| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include <linux/log2.h> |
| |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_imap.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_rw.h" |
| #include "xfs_error.h" |
| #include "xfs_utils.h" |
| #include "xfs_dir2_trace.h" |
| #include "xfs_quota.h" |
| #include "xfs_acl.h" |
| #include "xfs_filestream.h" |
| #include "xfs_vnodeops.h" |
| |
| kmem_zone_t *xfs_ifork_zone; |
| kmem_zone_t *xfs_inode_zone; |
| |
| /* |
| * Used in xfs_itruncate(). This is the maximum number of extents |
| * freed from a file in a single transaction. |
| */ |
| #define XFS_ITRUNC_MAX_EXTENTS 2 |
| |
| STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); |
| STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); |
| STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); |
| STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); |
| |
| #ifdef DEBUG |
| /* |
| * Make sure that the extents in the given memory buffer |
| * are valid. |
| */ |
| STATIC void |
| xfs_validate_extents( |
| xfs_ifork_t *ifp, |
| int nrecs, |
| xfs_exntfmt_t fmt) |
| { |
| xfs_bmbt_irec_t irec; |
| xfs_bmbt_rec_host_t rec; |
| int i; |
| |
| for (i = 0; i < nrecs; i++) { |
| xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
| rec.l0 = get_unaligned(&ep->l0); |
| rec.l1 = get_unaligned(&ep->l1); |
| xfs_bmbt_get_all(&rec, &irec); |
| if (fmt == XFS_EXTFMT_NOSTATE) |
| ASSERT(irec.br_state == XFS_EXT_NORM); |
| } |
| } |
| #else /* DEBUG */ |
| #define xfs_validate_extents(ifp, nrecs, fmt) |
| #endif /* DEBUG */ |
| |
| /* |
| * Check that none of the inode's in the buffer have a next |
| * unlinked field of 0. |
| */ |
| #if defined(DEBUG) |
| void |
| xfs_inobp_check( |
| xfs_mount_t *mp, |
| xfs_buf_t *bp) |
| { |
| int i; |
| int j; |
| xfs_dinode_t *dip; |
| |
| j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; |
| |
| for (i = 0; i < j; i++) { |
| dip = (xfs_dinode_t *)xfs_buf_offset(bp, |
| i * mp->m_sb.sb_inodesize); |
| if (!dip->di_next_unlinked) { |
| xfs_fs_cmn_err(CE_ALERT, mp, |
| "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", |
| bp); |
| ASSERT(dip->di_next_unlinked); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Find the buffer associated with the given inode map |
| * We do basic validation checks on the buffer once it has been |
| * retrieved from disk. |
| */ |
| STATIC int |
| xfs_imap_to_bp( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_imap_t *imap, |
| xfs_buf_t **bpp, |
| uint buf_flags, |
| uint imap_flags) |
| { |
| int error; |
| int i; |
| int ni; |
| xfs_buf_t *bp; |
| |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, |
| (int)imap->im_len, buf_flags, &bp); |
| if (error) { |
| if (error != EAGAIN) { |
| cmn_err(CE_WARN, |
| "xfs_imap_to_bp: xfs_trans_read_buf()returned " |
| "an error %d on %s. Returning error.", |
| error, mp->m_fsname); |
| } else { |
| ASSERT(buf_flags & XFS_BUF_TRYLOCK); |
| } |
| return error; |
| } |
| |
| /* |
| * Validate the magic number and version of every inode in the buffer |
| * (if DEBUG kernel) or the first inode in the buffer, otherwise. |
| */ |
| #ifdef DEBUG |
| ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; |
| #else /* usual case */ |
| ni = 1; |
| #endif |
| |
| for (i = 0; i < ni; i++) { |
| int di_ok; |
| xfs_dinode_t *dip; |
| |
| dip = (xfs_dinode_t *)xfs_buf_offset(bp, |
| (i << mp->m_sb.sb_inodelog)); |
| di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC && |
| XFS_DINODE_GOOD_VERSION(dip->di_core.di_version); |
| if (unlikely(XFS_TEST_ERROR(!di_ok, mp, |
| XFS_ERRTAG_ITOBP_INOTOBP, |
| XFS_RANDOM_ITOBP_INOTOBP))) { |
| if (imap_flags & XFS_IMAP_BULKSTAT) { |
| xfs_trans_brelse(tp, bp); |
| return XFS_ERROR(EINVAL); |
| } |
| XFS_CORRUPTION_ERROR("xfs_imap_to_bp", |
| XFS_ERRLEVEL_HIGH, mp, dip); |
| #ifdef DEBUG |
| cmn_err(CE_PANIC, |
| "Device %s - bad inode magic/vsn " |
| "daddr %lld #%d (magic=%x)", |
| XFS_BUFTARG_NAME(mp->m_ddev_targp), |
| (unsigned long long)imap->im_blkno, i, |
| be16_to_cpu(dip->di_core.di_magic)); |
| #endif |
| xfs_trans_brelse(tp, bp); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| } |
| |
| xfs_inobp_check(mp, bp); |
| |
| /* |
| * Mark the buffer as an inode buffer now that it looks good |
| */ |
| XFS_BUF_SET_VTYPE(bp, B_FS_INO); |
| |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * This routine is called to map an inode number within a file |
| * system to the buffer containing the on-disk version of the |
| * inode. It returns a pointer to the buffer containing the |
| * on-disk inode in the bpp parameter, and in the dip parameter |
| * it returns a pointer to the on-disk inode within that buffer. |
| * |
| * If a non-zero error is returned, then the contents of bpp and |
| * dipp are undefined. |
| * |
| * Use xfs_imap() to determine the size and location of the |
| * buffer to read from disk. |
| */ |
| STATIC int |
| xfs_inotobp( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| xfs_dinode_t **dipp, |
| xfs_buf_t **bpp, |
| int *offset) |
| { |
| xfs_imap_t imap; |
| xfs_buf_t *bp; |
| int error; |
| |
| imap.im_blkno = 0; |
| error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); |
| if (error) |
| return error; |
| |
| error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0); |
| if (error) |
| return error; |
| |
| *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
| *bpp = bp; |
| *offset = imap.im_boffset; |
| return 0; |
| } |
| |
| |
| /* |
| * This routine is called to map an inode to the buffer containing |
| * the on-disk version of the inode. It returns a pointer to the |
| * buffer containing the on-disk inode in the bpp parameter, and in |
| * the dip parameter it returns a pointer to the on-disk inode within |
| * that buffer. |
| * |
| * If a non-zero error is returned, then the contents of bpp and |
| * dipp are undefined. |
| * |
| * If the inode is new and has not yet been initialized, use xfs_imap() |
| * to determine the size and location of the buffer to read from disk. |
| * If the inode has already been mapped to its buffer and read in once, |
| * then use the mapping information stored in the inode rather than |
| * calling xfs_imap(). This allows us to avoid the overhead of looking |
| * at the inode btree for small block file systems (see xfs_dilocate()). |
| * We can tell whether the inode has been mapped in before by comparing |
| * its disk block address to 0. Only uninitialized inodes will have |
| * 0 for the disk block address. |
| */ |
| int |
| xfs_itobp( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_inode_t *ip, |
| xfs_dinode_t **dipp, |
| xfs_buf_t **bpp, |
| xfs_daddr_t bno, |
| uint imap_flags, |
| uint buf_flags) |
| { |
| xfs_imap_t imap; |
| xfs_buf_t *bp; |
| int error; |
| |
| if (ip->i_blkno == (xfs_daddr_t)0) { |
| imap.im_blkno = bno; |
| error = xfs_imap(mp, tp, ip->i_ino, &imap, |
| XFS_IMAP_LOOKUP | imap_flags); |
| if (error) |
| return error; |
| |
| /* |
| * Fill in the fields in the inode that will be used to |
| * map the inode to its buffer from now on. |
| */ |
| ip->i_blkno = imap.im_blkno; |
| ip->i_len = imap.im_len; |
| ip->i_boffset = imap.im_boffset; |
| } else { |
| /* |
| * We've already mapped the inode once, so just use the |
| * mapping that we saved the first time. |
| */ |
| imap.im_blkno = ip->i_blkno; |
| imap.im_len = ip->i_len; |
| imap.im_boffset = ip->i_boffset; |
| } |
| ASSERT(bno == 0 || bno == imap.im_blkno); |
| |
| error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags); |
| if (error) |
| return error; |
| |
| if (!bp) { |
| ASSERT(buf_flags & XFS_BUF_TRYLOCK); |
| ASSERT(tp == NULL); |
| *bpp = NULL; |
| return EAGAIN; |
| } |
| |
| *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * Move inode type and inode format specific information from the |
| * on-disk inode to the in-core inode. For fifos, devs, and sockets |
| * this means set if_rdev to the proper value. For files, directories, |
| * and symlinks this means to bring in the in-line data or extent |
| * pointers. For a file in B-tree format, only the root is immediately |
| * brought in-core. The rest will be in-lined in if_extents when it |
| * is first referenced (see xfs_iread_extents()). |
| */ |
| STATIC int |
| xfs_iformat( |
| xfs_inode_t *ip, |
| xfs_dinode_t *dip) |
| { |
| xfs_attr_shortform_t *atp; |
| int size; |
| int error; |
| xfs_fsize_t di_size; |
| ip->i_df.if_ext_max = |
| XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| error = 0; |
