| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved. |
| * |
| * Routines for PCI DMA mapping. See Documentation/DMA-API.txt for |
| * a description of how these routines should be used. |
| */ |
| |
| #include <linux/gfp.h> |
| #include <linux/module.h> |
| #include <linux/dma-mapping.h> |
| #include <asm/dma.h> |
| #include <asm/sn/intr.h> |
| #include <asm/sn/pcibus_provider_defs.h> |
| #include <asm/sn/pcidev.h> |
| #include <asm/sn/sn_sal.h> |
| |
| #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg))) |
| #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) |
| |
| /** |
| * sn_dma_supported - test a DMA mask |
| * @dev: device to test |
| * @mask: DMA mask to test |
| * |
| * Return whether the given PCI device DMA address mask can be supported |
| * properly. For example, if your device can only drive the low 24-bits |
| * during PCI bus mastering, then you would pass 0x00ffffff as the mask to |
| * this function. Of course, SN only supports devices that have 32 or more |
| * address bits when using the PMU. |
| */ |
| static int sn_dma_supported(struct device *dev, u64 mask) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| if (mask < 0x7fffffff) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * sn_dma_set_mask - set the DMA mask |
| * @dev: device to set |
| * @dma_mask: new mask |
| * |
| * Set @dev's DMA mask if the hw supports it. |
| */ |
| int sn_dma_set_mask(struct device *dev, u64 dma_mask) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| if (!sn_dma_supported(dev, dma_mask)) |
| return 0; |
| |
| *dev->dma_mask = dma_mask; |
| return 1; |
| } |
| EXPORT_SYMBOL(sn_dma_set_mask); |
| |
| /** |
| * sn_dma_alloc_coherent - allocate memory for coherent DMA |
| * @dev: device to allocate for |
| * @size: size of the region |
| * @dma_handle: DMA (bus) address |
| * @flags: memory allocation flags |
| * |
| * dma_alloc_coherent() returns a pointer to a memory region suitable for |
| * coherent DMA traffic to/from a PCI device. On SN platforms, this means |
| * that @dma_handle will have the %PCIIO_DMA_CMD flag set. |
| * |
| * This interface is usually used for "command" streams (e.g. the command |
| * queue for a SCSI controller). See Documentation/DMA-API.txt for |
| * more information. |
| */ |
| static void *sn_dma_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t * dma_handle, gfp_t flags) |
| { |
| void *cpuaddr; |
| unsigned long phys_addr; |
| int node; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| /* |
| * Allocate the memory. |
| */ |
| node = pcibus_to_node(pdev->bus); |
| if (likely(node >=0)) { |
| struct page *p = alloc_pages_exact_node(node, |
| flags, get_order(size)); |
| |
| if (likely(p)) |
| cpuaddr = page_address(p); |
| else |
| return NULL; |
| } else |
| cpuaddr = (void *)__get_free_pages(flags, get_order(size)); |
| |
| if (unlikely(!cpuaddr)) |
| return NULL; |
| |
| memset(cpuaddr, 0x0, size); |
| |
| /* physical addr. of the memory we just got */ |
| phys_addr = __pa(cpuaddr); |
| |
| /* |
| * 64 bit address translations should never fail. |
| * 32 bit translations can fail if there are insufficient mapping |
| * resources. |
| */ |
| |
| *dma_handle = provider->dma_map_consistent(pdev, phys_addr, size, |
| SN_DMA_ADDR_PHYS); |
| if (!*dma_handle) { |
| printk(KERN_ERR "%s: out of ATEs\n", __func__); |
| free_pages((unsigned long)cpuaddr, get_order(size)); |
| return NULL; |
| } |
| |
| return cpuaddr; |
| } |
| |
| /** |
| * sn_pci_free_coherent - free memory associated with coherent DMAable region |
| * @dev: device to free for |
| * @size: size to free |
| * @cpu_addr: kernel virtual address to free |
| * @dma_handle: DMA address associated with this region |
| * |
| * Frees the memory allocated by dma_alloc_coherent(), potentially unmapping |
| * any associated IOMMU mappings. |
| */ |
| static void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| provider->dma_unmap(pdev, dma_handle, 0); |
| free_pages((unsigned long)cpu_addr, get_order(size)); |
| } |
| |
| /** |
| * sn_dma_map_single_attrs - map a single page for DMA |
| * @dev: device to map for |
| * @cpu_addr: kernel virtual address of the region to map |
| * @size: size of the region |
| * @direction: DMA direction |
| * @attrs: optional dma attributes |
| * |
| * Map the region pointed to by @cpu_addr for DMA and return the |
