd, chip, bufpoi,
oob_required, page);
if (ret < 0) {
if (!aligned)
/* Invalidate page cache */
chip->pagebuf = -1;
break;
}
max_bitflips = max_t(unsigned int, max_bitflips, ret);
/* Transfer not aligned data */
if (!aligned) {
if (!NAND_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - stats.failed) &&
(ops->mode != MTD_OPS_RAW)) {
chip->pagebuf = realpage;
chip->pagebuf_bitflips = ret;
} else {
/* Invalidate page cache */
chip->pagebuf = -1;
}
memcpy(buf, chip->buffers->databuf + col, bytes);
}
buf += bytes;
if (unlikely(oob)) {
int toread = min(oobreadlen, max_oobsize);
if (toread) {
oob = nand_transfer_oob(chip,
oob, ops, toread);
oobreadlen -= toread;
}
}
if (!(chip->options & NAND_NO_READRDY)) {
/* Apply delay or wait for ready/busy pin */
if (!chip->dev_ready)
udelay(chip->chip_delay);
else
nand_wait_ready(mtd);
}
} else {
memcpy(buf, chip->buffers->databuf + col, bytes);
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips,
chip->pagebuf_bitflips);
}
readlen -= bytes;
if (!readlen)
break;
/* For subsequent reads align to page boundary */
col = 0;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
ops->retlen = ops->len - (size_t) readlen;
if (oob)
ops->oobretlen = ops->ooblen - oobreadlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* Get hold of the chip and call nand_do_read.
*/
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
struct mtd_oob_ops ops;
int ret;
nand_get_device(chip, mtd, FL_READING);
ops.len = len;
ops.datbuf = buf;
ops.oobbuf = NULL;
ops.mode = 0;
ret = nand_do_read_ops(mtd, from, &ops);
*retlen = ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
* with syndromes
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size;
uint8_t *bufpoi = buf;
int i, toread, sndrnd = 0, pos;
chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
for (i = 0; i < chip->ecc.steps; i++) {
if (sndrnd) {
pos = eccsize + i * (eccsize + chunk);
if (mtd->writesize > 512)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
else
chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
} else
sndrnd = 1;
toread = min_t(int, length, chunk);
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
if (length > 0)
chip->read_buf(mtd, bufpoi, length);
return 0;
}
/**
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int status = 0;
const uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, buf, length);
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/**
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
* with syndrome - only for large page flash
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
/*
* data-ecc-data-ecc ... ecc-oob
* or
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
*/
if (!chip->ecc.prepad && !chip->ecc.postpad) {
pos = steps * (eccsize + chunk);
steps = 0;
} else
pos = eccsize;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
for (i = 0; i < steps; i++) {
if (sndcmd) {
if (mtd->writesize <= 512) {
uint32_t fill = 0xFFFFFFFF;
len = eccsize;
while (len > 0) {
int num = min_t(int, len, 4);
chip->write_buf(mtd, (uint8_t *)&fill,
num);
len -= num;
}
} else {
pos = eccsize + i * (eccsize + chunk);
chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
}
} else
sndcmd = 1;
len = min_t(int, length, chunk);
chip->write_buf(mtd, bufpoi, len);
bufpoi += len;
length -= len;
}
if (length > 0)
chip->write_buf(mtd, bufpoi, length);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/**
* nand_do_read_oob - [INTERN] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operations description structure
*
* NAND read out-of-band data from the spare area.
*/
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int page, realpage, chipnr;
struct nand_chip *chip = mtd->priv;
struct mtd_ecc_stats stats;
int readlen = ops->ooblen;
int len;
uint8_t *buf = ops->oobbuf;
int ret = 0;
pr_debug("%s: from = 0x%08Lx, len = %i\n",
__func__, (unsigned long long)from, readlen);
stats = mtd->ecc_stats;
if (ops->mode == MTD_OPS_AUTO_OOB)
len = chip->ecc.layout->oobavail;
else
len = mtd->oobsize;
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start read outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow reads past end of device */
if (unlikely(from >= mtd->size ||
ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
(from >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
while (1) {
if (ops->mode == MTD_OPS_RAW)
ret = chip->ecc.read_oob_raw(mtd, chip, page);
else
ret = chip->ecc.read_oob(mtd, chip, page);
if (ret < 0)
break;
len = min(len, readlen);
buf = nand_transfer_oob(chip, buf, ops, len);
if (!(chip->options & NAND_NO_READRDY)) {
/* Apply delay or wait for ready/busy pin */
if (!chip->dev_ready)
udelay(chip->chip_delay);
else
nand_wait_ready(mtd);
}
readlen -= len;
if (!readlen)
break;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
ops->oobretlen = ops->ooblen - readlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data.
