| /* |
| * SuperH KGDB support |
| * |
| * Copyright (C) 2008 - 2012 Paul Mundt |
| * |
| * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/kgdb.h> |
| #include <linux/kdebug.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <asm/cacheflush.h> |
| #include <asm/traps.h> |
| |
| /* Macros for single step instruction identification */ |
| #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900) |
| #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00) |
| #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \ |
| (((op) & 0x7f ) << 1)) |
| #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00) |
| #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00) |
| #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000) |
| #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023) |
| #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8) |
| #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000) |
| #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ |
| (((op) & 0x7ff) << 1)) |
| #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003) |
| #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b) |
| #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b) |
| #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf) |
| #define OPCODE_RTS(op) ((op) == 0xb) |
| #define OPCODE_RTE(op) ((op) == 0x2b) |
| |
| #define SR_T_BIT_MASK 0x1 |
| #define STEP_OPCODE 0xc33d |
| |
| /* Calculate the new address for after a step */ |
| static short *get_step_address(struct pt_regs *linux_regs) |
| { |
| insn_size_t op = __raw_readw(linux_regs->pc); |
| long addr; |
| |
| /* BT */ |
| if (OPCODE_BT(op)) { |
| if (linux_regs->sr & SR_T_BIT_MASK) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 2; |
| } |
| |
| /* BTS */ |
| else if (OPCODE_BTS(op)) { |
| if (linux_regs->sr & SR_T_BIT_MASK) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BF */ |
| else if (OPCODE_BF(op)) { |
| if (!(linux_regs->sr & SR_T_BIT_MASK)) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 2; |
| } |
| |
| /* BFS */ |
| else if (OPCODE_BFS(op)) { |
| if (!(linux_regs->sr & SR_T_BIT_MASK)) |
| addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); |
| else |
| addr = linux_regs->pc + 4; /* Not in delay slot */ |
| } |
| |
| /* BRA */ |
| else if (OPCODE_BRA(op)) |
| addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op); |
| |
| /* BRAF */ |
| else if (OPCODE_BRAF(op)) |
| addr = linux_regs->pc + 4 |
| + linux_regs->regs[OPCODE_BRAF_REG(op)]; |
| |
| /* BSR */ |
| else if (OPCODE_BSR(op)) |
| addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op); |
| |
| /* BSRF */ |
| else if (OPCODE_BSRF(op)) |
| addr = linux_regs->pc + 4 |
| + linux_regs->regs[OPCODE_BSRF_REG(op)]; |
| |
| /* JMP */ |
| else if (OPCODE_JMP(op)) |
| addr = linux_regs->regs[OPCODE_JMP_REG(op)]; |
| |
| /* JSR */ |
| else if (OPCODE_JSR(op)) |
| addr = linux_regs->regs[OPCODE_JSR_REG(op)]; |
| |
| /* RTS */ |
| else if (OPCODE_RTS(op)) |
| addr = linux_regs->pr; |
| |
| /* RTE */ |
| else if (OPCODE_RTE(op)) |
| addr = linux_regs->regs[15]; |
| |
| /* Other */ |
| else |
| addr = linux_regs->pc + instruction_size(op); |
| |
| flush_icache_range(addr, addr + instruction_size(op)); |
| return (short *)addr; |
| } |
| |
| /* |
| * Replace the instruction immediately after the current instruction |
| * (i.e. next in the expected flow of control) with a trap instruction, |
| * so that returning will cause only a single instruction to be executed. |
| * Note that this model is slightly broken for instructions with delay |
| * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the |
| * instruction in the delay slot will be executed. |
| */ |
| |
| static unsigned long stepped_address; |
| static insn_size_t stepped_opcode; |
| |
| static void do_single_step(struct pt_regs *linux_regs) |
| { |
| /* Determine where the target instruction will send us to */ |
| unsigned short *addr = get_step_address(linux_regs); |
| |
| stepped_address = (int)addr; |
| |
| /* Replace it */ |
| stepped_opcode = __raw_readw((long)addr); |
| *addr = STEP_OPCODE; |
| |
| /* Flush and return */ |
| flush_icache_range((long)addr, (long)addr + |
| instruction_size(stepped_opcode)); |
| } |
| |
| /* Undo a single step */ |
| static void undo_single_step(struct pt_regs *linux_regs) |
| { |
| /* If we have stepped, put back the old instruction */ |
| /* Use stepped_address in case we stopped elsewhere */ |
| if (stepped_opcode != 0) { |
| __raw_writew(stepped_opcode, stepped_address); |
| flush_icache_range(stepped_address, stepped_address + 2); |
| } |
| |
| stepped_opcode = 0; |
| } |
| |
| struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { |
| { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) }, |
| { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) }, |
| { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) }, |
| { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) }, |
| { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) }, |
| { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) }, |
| { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) }, |
| { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) }, |
| { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) }, |
| { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) }, |
| { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) }, |
| { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) }, |
| { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) }, |
| { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) }, |
| { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) }, |
| { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) }, |
| { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) }, |
| { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) }, |
| { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) }, |
| { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) }, |
| { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) }, |
| { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) }, |
| { "vbr", GDB_SIZEOF_REG, -1 }, |
| }; |
| |
| int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) |
| { |
| if (regno < 0 || regno >= DBG_MAX_REG_NUM) |
| return -EINVAL; |
| |
| if (dbg_reg_def[regno].offset != -1) |
| memcpy((void *)regs + dbg_reg_def[regno].offset, mem, |
| dbg_reg_def[regno].size); |
| |
| return 0; |
| } |
| |
| char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) |
| { |
| if (regno >= DBG_MAX_REG_NUM || regno < 0) |
| return NULL; |
| |
| if (dbg_reg_def[regno].size != -1) |
| memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, |
| dbg_reg_def[regno].size); |
| |
| switch (regno) { |
| case GDB_VBR: |
| __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem)); |
| break; |
| } |
| |
| return dbg_reg_def[regno].name; |
| } |
| |
| void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) |
| { |
| struct pt_regs *thread_regs = task_pt_regs(p); |
| int reg; |
| |
| /* Initialize to zero */ |
| for (reg = 0; reg < DBG_MAX_REG_NUM; reg++) |
| gdb_regs[reg] = 0; |
| |
| /* |
| * Copy out GP regs 8 to 14. |
| * |
| * switch_to() relies on SR.RB toggling, so regs 0->7 are banked |
| * and need privileged instructions to get to. The r15 value we |
| * fetch from the thread info directly. |
| */ |
| for (reg = GDB_R8; reg < GDB_R15; reg++) |
| gdb_regs[reg] = thread_regs->regs[reg]; |
| |
| gdb_regs[GDB_R15] = p->thread.sp; |
| gdb_regs[GDB_PC] = p->thread.pc; |
| |
| /* |
| * Additional registers we have context for |
| */ |
| gdb_regs[GDB_PR] = thread_regs->pr; |
| gdb_regs[GDB_GBR] = thread_regs->gbr; |
| } |
| |
| int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, |
| char *remcomInBuffer, char *remcomOutBuffer, |
| struct pt_regs *linux_regs) |
| { |
| unsigned long addr; |
| char *ptr; |
| |
| /* Undo any stepping we may have done */ |
| undo_single_step(linux_regs); |
| |
| switch (remcomInBuffer[0]) { |
| case 'c': |
| case 's': |
| /* try to read optional parameter, pc unchanged if no parm */ |
| ptr = &remcomInBuffer[1]; |
| if (kgdb_hex2long(&ptr, &addr)) |
| linux_regs->pc = addr; |
| case 'D': |
| case 'k': |
| atomic_set(&kgdb_cpu_doing_single_step, -1); |
| |
| if (remcomInBuffer[0] == 's') { |
| do_single_step(linux_regs); |
| kgdb_single_step = 1; |
| |
| atomic_set(&kgdb_cpu_doing_single_step, |
| raw_smp_processor_id()); |
| } |
| |
| return 0; |
| } |
| |
| /* this means that we do not want to exit from the handler: */ |
| return -1; |
| } |
| |
| unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs) |
| { |
| if (exception == 60) |
| return instruction_pointer(regs) - 2; |
| return instruction_pointer(regs); |
| } |
| |
| void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip) |
| { |
| regs->pc = ip; |
| } |
| |
| /* |
| * The primary entry points for the kgdb debug trap table entries. |
| */ |
| BUILD_TRAP_HANDLER(singlestep) |
| { |
| unsigned long flags; |
| TRAP_HANDLER_DECL; |
| |
| local_irq_save(flags); |
| regs->pc -= instruction_size(__raw_readw(regs->pc - 4)); |
| kgdb_handle_exception(0, SIGTRAP, 0, regs); |
| local_irq_restore(flags); |
| } |
| |
| static void kgdb_call_nmi_hook(void *ignored) |
| { |
| kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); |
| } |
| |
| void kgdb_roundup_cpus(unsigned long flags) |
| { |
| local_irq_enable(); |
| smp_call_function(kgdb_call_nmi_hook, NULL, 0); |
| local_irq_disable(); |
| } |
| |
| static int __kgdb_notify(struct die_args *args, unsigned long cmd) |
| { |
| int ret; |
| |
| switch (cmd) { |
| case DIE_BREAKPOINT: |
| /* |
| * This means a user thread is single stepping |
| * a system call which should be ignored |
| */ |
| if (test_thread_flag(TIF_SINGLESTEP)) |
| return NOTIFY_DONE; |
| |
| ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr, |
| args->err, args->regs); |
| if (ret) |
| return NOTIFY_DONE; |
| |
| break; |
| } |
| |
| return NOTIFY_STOP; |
| } |
| |
| static int |
| kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) |
| { |
| unsigned long flags; |
| int ret; |
| |
| local_irq_save(flags); |
| ret = __kgdb_notify(ptr, cmd); |
| local_irq_restore(flags); |
| |
| return ret; |
| } |
| |
| static struct notifier_block kgdb_notifier = { |
| .notifier_call = kgdb_notify, |
| |
| /* |
| * Lowest-prio notifier priority, we want to be notified last: |
| */ |
| .priority = -INT_MAX, |
| }; |
| |
| int kgdb_arch_init(void) |
| { |
| return register_die_notifier(&kgdb_notifier); |
| } |
| |
| void kgdb_arch_exit(void) |
| { |
| unregister_die_notifier(&kgdb_notifier); |
| } |
| |
| struct kgdb_arch arch_kgdb_ops = { |
| /* Breakpoint instruction: trapa #0x3c */ |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| .gdb_bpt_instr = { 0x3c, 0xc3 }, |
| #else |
| .gdb_bpt_instr = { 0xc3, 0x3c }, |
| #endif |
| }; |