| * DMA address. |
| * |
| * We map this to the one step pcibr_dmamap_trans interface rather than |
| * the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have |
| * no way of saving the dmamap handle from the alloc to later free |
| * (which is pretty much unacceptable). |
| * |
| * mappings with the DMA_ATTR_WRITE_BARRIER get mapped with |
| * dma_map_consistent() so that writes force a flush of pending DMA. |
| * (See "SGI Altix Architecture Considerations for Linux Device Drivers", |
| * Document Number: 007-4763-001) |
| * |
| * TODO: simplify our interface; |
| * figure out how to save dmamap handle so can use two step. |
| */ |
| static dma_addr_t sn_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| void *cpu_addr = page_address(page) + offset; |
| dma_addr_t dma_addr; |
| unsigned long phys_addr; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| int dmabarr; |
| |
| dmabarr = dma_get_attr(DMA_ATTR_WRITE_BARRIER, attrs); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| phys_addr = __pa(cpu_addr); |
| if (dmabarr) |
| dma_addr = provider->dma_map_consistent(pdev, phys_addr, |
| size, SN_DMA_ADDR_PHYS); |
| else |
| dma_addr = provider->dma_map(pdev, phys_addr, size, |
| SN_DMA_ADDR_PHYS); |
| |
| if (!dma_addr) { |
| printk(KERN_ERR "%s: out of ATEs\n", __func__); |
| return 0; |
| } |
| return dma_addr; |
| } |
| |
| /** |
| * sn_dma_unmap_single_attrs - unamp a DMA mapped page |
| * @dev: device to sync |
| * @dma_addr: DMA address to sync |
| * @size: size of region |
| * @direction: DMA direction |
| * @attrs: optional dma attributes |
| * |
| * This routine is supposed to sync the DMA region specified |
| * by @dma_handle into the coherence domain. On SN, we're always cache |
| * coherent, so we just need to free any ATEs associated with this mapping. |
| */ |
| static void sn_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, |
| size_t size, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| provider->dma_unmap(pdev, dma_addr, dir); |
| } |
| |
| /** |
| * sn_dma_unmap_sg - unmap a DMA scatterlist |
| * @dev: device to unmap |
| * @sg: scatterlist to unmap |
| * @nhwentries: number of scatterlist entries |
| * @direction: DMA direction |
| * @attrs: optional dma attributes |
| * |
| * Unmap a set of streaming mode DMA translations. |
| */ |
| static void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| int nhwentries, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| int i; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| struct scatterlist *sg; |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| for_each_sg(sgl, sg, nhwentries, i) { |
| provider->dma_unmap(pdev, sg->dma_address, dir); |
| sg->dma_address = (dma_addr_t) NULL; |
| sg->dma_length = 0; |
| } |
| } |
| |
| /** |
| * sn_dma_map_sg - map a scatterlist for DMA |
| * @dev: device to map for |
| * @sg: scatterlist to map |
| * @nhwentries: number of entries |
| * @direction: direction of the DMA transaction |
| * @attrs: optional dma attributes |
| * |
| * mappings with the DMA_ATTR_WRITE_BARRIER get mapped with |
| * dma_map_consistent() so that writes force a flush of pending DMA. |
| * (See "SGI Altix Architecture Considerations for Linux Device Drivers", |
| * Document Number: 007-4763-001) |
| * |
| * Maps each entry of @sg for DMA. |
| */ |
| static int sn_dma_map_sg(struct device *dev, struct scatterlist *sgl, |
| int nhwentries, enum dma_data_direction dir, |
| struct dma_attrs *attrs) |
| { |
| unsigned long phys_addr; |
| struct scatterlist *saved_sg = sgl, *sg; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev); |
| int i; |
| int dmabarr; |
| |
| dmabarr = dma_get_attr(DMA_ATTR_WRITE_BARRIER, attrs); |
| |
| BUG_ON(dev->bus != &pci_bus_type); |
| |
| /* |
| * Setup a DMA address for each entry in the scatterlist. |
| */ |
| for_each_sg(sgl, sg, nhwentries, i) { |
| dma_addr_t dma_addr; |
| phys_addr = SG_ENT_PHYS_ADDRESS(sg); |
| if (dmabarr) |
| dma_addr = provider->dma_map_consistent(pdev, |
| phys_addr, |
| sg->length, |
| SN_DMA_ADDR_PHYS); |
| else |
| dma_addr = provider->dma_map(pdev, phys_addr, |
| sg->length, |
| SN_DMA_ADDR_PHYS); |
| |
| sg->dma_address = dma_addr; |
| if (!sg->dma_address) { |
| printk(KERN_ERR "%s: out of ATEs\n", __func__); |
| |
| /* |
| * Free any successfully allocated entries. |