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow reads past end of device */
if (ops->datbuf && (from + ops->len) > mtd->size) {
pr_debug("%s: attempt to read beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(chip, mtd, FL_READING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_read_oob(mtd, from, ops);
else
ret = nand_do_read_ops(mtd, from, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* nand_write_page_raw - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
chip->write_buf(mtd, buf, mtd->writesize);
if (oob_required)
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
}
/**
* nand_write_page_raw_syndrome - [INTERN] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* We need a special oob layout and handling even when ECC isn't checked.
*/
static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size;
for (steps = chip->ecc.steps; steps > 0; steps--) {
chip->write_buf(mtd, buf, eccsize);
buf += eccsize;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->write_buf(mtd, oob, size);
}
/**
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
/* Software ECC calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
chip->ecc.write_page_raw(mtd, chip, buf, 1);
}
/**
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->buffers->ecccalc;
const uint8_t *p = buf;
uint32_t *eccpos = chip->ecc.layout->eccpos;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
}
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
}
/**
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static void nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->ecc.calculate(mtd, p, oob);
chip->write_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
}
/**
* nand_write_page - [REPLACEABLE] write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @cached: cached programming
* @raw: use _raw version of write_page
*/
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page,
int cached, int raw)
{
int status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw))
chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
else
chip->ecc.write_page(mtd, chip, buf, oob_required);
/*
* Cached progamming disabled for now. Not sure if it's worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
*/
cached = 0;
if (!cached || !(chip->options & NAND_CACHEPRG)) {
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available.
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
page);
if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
if (chip->verify_buf(mtd, buf, mtd->writesize))
return -EIO;
/* Make sure the next page prog is preceded by a status read */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
#endif
return 0;
}
/**
* nand_fill_oob - [INTERN] Transfer client buffer to oob
* @mtd: MTD device structure
* @oob: oob data buffer
* @len: oob data write length
* @ops: oob ops structure
*/
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
/*
* Initialise to all 0xFF, to avoid the possibility of left over OOB
* data from a previous OOB read.
*/
memset(chip->oob_poi, 0xff, mtd->oobsize);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
return oob + len;
case MTD_OPS_AUTO_OOB: {
struct nand_oobfree *free = chip->ecc.layout->oobfree;
uint32_t boffs = 0, woffs = ops->ooboffs;
size_t bytes = 0;
for (; free->length && len; free++, len -= bytes) {
/* Write request not from offset 0? */
if (unlikely(woffs)) {
if (woffs >= free->length) {
woffs -= free->length;
continue;
}
boffs = free->offset + woffs;
bytes = min_t(size_t, len,
(free->length - woffs));
woffs = 0;
} else {
bytes = min_t(size_t, len, free->length);
boffs = free->offset;
}
memcpy(chip->oob_poi + boffs, oob, bytes);
oob += bytes;
}
return oob;
}
default:
BUG();
}
return NULL;
}
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
/**
* nand_do_write_ops - [INTERN] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operations description structure
*
* NAND write with ECC.
*/
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, realpage, page, blockmask, column;
struct nand_chip *chip = mtd->priv;
uint32_t writelen = ops->len;
uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
mtd->oobavail : mtd->oobsize;
uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret, subpage;
int oob_required = oob ? 1 : 0;
ops->retlen = 0;
if (!writelen)
return 0;
/* Reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
pr_notice("%s: attempt to write non page aligned data\n",
__func__);
return -EINVAL;
}
column = to & (mtd->writesize - 1);
subpage = column || (writelen & (mtd->writesize - 1));
if (subpage && oob)
return -EINVAL;
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd))
return -EIO;
realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
/* Invalidate the page cache, when we write to the cached page */
if (to <= (chip->pagebuf << chip->page_shift) &&
(chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;
/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
return -EINVAL;
while (1) {
int bytes = mtd->writesize;
int cached = writelen > bytes && page != blockmask;
uint8_t *wbuf = buf;
/* Partial page write? */
if (unlikely(column || writelen < (mtd->writesize - 1))) {
cached = 0;
bytes = min_t(int, bytes - column, (int) writelen);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
memcpy(&chip->buffers->databuf[column], buf, bytes);
wbuf = chip->buffers->databuf;
}
if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(mtd, oob, len, ops);
oobwritelen -= len;
} else {
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
cached, (ops->mode == MTD_OPS_RAW));
if (ret)
break;
writelen -= bytes;
if (!writelen)
break;
column = 0;
buf += bytes;
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
}
}
ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
return ret;
}
/**
* panic_nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC. Used when performing writes in interrupt context, this
* may for example be called by mtdoops when writing an oops while in panic.