| |
| if (unlikely(be32_to_cpu(dip->di_core.di_nextents) + |
| be16_to_cpu(dip->di_core.di_anextents) > |
| be64_to_cpu(dip->di_core.di_nblocks))) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", |
| (unsigned long long)ip->i_ino, |
| (int)(be32_to_cpu(dip->di_core.di_nextents) + |
| be16_to_cpu(dip->di_core.di_anextents)), |
| (unsigned long long) |
| be64_to_cpu(dip->di_core.di_nblocks)); |
| XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt dinode %Lu, forkoff = 0x%x.", |
| (unsigned long long)ip->i_ino, |
| dip->di_core.di_forkoff); |
| XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| switch (ip->i_d.di_mode & S_IFMT) { |
| case S_IFIFO: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFSOCK: |
| if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) { |
| XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| ip->i_d.di_size = 0; |
| ip->i_size = 0; |
| ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev); |
| break; |
| |
| case S_IFREG: |
| case S_IFLNK: |
| case S_IFDIR: |
| switch (dip->di_core.di_format) { |
| case XFS_DINODE_FMT_LOCAL: |
| /* |
| * no local regular files yet |
| */ |
| if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt inode %Lu " |
| "(local format for regular file).", |
| (unsigned long long) ip->i_ino); |
| XFS_CORRUPTION_ERROR("xfs_iformat(4)", |
| XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| di_size = be64_to_cpu(dip->di_core.di_size); |
| if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt inode %Lu " |
| "(bad size %Ld for local inode).", |
| (unsigned long long) ip->i_ino, |
| (long long) di_size); |
| XFS_CORRUPTION_ERROR("xfs_iformat(5)", |
| XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| size = (int)di_size; |
| error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); |
| break; |
| case XFS_DINODE_FMT_EXTENTS: |
| error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); |
| break; |
| default: |
| XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, |
| ip->i_mount); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| break; |
| |
| default: |
| XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| if (error) { |
| return error; |
| } |
| if (!XFS_DFORK_Q(dip)) |
| return 0; |
| ASSERT(ip->i_afp == NULL); |
| ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); |
| ip->i_afp->if_ext_max = |
| XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| switch (dip->di_core.di_aformat) { |
| case XFS_DINODE_FMT_LOCAL: |
| atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); |
| size = be16_to_cpu(atp->hdr.totsize); |
| error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); |
| break; |
| case XFS_DINODE_FMT_EXTENTS: |
| error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); |
| break; |
| default: |
| error = XFS_ERROR(EFSCORRUPTED); |
| break; |
| } |
| if (error) { |
| kmem_zone_free(xfs_ifork_zone, ip->i_afp); |
| ip->i_afp = NULL; |
| xfs_idestroy_fork(ip, XFS_DATA_FORK); |
| } |
| return error; |
| } |
| |
| /* |
| * The file is in-lined in the on-disk inode. |
| * If it fits into if_inline_data, then copy |
| * it there, otherwise allocate a buffer for it |
| * and copy the data there. Either way, set |
| * if_data to point at the data. |
| * If we allocate a buffer for the data, make |
| * sure that its size is a multiple of 4 and |
| * record the real size in i_real_bytes. |
| */ |
| STATIC int |
| xfs_iformat_local( |
| xfs_inode_t *ip, |
| xfs_dinode_t *dip, |
| int whichfork, |
| int size) |
| { |
| xfs_ifork_t *ifp; |
| int real_size; |
| |
| /* |
| * If the size is unreasonable, then something |
| * is wrong and we just bail out rather than crash in |
| * kmem_alloc() or memcpy() below. |
| */ |
| if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt inode %Lu " |
| "(bad size %d for local fork, size = %d).", |
| (unsigned long long) ip->i_ino, size, |
| XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); |
| XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| real_size = 0; |
| if (size == 0) |
| ifp->if_u1.if_data = NULL; |
| else if (size <= sizeof(ifp->if_u2.if_inline_data)) |
| ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| else { |
| real_size = roundup(size, 4); |
| ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| } |
| ifp->if_bytes = size; |
| ifp->if_real_bytes = real_size; |
| if (size) |
| memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); |
| ifp->if_flags &= ~XFS_IFEXTENTS; |
| ifp->if_flags |= XFS_IFINLINE; |
| return 0; |
| } |
| |
| /* |
| * The file consists of a set of extents all |
| * of which fit into the on-disk inode. |
| * If there are few enough extents to fit into |
| * the if_inline_ext, then copy them there. |
| * Otherwise allocate a buffer for them and copy |
| * them into it. Either way, set if_extents |
| * to point at the extents. |
| */ |
| STATIC int |
| xfs_iformat_extents( |
| xfs_inode_t *ip, |
| xfs_dinode_t *dip, |
| int whichfork) |
| { |
| xfs_bmbt_rec_t *dp; |
| xfs_ifork_t *ifp; |
| int nex; |
| int size; |
| int i; |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| nex = XFS_DFORK_NEXTENTS(dip, whichfork); |
| size = nex * (uint)sizeof(xfs_bmbt_rec_t); |
| |
| /* |
| * If the number of extents is unreasonable, then something |
| * is wrong and we just bail out rather than crash in |
| * kmem_alloc() or memcpy() below. |
| */ |
| if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt inode %Lu ((a)extents = %d).", |
| (unsigned long long) ip->i_ino, nex); |
| XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, |
| ip->i_mount, dip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| ifp->if_real_bytes = 0; |
| if (nex == 0) |
| ifp->if_u1.if_extents = NULL; |
| else if (nex <= XFS_INLINE_EXTS) |
| ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
| else |
| xfs_iext_add(ifp, 0, nex); |
| |
| ifp->if_bytes = size; |
| if (size) { |
| dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); |
| xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); |
| for (i = 0; i < nex; i++, dp++) { |
| xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
| ep->l0 = get_unaligned_be64(&dp->l0); |
| ep->l1 = get_unaligned_be64(&dp->l1); |
| } |
| XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); |
| if (whichfork != XFS_DATA_FORK || |
| XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) |
| if (unlikely(xfs_check_nostate_extents( |
| ifp, 0, nex))) { |
| XFS_ERROR_REPORT("xfs_iformat_extents(2)", |
| XFS_ERRLEVEL_LOW, |
| ip->i_mount); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| } |
| ifp->if_flags |= XFS_IFEXTENTS; |
| return 0; |
| } |
| |
| /* |
| * The file has too many extents to fit into |
| * the inode, so they are in B-tree format. |
| * Allocate a buffer for the root of the B-tree |
| * and copy the root into it. The i_extents |
| * field will remain NULL until all of the |
| * extents are read in (when they are needed). |
| */ |
| STATIC int |
| xfs_iformat_btree( |
| xfs_inode_t *ip, |
| xfs_dinode_t *dip, |
| int whichfork) |
| { |
| xfs_bmdr_block_t *dfp; |
| xfs_ifork_t *ifp; |
| /* REFERENCED */ |
| int nrecs; |
| int size; |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); |
| size = XFS_BMAP_BROOT_SPACE(dfp); |
| nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); |
| |
| /* |
| * blow out if -- fork has less extents than can fit in |
| * fork (fork shouldn't be a btree format), root btree |
| * block has more records than can fit into the fork, |
| * or the number of extents is greater than the number of |
| * blocks. |
| */ |
| if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max |
| || XFS_BMDR_SPACE_CALC(nrecs) > |
| XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) |
| || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { |
| xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, |
| "corrupt inode %Lu (btree).", |
| (unsigned long long) ip->i_ino); |
| XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, |
| ip->i_mount); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| ifp->if_broot_bytes = size; |
| ifp->if_broot = kmem_alloc(size, KM_SLEEP); |
| ASSERT(ifp->if_broot != NULL); |
| /* |
| * Copy and convert from the on-disk structure |
| * to the in-memory structure. |
| */ |
| xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), |
| ifp->if_broot, size); |
| ifp->if_flags &= ~XFS_IFEXTENTS; |
| ifp->if_flags |= XFS_IFBROOT; |
| |
| return 0; |
| } |
| |
| void |
| xfs_dinode_from_disk( |
| xfs_icdinode_t *to, |