| */ |
| if (i > 0) |
| sn_dma_unmap_sg(dev, saved_sg, i, dir, attrs); |
| return 0; |
| } |
| |
| sg->dma_length = sg->length; |
| } |
| |
| return nhwentries; |
| } |
| |
| static void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| |
| static void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, |
| size_t size, |
| enum dma_data_direction dir) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| |
| static void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nelems, enum dma_data_direction dir) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| |
| static void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nelems, enum dma_data_direction dir) |
| { |
| BUG_ON(dev->bus != &pci_bus_type); |
| } |
| |
| static int sn_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| { |
| return 0; |
| } |
| |
| u64 sn_dma_get_required_mask(struct device *dev) |
| { |
| return DMA_BIT_MASK(64); |
| } |
| EXPORT_SYMBOL_GPL(sn_dma_get_required_mask); |
| |
| char *sn_pci_get_legacy_mem(struct pci_bus *bus) |
| { |
| if (!SN_PCIBUS_BUSSOFT(bus)) |
| return ERR_PTR(-ENODEV); |
| |
| return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET); |
| } |
| |
| int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size) |
| { |
| unsigned long addr; |
| int ret; |
| struct ia64_sal_retval isrv; |
| |
| /* |
| * First, try the SN_SAL_IOIF_PCI_SAFE SAL call which can work |
| * around hw issues at the pci bus level. SGI proms older than |
| * 4.10 don't implement this. |
| */ |
| |
| SAL_CALL(isrv, SN_SAL_IOIF_PCI_SAFE, |
| pci_domain_nr(bus), bus->number, |
| 0, /* io */ |
| 0, /* read */ |
| port, size, __pa(val)); |
| |
| if (isrv.status == 0) |
| return size; |
| |
| /* |
| * If the above failed, retry using the SAL_PROBE call which should |
| * be present in all proms (but which cannot work round PCI chipset |
| * bugs). This code is retained for compatibility with old |
| * pre-4.10 proms, and should be removed at some point in the future. |
| */ |
| |
| if (!SN_PCIBUS_BUSSOFT(bus)) |
| return -ENODEV; |
| |
| addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; |
| addr += port; |
| |
| ret = ia64_sn_probe_mem(addr, (long)size, (void *)val); |
| |
| if (ret == 2) |
| return -EINVAL; |
| |
| if (ret == 1) |
| *val = -1; |
| |
| return size; |
| } |
| |
| int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size) |
| { |
| int ret = size; |
| unsigned long paddr; |
| unsigned long *addr; |
| struct ia64_sal_retval isrv; |
| |
| /* |
| * First, try the SN_SAL_IOIF_PCI_SAFE SAL call which can work |
| * around hw issues at the pci bus level. SGI proms older than |
| * 4.10 don't implement this. |
| */ |
| |
| SAL_CALL(isrv, SN_SAL_IOIF_PCI_SAFE, |
| pci_domain_nr(bus), bus->number, |
| 0, /* io */ |
| 1, /* write */ |
| port, size, __pa(&val)); |
| |
| if (isrv.status == 0) |
| return size; |
| |
| /* |
| * If the above failed, retry using the SAL_PROBE call which should |
| * be present in all proms (but which cannot work round PCI chipset |
| * bugs). This code is retained for compatibility with old |
| * pre-4.10 proms, and should be removed at some point in the future. |
| */ |
| |
| if (!SN_PCIBUS_BUSSOFT(bus)) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| /* Put the phys addr in uncached space */ |
| paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET; |
| paddr += port; |
| addr = (unsigned long *)paddr; |
| |
| switch (size) { |
| case 1: |
| *(volatile u8 *)(addr) = (u8)(val); |
| break; |
| case 2: |
| *(volatile u16 *)(addr) = (u16)(val); |
| break; |
| case 4: |
| *(volatile u32 *)(addr) = (u32)(val); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| out: |
| return ret; |
| } |
| |
| static struct dma_map_ops sn_dma_ops = { |
| .alloc_coherent = sn_dma_alloc_coherent, |
| .free_coherent = sn_dma_free_coherent, |
| .map_page = sn_dma_map_page, |
| .unmap_page = sn_dma_unmap_page, |
| .map_sg = sn_dma_map_sg, |
| .unmap_sg = sn_dma_unmap_sg, |
| .sync_single_for_cpu = sn_dma_sync_single_for_cpu, |
| .sync_sg_for_cpu = sn_dma_sync_sg_for_cpu, |
| .sync_single_for_device = sn_dma_sync_single_for_device, |
| .sync_sg_for_device = sn_dma_sync_sg_for_device, |
| .mapping_error = sn_dma_mapping_error, |
| .dma_supported = sn_dma_supported, |
| }; |
| |
| void sn_dma_init(void) |
| { |
| dma_ops = &sn_dma_ops; |
| } |