*/
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
struct mtd_oob_ops ops;
int ret;
/* Wait for the device to get ready */
panic_nand_wait(mtd, chip, 400);
/* Grab the device */
panic_nand_get_device(chip, mtd, FL_WRITING);
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.oobbuf = NULL;
ops.mode = 0;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
return ret;
}
/**
* nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC.
*/
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd->priv;
struct mtd_oob_ops ops;
int ret;
nand_get_device(chip, mtd, FL_WRITING);
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.oobbuf = NULL;
ops.mode = 0;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
nand_release_device(mtd);
return ret;
}
/**
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*
* NAND write out-of-band.
*/
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, page, status, len;
struct nand_chip *chip = mtd->priv;
pr_debug("%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int)to, (int)ops->ooblen);
if (ops->mode == MTD_OPS_AUTO_OOB)
len = chip->ecc.layout->oobavail;
else
len = mtd->oobsize;
/* Do not allow write past end of page */
if ((ops->ooboffs + ops->ooblen) > len) {
pr_debug("%s: attempt to write past end of page\n",
__func__);
return -EINVAL;
}
if (unlikely(ops->ooboffs >= len)) {
pr_debug("%s: attempt to start write outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow write past end of device */
if (unlikely(to >= mtd->size ||
ops->ooboffs + ops->ooblen >
((mtd->size >> chip->page_shift) -
(to >> chip->page_shift)) * len)) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
/* Shift to get page */
page = (int)(to >> chip->page_shift);
/*
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
* of my DiskOnChip 2000 test units) will clear the whole data page too
* if we don't do this. I have no clue why, but I seem to have 'fixed'
* it in the doc2000 driver in August 1999. dwmw2.
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check, if it is write protected */
if (nand_check_wp(mtd))
return -EROFS;
/* Invalidate the page cache, if we write to the cached page */
if (page == chip->pagebuf)
chip->pagebuf = -1;
nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
if (ops->mode == MTD_OPS_RAW)
status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
else
status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
if (status)
return status;
ops->oobretlen = ops->ooblen;
return 0;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd->priv;
int ret = -ENOTSUPP;
ops->retlen = 0;
/* Do not allow writes past end of device */
if (ops->datbuf && (to + ops->len) > mtd->size) {
pr_debug("%s: attempt to write beyond end of device\n",
__func__);
return -EINVAL;
}
nand_get_device(chip, mtd, FL_WRITING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(mtd, to, ops);
else
ret = nand_do_write_ops(mtd, to, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* single_erase_cmd - [GENERIC] NAND standard block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* Standard erase command for NAND chips.
*/
static void single_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd->priv;
/* Send commands to erase a block */
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* multi_erase_cmd - [GENERIC] AND specific block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* AND multi block erase command function. Erase 4 consecutive blocks.
*/
static void multi_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd->priv;
/* Send commands to erase a block */
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks.
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd, instr, 0);
}
#define BBT_PAGE_MASK 0xffffff3f
/**
* nand_erase_nand - [INTERN] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks.
*/
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
int allowbbt)
{
int page, status, pages_per_block, ret, chipnr;
struct nand_chip *chip = mtd->priv;
loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
unsigned int bbt_masked_page = 0xffffffff;
loff_t len;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)instr->addr,
(unsigned long long)instr->len);
if (check_offs_len(mtd, instr->addr, instr->len))
return -EINVAL;
/* Grab the lock and see if the device is available */
nand_get_device(chip, mtd, FL_ERASING);
/* Shift to get first page */
page = (int)(instr->addr >> chip->page_shift);
chipnr = (int)(instr->addr >> chip->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
/* Select the NAND device */
chip->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/*
* If BBT requires refresh, set the BBT page mask to see if the BBT
* should be rewritten. Otherwise the mask is set to 0xffffffff which
* can not be matched. This is also done when the bbt is actually
* erased to avoid recursive updates.