| xfs_dinode_core_t *from) |
| { |
| to->di_magic = be16_to_cpu(from->di_magic); |
| to->di_mode = be16_to_cpu(from->di_mode); |
| to->di_version = from ->di_version; |
| to->di_format = from->di_format; |
| to->di_onlink = be16_to_cpu(from->di_onlink); |
| to->di_uid = be32_to_cpu(from->di_uid); |
| to->di_gid = be32_to_cpu(from->di_gid); |
| to->di_nlink = be32_to_cpu(from->di_nlink); |
| to->di_projid = be16_to_cpu(from->di_projid); |
| memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); |
| to->di_flushiter = be16_to_cpu(from->di_flushiter); |
| to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); |
| to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); |
| to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); |
| to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); |
| to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); |
| to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); |
| to->di_size = be64_to_cpu(from->di_size); |
| to->di_nblocks = be64_to_cpu(from->di_nblocks); |
| to->di_extsize = be32_to_cpu(from->di_extsize); |
| to->di_nextents = be32_to_cpu(from->di_nextents); |
| to->di_anextents = be16_to_cpu(from->di_anextents); |
| to->di_forkoff = from->di_forkoff; |
| to->di_aformat = from->di_aformat; |
| to->di_dmevmask = be32_to_cpu(from->di_dmevmask); |
| to->di_dmstate = be16_to_cpu(from->di_dmstate); |
| to->di_flags = be16_to_cpu(from->di_flags); |
| to->di_gen = be32_to_cpu(from->di_gen); |
| } |
| |
| void |
| xfs_dinode_to_disk( |
| xfs_dinode_core_t *to, |
| xfs_icdinode_t *from) |
| { |
| to->di_magic = cpu_to_be16(from->di_magic); |
| to->di_mode = cpu_to_be16(from->di_mode); |
| to->di_version = from ->di_version; |
| to->di_format = from->di_format; |
| to->di_onlink = cpu_to_be16(from->di_onlink); |
| to->di_uid = cpu_to_be32(from->di_uid); |
| to->di_gid = cpu_to_be32(from->di_gid); |
| to->di_nlink = cpu_to_be32(from->di_nlink); |
| to->di_projid = cpu_to_be16(from->di_projid); |
| memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); |
| to->di_flushiter = cpu_to_be16(from->di_flushiter); |
| to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); |
| to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); |
| to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); |
| to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); |
| to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); |
| to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); |
| to->di_size = cpu_to_be64(from->di_size); |
| to->di_nblocks = cpu_to_be64(from->di_nblocks); |
| to->di_extsize = cpu_to_be32(from->di_extsize); |
| to->di_nextents = cpu_to_be32(from->di_nextents); |
| to->di_anextents = cpu_to_be16(from->di_anextents); |
| to->di_forkoff = from->di_forkoff; |
| to->di_aformat = from->di_aformat; |
| to->di_dmevmask = cpu_to_be32(from->di_dmevmask); |
| to->di_dmstate = cpu_to_be16(from->di_dmstate); |
| to->di_flags = cpu_to_be16(from->di_flags); |
| to->di_gen = cpu_to_be32(from->di_gen); |
| } |
| |
| STATIC uint |
| _xfs_dic2xflags( |
| __uint16_t di_flags) |
| { |
| uint flags = 0; |
| |
| if (di_flags & XFS_DIFLAG_ANY) { |
| if (di_flags & XFS_DIFLAG_REALTIME) |
| flags |= XFS_XFLAG_REALTIME; |
| if (di_flags & XFS_DIFLAG_PREALLOC) |
| flags |= XFS_XFLAG_PREALLOC; |
| if (di_flags & XFS_DIFLAG_IMMUTABLE) |
| flags |= XFS_XFLAG_IMMUTABLE; |
| if (di_flags & XFS_DIFLAG_APPEND) |
| flags |= XFS_XFLAG_APPEND; |
| if (di_flags & XFS_DIFLAG_SYNC) |
| flags |= XFS_XFLAG_SYNC; |
| if (di_flags & XFS_DIFLAG_NOATIME) |
| flags |= XFS_XFLAG_NOATIME; |
| if (di_flags & XFS_DIFLAG_NODUMP) |
| flags |= XFS_XFLAG_NODUMP; |
| if (di_flags & XFS_DIFLAG_RTINHERIT) |
| flags |= XFS_XFLAG_RTINHERIT; |
| if (di_flags & XFS_DIFLAG_PROJINHERIT) |
| flags |= XFS_XFLAG_PROJINHERIT; |
| if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
| flags |= XFS_XFLAG_NOSYMLINKS; |
| if (di_flags & XFS_DIFLAG_EXTSIZE) |
| flags |= XFS_XFLAG_EXTSIZE; |
| if (di_flags & XFS_DIFLAG_EXTSZINHERIT) |
| flags |= XFS_XFLAG_EXTSZINHERIT; |
| if (di_flags & XFS_DIFLAG_NODEFRAG) |
| flags |= XFS_XFLAG_NODEFRAG; |
| if (di_flags & XFS_DIFLAG_FILESTREAM) |
| flags |= XFS_XFLAG_FILESTREAM; |
| } |
| |
| return flags; |
| } |
| |
| uint |
| xfs_ip2xflags( |
| xfs_inode_t *ip) |
| { |
| xfs_icdinode_t *dic = &ip->i_d; |
| |
| return _xfs_dic2xflags(dic->di_flags) | |
| (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); |
| } |
| |
| uint |
| xfs_dic2xflags( |
| xfs_dinode_t *dip) |
| { |
| xfs_dinode_core_t *dic = &dip->di_core; |
| |
| return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) | |
| (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); |
| } |
| |
| /* |
| * Given a mount structure and an inode number, return a pointer |
| * to a newly allocated in-core inode corresponding to the given |
| * inode number. |
| * |
| * Initialize the inode's attributes and extent pointers if it |
| * already has them (it will not if the inode has no links). |
| */ |
| int |
| xfs_iread( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| xfs_inode_t **ipp, |
| xfs_daddr_t bno, |
| uint imap_flags) |
| { |
| xfs_buf_t *bp; |
| xfs_dinode_t *dip; |
| xfs_inode_t *ip; |
| int error; |
| |
| ASSERT(xfs_inode_zone != NULL); |
| |
| ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); |
| ip->i_ino = ino; |
| ip->i_mount = mp; |
| atomic_set(&ip->i_iocount, 0); |
| spin_lock_init(&ip->i_flags_lock); |
| |
| /* |
| * Get pointer's to the on-disk inode and the buffer containing it. |
| * If the inode number refers to a block outside the file system |
| * then xfs_itobp() will return NULL. In this case we should |
| * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will |
| * know that this is a new incore inode. |
| */ |
| error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK); |
| if (error) { |
| kmem_zone_free(xfs_inode_zone, ip); |
| return error; |
| } |
| |
| /* |
| * Initialize inode's trace buffers. |
| * Do this before xfs_iformat in case it adds entries. |
| */ |
| #ifdef XFS_INODE_TRACE |
| ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_BMBT_TRACE |
| ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_RW_TRACE |
| ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_ILOCK_TRACE |
| ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS); |
| #endif |
| #ifdef XFS_DIR2_TRACE |
| ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS); |
| #endif |
| |
| /* |
| * If we got something that isn't an inode it means someone |
| * (nfs or dmi) has a stale handle. |
| */ |
| if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) { |
| kmem_zone_free(xfs_inode_zone, ip); |
| xfs_trans_brelse(tp, bp); |
| #ifdef DEBUG |
| xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " |
| "dip->di_core.di_magic (0x%x) != " |
| "XFS_DINODE_MAGIC (0x%x)", |
| be16_to_cpu(dip->di_core.di_magic), |
| XFS_DINODE_MAGIC); |
| #endif /* DEBUG */ |
| return XFS_ERROR(EINVAL); |
| } |
| |
| /* |
| * If the on-disk inode is already linked to a directory |
| * entry, copy all of the inode into the in-core inode. |
| * xfs_iformat() handles copying in the inode format |
| * specific information. |
| * Otherwise, just get the truly permanent information. |
| */ |
| if (dip->di_core.di_mode) { |
| xfs_dinode_from_disk(&ip->i_d, &dip->di_core); |
| error = xfs_iformat(ip, dip); |
| if (error) { |
| kmem_zone_free(xfs_inode_zone, ip); |
| xfs_trans_brelse(tp, bp); |
| #ifdef DEBUG |
| xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " |
| "xfs_iformat() returned error %d", |
| error); |
| #endif /* DEBUG */ |
| return error; |
| } |
| } else { |
| ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic); |
| ip->i_d.di_version = dip->di_core.di_version; |
| ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen); |
| ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter); |
| /* |
| * Make sure to pull in the mode here as well in |
| * case the inode is released without being used. |
| * This ensures that xfs_inactive() will see that |
| * the inode is already free and not try to mess |
| * with the uninitialized part of it. |
| */ |
| ip->i_d.di_mode = 0; |
| /* |
| * Initialize the per-fork minima and maxima for a new |
| * inode here. xfs_iformat will do it for old inodes. |
| */ |
| ip->i_df.if_ext_max = |
| XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| } |
| |
| INIT_LIST_HEAD(&ip->i_reclaim); |
| |
| /* |
| * The inode format changed when we moved the link count and |
| * made it 32 bits long. If this is an old format inode, |
| * convert it in memory to look like a new one. If it gets |
| * flushed to disk we will convert back before flushing or |
| * logging it. We zero out the new projid field and the old link |
| * count field. We'll handle clearing the pad field (the remains |
| * of the old uuid field) when we actually convert the inode to |
| * the new format. We don't change the version number so that we |
| * can distinguish this from a real new format inode. |
| */ |
| if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| ip->i_d.di_nlink = ip->i_d.di_onlink; |
| ip->i_d.di_onlink = 0; |
| ip->i_d.di_projid = 0; |
| } |
| |
| ip->i_delayed_blks = 0; |
| ip->i_size = ip->i_d.di_size; |
| |
| /* |
| * Mark the buffer containing the inode as something to keep |
| * around for a while. This helps to keep recently accessed |
| * meta-data in-core longer. |
| */ |
| XFS_BUF_SET_REF(bp, XFS_INO_REF); |
| |
| /* |
| * Use xfs_trans_brelse() to release the buffer containing the |
| * on-disk inode, because it was acquired with xfs_trans_read_buf() |
| * in xfs_itobp() above. If tp is NULL, this is just a normal |
| * brelse(). If we're within a transaction, then xfs_trans_brelse() |
| * will only release the buffer if it is not dirty within the |
| * transaction. It will be OK to release the buffer in this case, |
| * because inodes on disk are never destroyed and we will be |
| * locking the new in-core inode before putting it in the hash |
| * table where other processes can find it. Thus we don't have |
| * to worry about the inode being changed just because we released |
| * the buffer. |
| */ |
| xfs_trans_brelse(tp, bp); |
| *ipp = ip; |
| return 0; |
| } |
| |
| /* |
| * Read in extents from a btree-format inode. |
| * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. |
| */ |
| int |
| xfs_iread_extents( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip, |
| int whichfork) |
| { |
| int error; |
| xfs_ifork_t *ifp; |
| xfs_extnum_t nextents; |
| size_t size; |
| |
| if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { |
| XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, |
| ip->i_mount); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| nextents = XFS_IFORK_NEXTENTS(ip, whichfork); |
| size = nextents * sizeof(xfs_bmbt_rec_t); |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| |
| /* |
| * We know that the size is valid (it's checked in iformat_btree) |
| */ |
| ifp->if_lastex = NULLEXTNUM; |
| ifp->if_bytes = ifp->if_real_bytes = 0; |
| ifp->if_flags |= XFS_IFEXTENTS; |
| xfs_iext_add(ifp, 0, nextents); |
| error = xfs_bmap_read_extents(tp, ip, whichfork); |
| if (error) { |
| xfs_iext_destroy(ifp); |
| ifp->if_flags &= ~XFS_IFEXTENTS; |
| return error; |
| } |
| xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); |
| return 0; |
| } |
| |
| /* |
| * Allocate an inode on disk and return a copy of its in-core version. |
| * The in-core inode is locked exclusively. Set mode, nlink, and rdev |
| * appropriately within the inode. The uid and gid for the inode are |
| * set according to the contents of the given cred structure. |
| * |
| * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() |
| * has a free inode available, call xfs_iget() |
| * to obtain the in-core version of the allocated inode. Finally, |
| * fill in the inode and log its initial contents. In this case, |
| * ialloc_context would be set to NULL and call_again set to false. |
| * |
| * If xfs_dialloc() does not have an available inode, |
| * it will replenish its supply by doing an allocation. Since we can |
| * only do one allocation within a transaction without deadlocks, we |
| * must commit the current transaction before returning the inode itself. |
| * In this case, therefore, we will set call_again to true and return. |
| * The caller should then commit the current transaction, start a new |
| * transaction, and call xfs_ialloc() again to actually get the inode. |
| * |
| * To ensure that some other process does not grab the inode that |
| * was allocated during the first call to xfs_ialloc(), this routine |
| * also returns the [locked] bp pointing to the head of the freelist |
| * as ialloc_context. The caller should hold this buffer across |
| * the commit and pass it back into this routine on the second call. |
| * |
| * If we are allocating quota inodes, we do not have a parent inode |
| * to attach to or associate with (i.e. pip == NULL) because they |
| * are not linked into the directory structure - they are attached |
| * directly to the superblock - and so have no parent. |
| */ |
| int |
| xfs_ialloc( |
| xfs_trans_t *tp, |
| xfs_inode_t *pip, |
| mode_t mode, |
| xfs_nlink_t nlink, |
| xfs_dev_t rdev, |
| cred_t *cr, |
| xfs_prid_t prid, |
| int okalloc, |
| xfs_buf_t **ialloc_context, |
| boolean_t *call_again, |
| xfs_inode_t **ipp) |
| { |
| xfs_ino_t ino; |
| xfs_inode_t *ip; |
| uint flags; |
| int error; |
| timespec_t tv; |
| |
| /* |
| * Call the space management code to pick |
| * the on-disk inode to be allocated. |
| */ |
| error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, |
| ialloc_context, call_again, &ino); |
| if (error != 0) { |
| return error; |
| } |
| if (*call_again || ino == NULLFSINO) { |
| *ipp = NULL; |
| return 0; |
| } |
| ASSERT(*ialloc_context == NULL); |
| |
| /* |
| * Get the in-core inode with the lock held exclusively. |
| * This is because we're setting fields here we need |
| * to prevent others from looking at until we're done. |
| */ |
| error = xfs_trans_iget(tp->t_mountp, tp, ino, |
| XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); |
| if (error != 0) { |
| return error; |
| } |
| ASSERT(ip != NULL); |
| |
| ip->i_d.di_mode = (__uint16_t)mode; |
| ip->i_d.di_onlink = 0; |
| ip->i_d.di_nlink = nlink; |
| ASSERT(ip->i_d.di_nlink == nlink); |
| ip->i_d.di_uid = current_fsuid(cr); |
| ip->i_d.di_gid = current_fsgid(cr); |
| ip->i_d.di_projid = prid; |
| memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| |
| /* |
| * If the superblock version is up to where we support new format |
| * inodes and this is currently an old format inode, then change |
| * the inode version number now. This way we only do the conversion |
| * here rather than here and in the flush/logging code. |
| */ |
| if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && |
| ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| /* |
| * We've already zeroed the old link count, the projid field, |
| * and the pad field. |
| */ |
| } |
| |
| /* |
| * Project ids won't be stored on disk if we are using a version 1 inode. |
| */ |
| if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) |
| xfs_bump_ino_vers2(tp, ip); |
| |
| if (pip && XFS_INHERIT_GID(pip)) { |
| ip->i_d.di_gid = pip->i_d.di_gid; |
| if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { |
| ip->i_d.di_mode |= S_ISGID; |
| } |
| } |
| |
| /* |
| * If the group ID of the new file does not match the effective group |
| * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| * (and only if the irix_sgid_inherit compatibility variable is set). |
| */ |
| if ((irix_sgid_inherit) && |
| (ip->i_d.di_mode & S_ISGID) && |
| (!in_group_p((gid_t)ip->i_d.di_gid))) { |
| ip->i_d.di_mode &= ~S_ISGID; |
| } |
| |
| ip->i_d.di_size = 0; |
| ip->i_size = 0; |
| ip->i_d.di_nextents = 0; |
| ASSERT(ip->i_d.di_nblocks == 0); |
| |
| nanotime(&tv); |
| ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; |
| ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; |
| ip->i_d.di_atime = ip->i_d.di_mtime; |
| ip->i_d.di_ctime = ip->i_d.di_mtime; |
| |
| /* |
| * di_gen will have been taken care of in xfs_iread. |
| */ |
| ip->i_d.di_extsize = 0; |
| ip->i_d.di_dmevmask = 0; |
| ip->i_d.di_dmstate = 0; |
| ip->i_d.di_flags = 0; |
| flags = XFS_ILOG_CORE; |
| switch (mode & S_IFMT) { |
| case S_IFIFO: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFSOCK: |
| ip->i_d.di_format = XFS_DINODE_FMT_DEV; |
| ip->i_df.if_u2.if_rdev = rdev; |
| ip->i_df.if_flags = 0; |
| flags |= XFS_ILOG_DEV; |
| break; |
| case S_IFREG: |
| if (pip && xfs_inode_is_filestream(pip)) { |
| error = xfs_filestream_associate(pip, ip); |
| if (error < 0) |
| return -error; |
| if (!error) |
| xfs_iflags_set(ip, XFS_IFILESTREAM); |
| } |
| /* fall through */ |
| case S_IFDIR: |
| if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
| uint di_flags = 0; |
| |
| if ((mode & S_IFMT) == S_IFDIR) { |