*/
if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks! */
if (nand_block_checkbad(mtd, ((loff_t) page) <<
chip->page_shift, 0, allowbbt)) {
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/*
* Invalidate the page cache, if we erase the block which
* contains the current cached page.
*/
if (page <= chip->pagebuf && chip->pagebuf <
(page + pages_per_block))
chip->pagebuf = -1;
chip->erase_cmd(mtd, page & chip->pagemask);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_ERASING,
status, page);
/* See if block erase succeeded */
if (status & NAND_STATUS_FAIL) {
pr_debug("%s: failed erase, page 0x%08x\n",
__func__, page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr =
((loff_t)page << chip->page_shift);
goto erase_exit;
}
/*
* If BBT requires refresh, set the BBT rewrite flag to the
* page being erased.
*/
if (bbt_masked_page != 0xffffffff &&
(page & BBT_PAGE_MASK) == bbt_masked_page)
rewrite_bbt[chipnr] =
((loff_t)page << chip->page_shift);
/* Increment page address and decrement length */
len -= (1 << chip->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & chip->pagemask)) {
chipnr++;
chip->select_chip(mtd, -1);
chip->select_chip(mtd, chipnr);
/*
* If BBT requires refresh and BBT-PERCHIP, set the BBT
* page mask to see if this BBT should be rewritten.
*/
if (bbt_masked_page != 0xffffffff &&
(chip->bbt_td->options & NAND_BBT_PERCHIP))
bbt_masked_page = chip->bbt_td->pages[chipnr] &
BBT_PAGE_MASK;
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* Do call back function */
if (!ret)
mtd_erase_callback(instr);
/*
* If BBT requires refresh and erase was successful, rewrite any
* selected bad block tables.
*/
if (bbt_masked_page == 0xffffffff || ret)
return ret;
for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
if (!rewrite_bbt[chipnr])
continue;
/* Update the BBT for chip */
pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
__func__, chipnr, rewrite_bbt[chipnr],
chip->bbt_td->pages[chipnr]);
nand_update_bbt(mtd, rewrite_bbt[chipnr]);
}
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function.
*/
static void nand_sync(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
pr_debug("%s: called\n", __func__);
/* Grab the lock and see if the device is available */
nand_get_device(chip, mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
* @mtd: MTD device structure
* @offs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
return nand_block_checkbad(mtd, offs, 1, 0);
}
/**
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd->priv;
int ret;
ret = nand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return chip->block_markbad(mtd, ofs);
}
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*/
static int nand_suspend(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
}
/**
* nand_resume - [MTD Interface] Resume the NAND flash
* @mtd: MTD device structure
*/
static void nand_resume(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
if (chip->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
pr_err("%s called for a chip which is not in suspended state\n",
__func__);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip, int busw)
{
/* check for proper chip_delay setup, set 20us if not */
if (!chip->chip_delay)
chip->chip_delay = 20;
/* check, if a user supplied command function given */
if (chip->cmdfunc == NULL)
chip->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (chip->waitfunc == NULL)
chip->waitfunc = nand_wait;
if (!chip->select_chip)
chip->select_chip = nand_select_chip;
if (!chip->read_byte)
chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
if (!chip->read_word)
chip->read_word = nand_read_word;
if (!chip->block_bad)
chip->block_bad = nand_block_bad;
if (!chip->block_markbad)
chip->block_markbad = nand_default_block_markbad;
if (!chip->write_buf)
chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
if (!chip->read_buf)
chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
if (!chip->verify_buf)
chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
if (!chip->scan_bbt)
chip->scan_bbt = nand_default_bbt;
if (!chip->controller) {
chip->controller = &chip->hwcontrol;
spin_lock_init(&chip->controller->lock);
init_waitqueue_head(&chip->controller->wq);
}
}
/* Sanitize ONFI strings so we can safely print them */
static void sanitize_string(uint8_t *s, size_t len)
{
ssize_t i;
/* Null terminate */
s[len - 1] = 0;
/* Remove non printable chars */
for (i = 0; i < len - 1; i++) {
if (s[i] < ' ' || s[i] > 127)
s[i] = '?';
}
/* Remove trailing spaces */
strim(s);
}
static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
int i;
while (len--) {
crc ^= *p++ << 8;
for (i = 0; i < 8; i++)
crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
}
return crc;
}
/*
* Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
*/
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
int *busw)
{
struct nand_onfi_params *p = &chip->onfi_params;
int i;
int val;
/* Try ONFI for unknown chip or LP */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
return 0;
chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
for (i = 0; i < 3; i++) {
chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
le16_to_cpu(p->crc)) {
pr_info("ONFI param page %d valid\n", i);
break;
}
}
if (i == 3)
return 0;
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 5))
chip->onfi_version = 23;
else if (val & (1 << 4))
chip->onfi_version = 22;
else if (val & (1 << 3))
chip->onfi_version = 21;
else if (val & (1 << 2))
chip->onfi_version = 20;
else if (val & (1 << 1))
chip->onfi_version = 10;
else
chip->onfi_version = 0;
if (!chip->onfi_version) {
pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
return 0;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
if (!mtd->name)
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
chip->chipsize = le32_to_cpu(p->blocks_per_lun);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
*busw = 0;
if (le16_to_cpu(p->features) & 1)
*busw = NAND_BUSWIDTH_16;
chip->options &= ~NAND_CHIPOPTIONS_MSK;
chip->options |= NAND_NO_READRDY & NAND_CHIPOPTIONS_MSK;
pr_info("ONFI flash detected\n");
return 1;
}
/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
struct nand_chip *chip,
int busw,
int *maf_id, int *dev_id,
struct nand_flash_dev *type)
{
int i, maf_idx;
u8 id_data[8];
int ret;
/* Select the device */
chip->select_chip(mtd, 0);
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
* after power-up.