| if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| di_flags |= XFS_DIFLAG_RTINHERIT; |
| if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSZINHERIT; |
| ip->i_d.di_extsize = pip->i_d.di_extsize; |
| } |
| } else if ((mode & S_IFMT) == S_IFREG) { |
| if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| di_flags |= XFS_DIFLAG_REALTIME; |
| if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSIZE; |
| ip->i_d.di_extsize = pip->i_d.di_extsize; |
| } |
| } |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && |
| xfs_inherit_noatime) |
| di_flags |= XFS_DIFLAG_NOATIME; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
| xfs_inherit_nodump) |
| di_flags |= XFS_DIFLAG_NODUMP; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
| xfs_inherit_sync) |
| di_flags |= XFS_DIFLAG_SYNC; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
| xfs_inherit_nosymlinks) |
| di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) |
| di_flags |= XFS_DIFLAG_PROJINHERIT; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
| xfs_inherit_nodefrag) |
| di_flags |= XFS_DIFLAG_NODEFRAG; |
| if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
| di_flags |= XFS_DIFLAG_FILESTREAM; |
| ip->i_d.di_flags |= di_flags; |
| } |
| /* FALLTHROUGH */ |
| case S_IFLNK: |
| ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| ip->i_df.if_flags = XFS_IFEXTENTS; |
| ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; |
| ip->i_df.if_u1.if_extents = NULL; |
| break; |
| default: |
| ASSERT(0); |
| } |
| /* |
| * Attribute fork settings for new inode. |
| */ |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| ip->i_d.di_anextents = 0; |
| |
| /* |
| * Log the new values stuffed into the inode. |
| */ |
| xfs_trans_log_inode(tp, ip, flags); |
| |
| /* now that we have an i_mode we can setup inode ops and unlock */ |
| xfs_setup_inode(ip); |
| |
| *ipp = ip; |
| return 0; |
| } |
| |
| /* |
| * Check to make sure that there are no blocks allocated to the |
| * file beyond the size of the file. We don't check this for |
| * files with fixed size extents or real time extents, but we |
| * at least do it for regular files. |
| */ |
| #ifdef DEBUG |
| void |
| xfs_isize_check( |
| xfs_mount_t *mp, |
| xfs_inode_t *ip, |
| xfs_fsize_t isize) |
| { |
| xfs_fileoff_t map_first; |
| int nimaps; |
| xfs_bmbt_irec_t imaps[2]; |
| |
| if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) |
| return; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return; |
| |
| if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) |
| return; |
| |
| nimaps = 2; |
| map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); |
| /* |
| * The filesystem could be shutting down, so bmapi may return |
| * an error. |
| */ |
| if (xfs_bmapi(NULL, ip, map_first, |
| (XFS_B_TO_FSB(mp, |
| (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - |
| map_first), |
| XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, |
| NULL, NULL)) |
| return; |
| ASSERT(nimaps == 1); |
| ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); |
| } |
| #endif /* DEBUG */ |
| |
| /* |
| * Calculate the last possible buffered byte in a file. This must |
| * include data that was buffered beyond the EOF by the write code. |
| * This also needs to deal with overflowing the xfs_fsize_t type |
| * which can happen for sizes near the limit. |
| * |
| * We also need to take into account any blocks beyond the EOF. It |
| * may be the case that they were buffered by a write which failed. |
| * In that case the pages will still be in memory, but the inode size |
| * will never have been updated. |
| */ |
| xfs_fsize_t |
| xfs_file_last_byte( |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp; |
| xfs_fsize_t last_byte; |
| xfs_fileoff_t last_block; |
| xfs_fileoff_t size_last_block; |
| int error; |
| |
| ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); |
| |
| mp = ip->i_mount; |
| /* |
| * Only check for blocks beyond the EOF if the extents have |
| * been read in. This eliminates the need for the inode lock, |
| * and it also saves us from looking when it really isn't |
| * necessary. |
| */ |
| if (ip->i_df.if_flags & XFS_IFEXTENTS) { |
| error = xfs_bmap_last_offset(NULL, ip, &last_block, |
| XFS_DATA_FORK); |
| if (error) { |
| last_block = 0; |
| } |
| } else { |
| last_block = 0; |
| } |
| size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); |
| last_block = XFS_FILEOFF_MAX(last_block, size_last_block); |
| |
| last_byte = XFS_FSB_TO_B(mp, last_block); |
| if (last_byte < 0) { |
| return XFS_MAXIOFFSET(mp); |
| } |
| last_byte += (1 << mp->m_writeio_log); |
| if (last_byte < 0) { |
| return XFS_MAXIOFFSET(mp); |
| } |
| return last_byte; |
| } |
| |
| #if defined(XFS_RW_TRACE) |
| STATIC void |
| xfs_itrunc_trace( |
| int tag, |
| xfs_inode_t *ip, |
| int flag, |
| xfs_fsize_t new_size, |
| xfs_off_t toss_start, |
| xfs_off_t toss_finish) |
| { |
| if (ip->i_rwtrace == NULL) { |
| return; |
| } |
| |
| ktrace_enter(ip->i_rwtrace, |
| (void*)((long)tag), |
| (void*)ip, |
| (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), |
| (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), |
| (void*)((long)flag), |
| (void*)(unsigned long)((new_size >> 32) & 0xffffffff), |
| (void*)(unsigned long)(new_size & 0xffffffff), |
| (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), |
| (void*)(unsigned long)(toss_start & 0xffffffff), |
| (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), |
| (void*)(unsigned long)(toss_finish & 0xffffffff), |
| (void*)(unsigned long)current_cpu(), |
| (void*)(unsigned long)current_pid(), |
| (void*)NULL, |
| (void*)NULL, |
| (void*)NULL); |
| } |
| #else |
| #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) |
| #endif |
| |
| /* |
| * Start the truncation of the file to new_size. The new size |
| * must be smaller than the current size. This routine will |
| * clear the buffer and page caches of file data in the removed |
| * range, and xfs_itruncate_finish() will remove the underlying |
| * disk blocks. |
| * |
| * The inode must have its I/O lock locked EXCLUSIVELY, and it |
| * must NOT have the inode lock held at all. This is because we're |
| * calling into the buffer/page cache code and we can't hold the |
| * inode lock when we do so. |
| * |
| * We need to wait for any direct I/Os in flight to complete before we |
| * proceed with the truncate. This is needed to prevent the extents |
| * being read or written by the direct I/Os from being removed while the |
| * I/O is in flight as there is no other method of synchronising |
| * direct I/O with the truncate operation. Also, because we hold |
| * the IOLOCK in exclusive mode, we prevent new direct I/Os from being |
| * started until the truncate completes and drops the lock. Essentially, |
| * the vn_iowait() call forms an I/O barrier that provides strict ordering |
| * between direct I/Os and the truncate operation. |
| * |
| * The flags parameter can have either the value XFS_ITRUNC_DEFINITE |
| * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used |
| * in the case that the caller is locking things out of order and |
| * may not be able to call xfs_itruncate_finish() with the inode lock |
| * held without dropping the I/O lock. If the caller must drop the |
| * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() |
| * must be called again with all the same restrictions as the initial |
| * call. |
| */ |
| int |
| xfs_itruncate_start( |
| xfs_inode_t *ip, |
| uint flags, |
| xfs_fsize_t new_size) |
| { |
| xfs_fsize_t last_byte; |
| xfs_off_t toss_start; |
| xfs_mount_t *mp; |
| int error = 0; |
| |
| ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| ASSERT((new_size == 0) || (new_size <= ip->i_size)); |
| ASSERT((flags == XFS_ITRUNC_DEFINITE) || |
| (flags == XFS_ITRUNC_MAYBE)); |
| |
| mp = ip->i_mount; |
| |
| /* wait for the completion of any pending DIOs */ |
| if (new_size < ip->i_size) |
| vn_iowait(ip); |
| |
| /* |
| * Call toss_pages or flushinval_pages to get rid of pages |
| * overlapping the region being removed. We have to use |
| * the less efficient flushinval_pages in the case that the |
| * caller may not be able to finish the truncate without |
| * dropping the inode's I/O lock. Make sure |
| * to catch any pages brought in by buffers overlapping |
| * the EOF by searching out beyond the isize by our |
| * block size. We round new_size up to a block boundary |
| * so that we don't toss things on the same block as |
| * new_size but before it. |
| * |
| * Before calling toss_page or flushinval_pages, make sure to |
| * call remapf() over the same region if the file is mapped. |
| * This frees up mapped file references to the pages in the |
| * given range and for the flushinval_pages case it ensures |
| * that we get the latest mapped changes flushed out. |
| */ |
| toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| toss_start = XFS_FSB_TO_B(mp, toss_start); |
| if (toss_start < 0) { |
| /* |
| * The place to start tossing is beyond our maximum |
| * file size, so there is no way that the data extended |
| * out there. |
| */ |
| return 0; |
| } |
| last_byte = xfs_file_last_byte(ip); |
| xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, |
| last_byte); |
| if (last_byte > toss_start) { |
| if (flags & XFS_ITRUNC_DEFINITE) { |
| xfs_tosspages(ip, toss_start, |
| -1, FI_REMAPF_LOCKED); |
| } else { |
| error = xfs_flushinval_pages(ip, toss_start, |
| -1, FI_REMAPF_LOCKED); |
| } |
| } |
| |
| #ifdef DEBUG |
| if (new_size == 0) { |
| ASSERT(VN_CACHED(VFS_I(ip)) == 0); |
| } |
| #endif |
| return error; |
| } |
| |
| /* |
| * Shrink the file to the given new_size. The new size must be smaller than |
| * the current size. This will free up the underlying blocks in the removed |
| * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). |
| * |
| * The transaction passed to this routine must have made a permanent log |
| * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
| * given transaction and start new ones, so make sure everything involved in |
| * the transaction is tidy before calling here. Some transaction will be |
| * returned to the caller to be committed. The incoming transaction must |
| * already include the inode, and both inode locks must be held exclusively. |
| * The inode must also be "held" within the transaction. On return the inode |
| * will be "held" within the returned transaction. This routine does NOT |
| * require any disk space to be reserved for it within the transaction. |
| * |
| * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it |
| * indicates the fork which is to be truncated. For the attribute fork we only |
| * support truncation to size 0. |
| * |
| * We use the sync parameter to indicate whether or not the first transaction |
| * we perform might have to be synchronous. For the attr fork, it needs to be |
| * so if the unlink of the inode is not yet known to be permanent in the log. |
| * This keeps us from freeing and reusing the blocks of the attribute fork |
| * before the unlink of the inode becomes permanent. |
| * |
| * For the data fork, we normally have to run synchronously if we're being |
| * called out of the inactive path or we're being called out of the create path |
| * where we're truncating an existing file. Either way, the truncate needs to |
| * be sync so blocks don't reappear in the file with altered data in case of a |
| * crash. wsync filesystems can run the first case async because anything that |
| * shrinks the inode has to run sync so by the time we're called here from |
| * inactive, the inode size is permanently set to 0. |
| * |
| * Calls from the truncate path always need to be sync unless we're in a wsync |
| * filesystem and the file has already been unlinked. |
| * |
| * The caller is responsible for correctly setting the sync parameter. It gets |
| * too hard for us to guess here which path we're being called out of just |
| * based on inode state. |
| * |
| * If we get an error, we must return with the inode locked and linked into the |
| * current transaction. This keeps things simple for the higher level code, |
| * because it always knows that the inode is locked and held in the transaction |
| * that returns to it whether errors occur or not. We don't mark the inode |
| * dirty on error so that transactions can be easily aborted if possible. |
| */ |
| int |
| xfs_itruncate_finish( |
| xfs_trans_t **tp, |
| xfs_inode_t *ip, |
| xfs_fsize_t new_size, |
| int fork, |
| int sync) |
| { |
| xfs_fsblock_t first_block; |
| xfs_fileoff_t first_unmap_block; |
| xfs_fileoff_t last_block; |
| xfs_filblks_t unmap_len=0; |
| xfs_mount_t *mp; |
| xfs_trans_t *ntp; |
| int done; |
| int committed; |
| xfs_bmap_free_t free_list; |
| int error; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); |
| ASSERT((new_size == 0) || (new_size <= ip->i_size)); |
| ASSERT(*tp != NULL); |
| ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); |
| ASSERT(ip->i_transp == *tp); |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); |
| |
| |
| ntp = *tp; |
| mp = (ntp)->t_mountp; |
| ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); |
| |
| /* |
| * We only support truncating the entire attribute fork. |
| */ |
| if (fork == XFS_ATTR_FORK) { |
| new_size = 0LL; |
| } |
| first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); |
| /* |
| * The first thing we do is set the size to new_size permanently |
| * on disk. This way we don't have to worry about anyone ever |
| * being able to look at the data being freed even in the face |
| * of a crash. What we're getting around here is the case where |
| * we free a block, it is allocated to another file, it is written |
| * to, and then we crash. If the new data gets written to the |
| * file but the log buffers containing the free and reallocation |
| * don't, then we'd end up with garbage in the blocks being freed. |
| * As long as we make the new_size permanent before actually |
| * freeing any blocks it doesn't matter if they get writtten to. |
| * |
| * The callers must signal into us whether or not the size |
| * setting here must be synchronous. There are a few cases |
| * where it doesn't have to be synchronous. Those cases |
| * occur if the file is unlinked and we know the unlink is |
| * permanent or if the blocks being truncated are guaranteed |
| * to be beyond the inode eof (regardless of the link count) |
| * and the eof value is permanent. Both of these cases occur |
| * only on wsync-mounted filesystems. In those cases, we're |
| * guaranteed that no user will ever see the data in the blocks |
| * that are being truncated so the truncate can run async. |
| * In the free beyond eof case, the file may wind up with |
| * more blocks allocated to it than it needs if we crash |
| * and that won't get fixed until the next time the file |
| * is re-opened and closed but that's ok as that shouldn't |
| * be too many blocks. |
| * |
| * However, we can't just make all wsync xactions run async |
| * because there's one call out of the create path that needs |
| * to run sync where it's truncating an existing file to size |
| * 0 whose size is > 0. |
| * |
| * It's probably possible to come up with a test in this |
| * routine that would correctly distinguish all the above |
| * cases from the values of the function parameters and the |
| * inode state but for sanity's sake, I've decided to let the |
| * layers above just tell us. It's simpler to correctly figure |
| * out in the layer above exactly under what conditions we |
| * can run async and I think it's easier for others read and |
| * follow the logic in case something has to be changed. |
| * cscope is your friend -- rcc. |
| * |
| * The attribute fork is much simpler. |
| * |
| * For the attribute fork we allow the caller to tell us whether |
| * the unlink of the inode that led to this call is yet permanent |
| * in the on disk log. If it is not and we will be freeing extents |
| * in this inode then we make the first transaction synchronous |
| * to make sure that the unlink is permanent by the time we free |
| * the blocks. |
| */ |
| if (fork == XFS_DATA_FORK) { |
| if (ip->i_d.di_nextents > 0) { |
| /* |
| * If we are not changing the file size then do |
| * not update the on-disk file size - we may be |
| * called from xfs_inactive_free_eofblocks(). If we |
| * update the on-disk file size and then the system |
| * crashes before the contents of the file are |
| * flushed to disk then the files may be full of |
| * holes (ie NULL files bug). |
| */ |
| if (ip->i_size != new_size) { |
| ip->i_d.di_size = new_size; |
| ip->i_size = new_size; |
| xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| } |
| } |
| } else if (sync) { |
| ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); |
| if (ip->i_d.di_anextents > 0) |
| xfs_trans_set_sync(ntp); |
| } |
| ASSERT(fork == XFS_DATA_FORK || |
| (fork == XFS_ATTR_FORK && |
| ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || |