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
*maf_id = chip->read_byte(mtd);
*dev_id = chip->read_byte(mtd);
/*
* Try again to make sure, as some systems the bus-hold or other
* interface concerns can cause random data which looks like a
* possibly credible NAND flash to appear. If the two results do
* not match, ignore the device completely.
*/
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
for (i = 0; i < 2; i++)
id_data[i] = chip->read_byte(mtd);
if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
pr_info("%s: second ID read did not match "
"%02x,%02x against %02x,%02x\n", __func__,
*maf_id, *dev_id, id_data[0], id_data[1]);
return ERR_PTR(-ENODEV);
}
if (!type)
type = nand_flash_ids;
for (; type->name != NULL; type++)
if (*dev_id == type->id)
break;
chip->onfi_version = 0;
if (!type->name || !type->pagesize) {
/* Check is chip is ONFI compliant */
ret = nand_flash_detect_onfi(mtd, chip, &busw);
if (ret)
goto ident_done;
}
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read entire ID string */
for (i = 0; i < 8; i++)
id_data[i] = chip->read_byte(mtd);
if (!type->name)
return ERR_PTR(-ENODEV);
if (!mtd->name)
mtd->name = type->name;
chip->chipsize = (uint64_t)type->chipsize << 20;
if (!type->pagesize && chip->init_size) {
/* Set the pagesize, oobsize, erasesize by the driver */
busw = chip->init_size(mtd, chip, id_data);
} else if (!type->pagesize) {
int extid;
/* The 3rd id byte holds MLC / multichip data */
chip->cellinfo = id_data[2];
/* The 4th id byte is the important one */
extid = id_data[3];
/*
* Field definitions are in the following datasheets:
* Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
* New style (6 byte ID): Samsung K9GBG08U0M (p.40)
*
* Check for wraparound + Samsung ID + nonzero 6th byte
* to decide what to do.
*/
if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
id_data[0] == NAND_MFR_SAMSUNG &&
(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
id_data[5] != 0x00) {
/* Calc pagesize */
mtd->writesize = 2048 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
switch (extid & 0x03) {
case 1:
mtd->oobsize = 128;
break;
case 2:
mtd->oobsize = 218;
break;
case 3:
mtd->oobsize = 400;
break;
default:
mtd->oobsize = 436;
break;
}
extid >>= 2;
/* Calc blocksize */
mtd->erasesize = (128 * 1024) <<
(((extid >> 1) & 0x04) | (extid & 0x03));
busw = 0;
} else {
/* Calc pagesize */
mtd->writesize = 1024 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x01)) *
(mtd->writesize >> 9);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
}
} else {
/*
* Old devices have chip data hardcoded in the device id table.
*/
mtd->erasesize = type->erasesize;
mtd->writesize = type->pagesize;
mtd->oobsize = mtd->writesize / 32;
busw = type->options & NAND_BUSWIDTH_16;
/*
* Check for Spansion/AMD ID + repeating 5th, 6th byte since
* some Spansion chips have erasesize that conflicts with size
* listed in nand_ids table.
* Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
*/
if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
id_data[5] == 0x00 && id_data[6] == 0x00 &&
id_data[7] == 0x00 && mtd->writesize == 512) {
mtd->erasesize = 128 * 1024;
mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
}
}
/* Get chip options, preserve non chip based options */
chip->options &= ~NAND_CHIPOPTIONS_MSK;
chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
/*
* Check if chip is not a Samsung device. Do not clear the
* options for chips which do not have an extended id.
*/
if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:
/* Try to identify manufacturer */
for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
if (nand_manuf_ids[maf_idx].id == *maf_id)
break;
}
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
if (busw != (chip->options & NAND_BUSWIDTH_16)) {
pr_info("NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
*dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
pr_warn("NAND bus width %d instead %d bit\n",
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
busw ? 16 : 8);
return ERR_PTR(-EINVAL);
}
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->bbt_erase_shift = chip->phys_erase_shift =
ffs(mtd->erasesize) - 1;
if (chip->chipsize & 0xffffffff)
chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
else {
chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
chip->chip_shift += 32 - 1;
}
chip->badblockbits = 8;
/* Set the bad block position */
if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
else
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
/*
* Bad block marker is stored in the last page of each block
* on Samsung and Hynix MLC devices; stored in first two pages
* of each block on Micron devices with 2KiB pages and on
* SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
* All others scan only the first page.
*/
if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
(*maf_id == NAND_MFR_SAMSUNG ||
*maf_id == NAND_MFR_HYNIX))
chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
(*maf_id == NAND_MFR_SAMSUNG ||
*maf_id == NAND_MFR_HYNIX ||
*maf_id == NAND_MFR_TOSHIBA ||
*maf_id == NAND_MFR_AMD ||
*maf_id == NAND_MFR_MACRONIX)) ||
(mtd->writesize == 2048 &&
*maf_id == NAND_MFR_MICRON))
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
/* Check for AND chips with 4 page planes */
if (chip->options & NAND_4PAGE_ARRAY)
chip->erase_cmd = multi_erase_cmd;
else
chip->erase_cmd = single_erase_cmd;
/* Do not replace user supplied command function! */
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
chip->cmdfunc = nand_command_lp;
pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
" page size: %d, OOB size: %d\n",
*maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
chip->onfi_version ? chip->onfi_params.model : type->name,
mtd->writesize, mtd->oobsize);
return type;
}
/**
* nand_scan_ident - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
* @table: alternative NAND ID table
*
* This is the first phase of the normal nand_scan() function. It reads the
* flash ID and sets up MTD fields accordingly.
*
* The mtd->owner field must be set to the module of the caller.
*/
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
struct nand_flash_dev *table)
{
int i, busw, nand_maf_id, nand_dev_id;
struct nand_chip *chip = mtd->priv;
struct nand_flash_dev *type;
/* Get buswidth to select the correct functions */
busw = chip->options & NAND_BUSWIDTH_16;
/* Set the default functions */
nand_set_defaults(chip, busw);
/* Read the flash type */
type = nand_get_flash_type(mtd, chip, busw,
&nand_maf_id, &nand_dev_id, table);
if (IS_ERR(type)) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
chip->select_chip(mtd, -1);
return PTR_ERR(type);
}
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
chip->select_chip(mtd, i);
/* See comment in nand_get_flash_type for reset */
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != chip->read_byte(mtd) ||
nand_dev_id != chip->read_byte(mtd))
break;
}
if (i > 1)
pr_info("%d NAND chips detected\n", i);
/* Store the number of chips and calc total size for mtd */
chip->numchips = i;
mtd->size = i * chip->chipsize;
return 0;
}
EXPORT_SYMBOL(nand_scan_ident);
/**
* nand_scan_tail - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
*
* This is the second phase of the normal nand_scan() function. It fills out
* all the uninitialized function pointers with the defaults and scans for a
* bad block table if appropriate.
*/
int nand_scan_tail(struct mtd_info *mtd)
{
int i;
struct nand_chip *chip = mtd->priv;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
!(chip->bbt_options & NAND_BBT_USE_FLASH));
if (!(chip->options & NAND_OWN_BUFFERS))
chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
if (!chip->buffers)
return -ENOMEM;
/* Set the internal oob buffer location, just after the page data */
chip->oob_poi = chip->buffers->databuf + mtd->writesize;
/*
* If no default placement scheme is given, select an appropriate one.
*/
if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
switch (mtd->oobsize) {
case 8:
chip->ecc.layout = &nand_oob_8;
break;
case 16:
chip->ecc.layout = &nand_oob_16;
break;
case 64:
chip->ecc.layout = &nand_oob_64;
break;
case 128:
chip->ecc.layout = &nand_oob_128;
break;
default:
pr_warn("No oob scheme defined for oobsize %d\n",
mtd->oobsize);
BUG();
}
}
if (!chip->write_page)
chip->write_page = nand_write_page;
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
*/
switch (chip->ecc.mode) {
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!chip->ecc.calculate || !chip->ecc.correct ||
!chip->ecc.hwctl) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
BUG();
}
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_hwecc_oob_first;
case NAND_ECC_HW:
/* Use standard hwecc read page function? */
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_hwecc;
if (!chip->ecc.write_page)
chip->ecc.write_page = nand_write_page_hwecc;
if (!chip->ecc.read_page_raw)
chip->ecc.read_page_raw = nand_read_page_raw;
if (!chip->ecc.write_page_raw)
chip->ecc.write_page_raw = nand_write_page_raw;
if (!chip->ecc.read_oob)
chip->ecc.read_oob = nand_read_oob_std;
if (!chip->ecc.write_oob)
chip->ecc.write_oob = nand_write_oob_std;
case NAND_ECC_HW_SYNDROME:
if ((!chip->ecc.calculate || !chip->ecc.correct ||
!chip->ecc.hwctl) &&
(!chip->ecc.read_page ||
chip->ecc.read_page == nand_read_page_hwecc ||
!chip->ecc.write_page ||
chip->ecc.write_page == nand_write_page_hwecc)) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
BUG();
}
/* Use standard syndrome read/write page function? */
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_syndrome;
if (!chip->ecc.write_page)
chip->ecc.write_page = nand_write_page_syndrome;
if (!chip->ecc.read_page_raw)
chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
if (!chip->ecc.write_page_raw)
chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
if (!chip->ecc.read_oob)
chip->ecc.read_oob = nand_read_oob_syndrome;
if (!chip->ecc.write_oob)
chip->ecc.write_oob = nand_write_oob_syndrome;
if (mtd->writesize >= chip->ecc.size) {
if (!chip->ecc.strength) {
pr_warn("Driver must set ecc.strength when using hardware ECC\n");
BUG();
}
break;
}
pr_warn("%d byte HW ECC not possible on "
"%d byte page size, fallback to SW ECC\n",
chip->ecc.size, mtd->writesize);
chip->ecc.mode = NAND_ECC_SOFT;
case NAND_ECC_SOFT:
chip->ecc.calculate = nand_calculate_ecc;
chip->ecc.correct = nand_correct_data;
chip->ecc.read_page = nand_read_page_swecc;
chip->ecc.read_subpage = nand_read_subpage;
chip->ecc.write_page = nand_write_page_swecc;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.write_oob = nand_write_oob_std;
if (!chip->ecc.size)
chip->ecc.size = 256;
chip->ecc.bytes = 3;
chip->ecc.strength = 1;
break;
case NAND_ECC_SOFT_BCH:
if (!mtd_nand_has_bch()) {
pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
BUG();
}
chip->ecc.calculate = nand_bch_calculate_ecc;
chip->ecc.correct = nand_bch_correct_data;
chip->ecc.read_page = nand_read_page_swecc;
chip->ecc.read_subpage = nand_read_subpage;
chip->ecc.write_page = nand_write_page_swecc;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.write_oob = nand_write_oob_std;
/*
* Board driver should supply ecc.size and ecc.bytes values to
* select how many bits are correctable; see nand_bch_init()
* for details. Otherwise, default to 4 bits for large page
* devices.
*/
if (!chip->ecc.size && (mtd->oobsize >= 64)) {
chip->ecc.size = 512;
chip->ecc.bytes = 7;
}
chip->ecc.priv = nand_bch_init(mtd,
chip->ecc.size,
chip->ecc.bytes,
&chip->ecc.layout);
if (!chip->ecc.priv) {
pr_warn("BCH ECC initialization failed!\n");
BUG();
}
chip->ecc.strength =
chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
break;
case NAND_ECC_NONE:
pr_warn("NAND_ECC_NONE selected by board driver. "
"This is not recommended!\n");
chip->ecc.read_page = nand_read_page_raw;
chip->ecc.write_page = nand_write_page_raw;
chip->ecc.read_oob = nand_read_oob_std;
chip->ecc.read_page_raw = nand_read_page_raw;
chip->ecc.write_page_raw = nand_write_page_raw;
chip->ecc.write_oob = nand_write_oob_std;
chip->ecc.size = mtd->writesize;
chip->ecc.bytes = 0;
chip->ecc.strength = 0;
break;
default:
pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
BUG();
}
/* For many systems, the standard OOB write also works for raw */
if (!chip->ecc.read_oob_raw)
chip->ecc.read_oob_raw = chip->ecc.read_oob;
if (!chip->ecc.write_oob_raw)
chip->ecc.write_oob_raw = chip->ecc.write_oob;
/*
* The number of bytes available for a client to place data into
* the out of band area.
*/
chip->ecc.layout->oobavail = 0;
for (i = 0; chip->ecc.layout->oobfree[i].length
&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
chip->ecc.layout->oobavail +=
chip->ecc.layout->oobfree[i].length;
mtd->oobavail = chip->ecc.layout->oobavail;
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
chip->ecc.steps = mtd->writesize / chip->ecc.size;
if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
pr_warn("Invalid ECC parameters\n");
BUG();
}
chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
!(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
switch (chip->ecc.steps) {
case 2:
mtd->subpage_sft = 1;
break;
case 4:
case 8:
case 16:
mtd->subpage_sft = 2;
break;
}
}
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
/* Initialize state */
chip->state = FL_READY;
/* De-select the device */
chip->select_chip(mtd, -1);
/* Invalidate the pagebuffer reference */
chip->pagebuf = -1;
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
MTD_CAP_NANDFLASH;
mtd->_erase = nand_erase;
mtd->_point = NULL;
mtd->_unpoint = NULL;
mtd->_read = nand_read;
mtd->_write = nand_write;
mtd->_panic_write = panic_nand_write;
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = NULL;
mtd->_unlock = NULL;
mtd->_suspend = nand_suspend;
mtd->_resume = nand_resume;
mtd->_block_isbad = nand_block_isbad;
mtd->_block_markbad = nand_block_markbad;
mtd->writebufsize = mtd->writesize;
/* propagate ecc info to mtd_info */
mtd->ecclayout = chip->ecc.layout;
mtd->ecc_strength = chip->ecc.strength;
/*
* Initialize bitflip_threshold to its default prior scan_bbt() call.
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
* properly set.
*/
if (!mtd->bitflip_threshold)
mtd->bitflip_threshold = mtd->ecc_strength;
/* Check, if we should skip the bad block table scan */
if (chip->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
return chip->scan_bbt(mtd);
}
EXPORT_SYMBOL(nand_scan_tail);
/*
* is_module_text_address() isn't exported, and it's mostly a pointless
* test if this is a module _anyway_ -- they'd have to try _really_ hard
* to call us from in-kernel code if the core NAND support is modular.
*/
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
is_module_text_address((unsigned long)__builtin_return_address(0))
#endif
/**
* nand_scan - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: number of chips to scan for
*
* This fills out all the uninitialized function pointers with the defaults.
* The flash ID is read and the mtd/chip structures are filled with the
* appropriate values. The mtd->owner field must be set to the module of the
* caller.
*/
int nand_scan(struct mtd_info *mtd, int maxchips)
{
int ret;
/* Many callers got this wrong, so check for it for a while... */
if (!mtd->owner && caller_is_module()) {
pr_crit("%s called with NULL mtd->owner!\n", __func__);
BUG();
}
ret = nand_scan_ident(mtd, maxchips, NULL);
if (!ret)
ret = nand_scan_tail(mtd);
return ret;
}
EXPORT_SYMBOL(nand_scan);
/**
* nand_release - [NAND Interface] Free resources held by the NAND device
* @mtd: MTD device structure
*/
void nand_release(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
mtd_device_unregister(mtd);
/* Free bad block table memory */
kfree(chip->bbt);
if (!(chip->options & NAND_OWN_BUFFERS))
kfree(chip->buffers);
/* Free bad block descriptor memory */
if (chip->badblock_pattern && chip->badblock_pattern->options
& NAND_BBT_DYNAMICSTRUCT)
kfree(chip->badblock_pattern);
}
EXPORT_SYMBOL_GPL(nand_release);
static int __init nand_base_init(void)
{
led_trigger_register_simple("nand-disk", &nand_led_trigger);
return 0;
}
static void __exit nand_base_exit(void)
{
led_trigger_unregister_simple(nand_led_trigger);
}
module_init(nand_base_init);
module_exit(nand_base_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");