| (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); |
| |
| /* |
| * Since it is possible for space to become allocated beyond |
| * the end of the file (in a crash where the space is allocated |
| * but the inode size is not yet updated), simply remove any |
| * blocks which show up between the new EOF and the maximum |
| * possible file size. If the first block to be removed is |
| * beyond the maximum file size (ie it is the same as last_block), |
| * then there is nothing to do. |
| */ |
| last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); |
| ASSERT(first_unmap_block <= last_block); |
| done = 0; |
| if (last_block == first_unmap_block) { |
| done = 1; |
| } else { |
| unmap_len = last_block - first_unmap_block + 1; |
| } |
| while (!done) { |
| /* |
| * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() |
| * will tell us whether it freed the entire range or |
| * not. If this is a synchronous mount (wsync), |
| * then we can tell bunmapi to keep all the |
| * transactions asynchronous since the unlink |
| * transaction that made this inode inactive has |
| * already hit the disk. There's no danger of |
| * the freed blocks being reused, there being a |
| * crash, and the reused blocks suddenly reappearing |
| * in this file with garbage in them once recovery |
| * runs. |
| */ |
| XFS_BMAP_INIT(&free_list, &first_block); |
| error = xfs_bunmapi(ntp, ip, |
| first_unmap_block, unmap_len, |
| XFS_BMAPI_AFLAG(fork) | |
| (sync ? 0 : XFS_BMAPI_ASYNC), |
| XFS_ITRUNC_MAX_EXTENTS, |
| &first_block, &free_list, |
| NULL, &done); |
| if (error) { |
| /* |
| * If the bunmapi call encounters an error, |
| * return to the caller where the transaction |
| * can be properly aborted. We just need to |
| * make sure we're not holding any resources |
| * that we were not when we came in. |
| */ |
| xfs_bmap_cancel(&free_list); |
| return error; |
| } |
| |
| /* |
| * Duplicate the transaction that has the permanent |
| * reservation and commit the old transaction. |
| */ |
| error = xfs_bmap_finish(tp, &free_list, &committed); |
| ntp = *tp; |
| if (committed) { |
| /* link the inode into the next xact in the chain */ |
| xfs_trans_ijoin(ntp, ip, |
| XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| xfs_trans_ihold(ntp, ip); |
| } |
| |
| if (error) { |
| /* |
| * If the bmap finish call encounters an error, return |
| * to the caller where the transaction can be properly |
| * aborted. We just need to make sure we're not |
| * holding any resources that we were not when we came |
| * in. |
| * |
| * Aborting from this point might lose some blocks in |
| * the file system, but oh well. |
| */ |
| xfs_bmap_cancel(&free_list); |
| return error; |
| } |
| |
| if (committed) { |
| /* |
| * Mark the inode dirty so it will be logged and |
| * moved forward in the log as part of every commit. |
| */ |
| xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| } |
| |
| ntp = xfs_trans_dup(ntp); |
| error = xfs_trans_commit(*tp, 0); |
| *tp = ntp; |
| |
| /* link the inode into the next transaction in the chain */ |
| xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| xfs_trans_ihold(ntp, ip); |
| |
| if (!error) |
| error = xfs_trans_reserve(ntp, 0, |
| XFS_ITRUNCATE_LOG_RES(mp), 0, |
| XFS_TRANS_PERM_LOG_RES, |
| XFS_ITRUNCATE_LOG_COUNT); |
| if (error) |
| return error; |
| } |
| /* |
| * Only update the size in the case of the data fork, but |
| * always re-log the inode so that our permanent transaction |
| * can keep on rolling it forward in the log. |
| */ |
| if (fork == XFS_DATA_FORK) { |
| xfs_isize_check(mp, ip, new_size); |
| /* |
| * If we are not changing the file size then do |
| * not update the on-disk file size - we may be |
| * called from xfs_inactive_free_eofblocks(). If we |
| * update the on-disk file size and then the system |
| * crashes before the contents of the file are |
| * flushed to disk then the files may be full of |
| * holes (ie NULL files bug). |
| */ |
| if (ip->i_size != new_size) { |
| ip->i_d.di_size = new_size; |
| ip->i_size = new_size; |
| } |
| } |
| xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); |
| ASSERT((new_size != 0) || |
| (fork == XFS_ATTR_FORK) || |
| (ip->i_delayed_blks == 0)); |
| ASSERT((new_size != 0) || |
| (fork == XFS_ATTR_FORK) || |
| (ip->i_d.di_nextents == 0)); |
| xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); |
| return 0; |
| } |
| |
| /* |
| * This is called when the inode's link count goes to 0. |
| * We place the on-disk inode on a list in the AGI. It |
| * will be pulled from this list when the inode is freed. |
| */ |
| int |
| xfs_iunlink( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp; |
| xfs_agi_t *agi; |
| xfs_dinode_t *dip; |
| xfs_buf_t *agibp; |
| xfs_buf_t *ibp; |
| xfs_agnumber_t agno; |
| xfs_daddr_t agdaddr; |
| xfs_agino_t agino; |
| short bucket_index; |
| int offset; |
| int error; |
| int agi_ok; |
| |
| ASSERT(ip->i_d.di_nlink == 0); |
| ASSERT(ip->i_d.di_mode != 0); |
| ASSERT(ip->i_transp == tp); |
| |
| mp = tp->t_mountp; |
| |
| agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); |
| |
| /* |
| * Get the agi buffer first. It ensures lock ordering |
| * on the list. |
| */ |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, |
| XFS_FSS_TO_BB(mp, 1), 0, &agibp); |
| if (error) |
| return error; |
| |
| /* |
| * Validate the magic number of the agi block. |
| */ |
| agi = XFS_BUF_TO_AGI(agibp); |
| agi_ok = |
| be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && |
| XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); |
| if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, |
| XFS_RANDOM_IUNLINK))) { |
| XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); |
| xfs_trans_brelse(tp, agibp); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| /* |
| * Get the index into the agi hash table for the |
| * list this inode will go on. |
| */ |
| agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| ASSERT(agino != 0); |
| bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| ASSERT(agi->agi_unlinked[bucket_index]); |
| ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
| |
| if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { |
| /* |
| * There is already another inode in the bucket we need |
| * to add ourselves to. Add us at the front of the list. |
| * Here we put the head pointer into our next pointer, |
| * and then we fall through to point the head at us. |
| */ |
| error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); |
| if (error) |
| return error; |
| |
| ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); |
| /* both on-disk, don't endian flip twice */ |
| dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; |
| offset = ip->i_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } |
| |
| /* |
| * Point the bucket head pointer at the inode being inserted. |
| */ |
| ASSERT(agino != 0); |
| agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
| offset = offsetof(xfs_agi_t, agi_unlinked) + |
| (sizeof(xfs_agino_t) * bucket_index); |
| xfs_trans_log_buf(tp, agibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| return 0; |
| } |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| STATIC int |
| xfs_iunlink_remove( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_ino_t next_ino; |
| xfs_mount_t *mp; |
| xfs_agi_t *agi; |
| xfs_dinode_t *dip; |
| xfs_buf_t *agibp; |
| xfs_buf_t *ibp; |
| xfs_agnumber_t agno; |
| xfs_daddr_t agdaddr; |
| xfs_agino_t agino; |
| xfs_agino_t next_agino; |
| xfs_buf_t *last_ibp; |
| xfs_dinode_t *last_dip = NULL; |
| short bucket_index; |
| int offset, last_offset = 0; |
| int error; |
| int agi_ok; |
| |
| /* |
| * First pull the on-disk inode from the AGI unlinked list. |
| */ |
| mp = tp->t_mountp; |
| |
| agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); |
| |
| /* |
| * Get the agi buffer first. It ensures lock ordering |
| * on the list. |
| */ |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, |
| XFS_FSS_TO_BB(mp, 1), 0, &agibp); |
| if (error) { |
| cmn_err(CE_WARN, |
| "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", |
| error, mp->m_fsname); |
| return error; |
| } |
| /* |
| * Validate the magic number of the agi block. |
| */ |
| agi = XFS_BUF_TO_AGI(agibp); |
| agi_ok = |
| be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && |
| XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); |
| if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, |
| XFS_RANDOM_IUNLINK_REMOVE))) { |
| XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, |
| mp, agi); |
| xfs_trans_brelse(tp, agibp); |
| cmn_err(CE_WARN, |
| "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", |
| mp->m_fsname); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| /* |
| * Get the index into the agi hash table for the |
| * list this inode will go on. |
| */ |
| agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| ASSERT(agino != 0); |
| bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); |
| ASSERT(agi->agi_unlinked[bucket_index]); |
| |
| if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
| /* |
| * We're at the head of the list. Get the inode's |
| * on-disk buffer to see if there is anyone after us |
| * on the list. Only modify our next pointer if it |
| * is not already NULLAGINO. This saves us the overhead |
| * of dealing with the buffer when there is no need to |
| * change it. |
| */ |
| error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); |
| if (error) { |
| cmn_err(CE_WARN, |
| "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", |
| error, mp->m_fsname); |
| return error; |
| } |
| next_agino = be32_to_cpu(dip->di_next_unlinked); |
| ASSERT(next_agino != 0); |
| if (next_agino != NULLAGINO) { |
| dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| offset = ip->i_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } else { |
| xfs_trans_brelse(tp, ibp); |
| } |
| /* |
| * Point the bucket head pointer at the next inode. |
| */ |
| ASSERT(next_agino != 0); |
| ASSERT(next_agino != agino); |
| agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
| offset = offsetof(xfs_agi_t, agi_unlinked) + |
| (sizeof(xfs_agino_t) * bucket_index); |
| xfs_trans_log_buf(tp, agibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| } else { |
| /* |
| * We need to search the list for the inode being freed. |
| */ |
| next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| last_ibp = NULL; |
| while (next_agino != agino) { |
| /* |
| * If the last inode wasn't the one pointing to |
| * us, then release its buffer since we're not |
| * going to do anything with it. |
| */ |
| if (last_ibp != NULL) { |
| xfs_trans_brelse(tp, last_ibp); |
| } |
| next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); |
| error = xfs_inotobp(mp, tp, next_ino, &last_dip, |
| &last_ibp, &last_offset); |
| if (error) { |
| cmn_err(CE_WARN, |
| "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", |
| error, mp->m_fsname); |
| return error; |
| } |
| next_agino = be32_to_cpu(last_dip->di_next_unlinked); |
| ASSERT(next_agino != NULLAGINO); |
| ASSERT(next_agino != 0); |
| } |
| /* |
| * Now last_ibp points to the buffer previous to us on |
| * the unlinked list. Pull us from the list. |
| */ |
| error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); |
| if (error) { |
| cmn_err(CE_WARN, |
| "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", |
| error, mp->m_fsname); |
| return error; |
| } |
| next_agino = be32_to_cpu(dip->di_next_unlinked); |
| ASSERT(next_agino != 0); |
| ASSERT(next_agino != agino); |
| if (next_agino != NULLAGINO) { |
| dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| offset = ip->i_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } else { |
| xfs_trans_brelse(tp, ibp); |
| } |
| /* |
| * Point the previous inode on the list to the next inode. |
| */ |
| last_dip->di_next_unlinked = cpu_to_be32(next_agino); |
| ASSERT(next_agino != 0); |
| offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); |
| xfs_trans_inode_buf(tp, last_ibp); |
| xfs_trans_log_buf(tp, last_ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, last_ibp); |
| } |
| return 0; |
| } |
| |
| STATIC void |
| xfs_ifree_cluster( |
| xfs_inode_t *free_ip, |
| xfs_trans_t *tp, |
| xfs_ino_t inum) |
| { |
| xfs_mount_t *mp = free_ip->i_mount; |
| int blks_per_cluster; |
| int nbufs; |
| int ninodes; |
| int i, j, found, pre_flushed; |
| xfs_daddr_t blkno; |
| xfs_buf_t *bp; |
| xfs_inode_t *ip, **ip_found; |
| xfs_inode_log_item_t *iip; |
| xfs_log_item_t *lip; |
| xfs_perag_t *pag = xfs_get_perag(mp, inum); |
| |
| if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { |
| blks_per_cluster = 1; |
| ninodes = mp->m_sb.sb_inopblock; |
| nbufs = XFS_IALLOC_BLOCKS(mp); |
| } else { |
| blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / |
| mp->m_sb.sb_blocksize; |
| ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; |
| nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; |
| } |
| |
| ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); |
| |
| for (j = 0; j < nbufs; j++, inum += ninodes) { |
| blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| XFS_INO_TO_AGBNO(mp, inum)); |
| |
| |
| /* |
| * Look for each inode in memory and attempt to lock it, |
| * we can be racing with flush and tail pushing here. |
| * any inode we get the locks on, add to an array of |
| * inode items to process later. |
| * |
| * The get the buffer lock, we could beat a flush |
| * or tail pushing thread to the lock here, in which |
| * case they will go looking for the inode buffer |
| * and fail, we need some other form of interlock |
| * here. |
| */ |
| found = 0; |
| for (i = 0; i < ninodes; i++) { |
| read_lock(&pag->pag_ici_lock); |
| ip = radix_tree_lookup(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(mp, (inum + i))); |
| |
| /* Inode not in memory or we found it already, |
| * nothing to do |
| */ |
| if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| if (xfs_inode_clean(ip)) { |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| /* If we can get the locks then add it to the |
| * list, otherwise by the time we get the bp lock |
| * below it will already be attached to the |
| * inode buffer. |
| */ |
| |
| /* This inode will already be locked - by us, lets |
| * keep it that way. |
| */ |
| |
| if (ip == free_ip) { |
| if (xfs_iflock_nowait(ip)) { |
| xfs_iflags_set(ip, XFS_ISTALE); |
| if (xfs_inode_clean(ip)) { |
| xfs_ifunlock(ip); |
| } else { |
| ip_found[found++] = ip; |
| } |
| } |
| read_unlock(&pag->pag_ici_lock); |
| continue; |
| } |
| |
| if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| if (xfs_iflock_nowait(ip)) { |
| xfs_iflags_set(ip, XFS_ISTALE); |
| |
| if (xfs_inode_clean(ip)) { |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } else { |
| ip_found[found++] = ip; |
| } |
| } else { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } |
| } |
| read_unlock(&pag->pag_ici_lock); |
| } |
| |
| bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
| mp->m_bsize * blks_per_cluster, |
| XFS_BUF_LOCK); |
| |
| pre_flushed = 0; |
| lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); |
| while (lip) { |
| if (lip->li_type == XFS_LI_INODE) { |
| iip = (xfs_inode_log_item_t *)lip; |
| ASSERT(iip->ili_logged == 1); |
| lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; |
| spin_lock(&mp->m_ail_lock); |
| iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| spin_unlock(&mp->m_ail_lock); |
| xfs_iflags_set(iip->ili_inode, XFS_ISTALE); |
| pre_flushed++; |
| } |
| lip = lip->li_bio_list; |
| } |
| |
| for (i = 0; i < found; i++) { |
| ip = ip_found[i]; |
| iip = ip->i_itemp; |
| |
| if (!iip) { |
| ip->i_update_core = 0; |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| continue; |
| } |
| |
| iip->ili_last_fields = iip->ili_format.ilf_fields; |
| iip->ili_format.ilf_fields = 0; |
| iip->ili_logged = 1; |
| spin_lock(&mp->m_ail_lock); |
| iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| spin_unlock(&mp->m_ail_lock); |
| |
| xfs_buf_attach_iodone(bp, |
| (void(*)(xfs_buf_t*,xfs_log_item_t*)) |
| xfs_istale_done, (xfs_log_item_t *)iip); |
| if (ip != free_ip) { |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } |
| } |
| |
| if (found || pre_flushed) |
| xfs_trans_stale_inode_buf(tp, bp); |
| xfs_trans_binval(tp, bp); |
| } |
| |
| kmem_free(ip_found); |
| xfs_put_perag(mp, pag); |
| } |
| |
| /* |
| * This is called to return an inode to the inode free list. |
| * The inode should already be truncated to 0 length and have |
| * no pages associated with it. This routine also assumes that |
| * the inode is already a part of the transaction. |
| * |
| * The on-disk copy of the inode will have been added to the list |
| * of unlinked inodes in the AGI. We need to remove the inode from |
| * that list atomically with respect to freeing it here. |
| */ |
| int |
| xfs_ifree( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip, |
| xfs_bmap_free_t *flist) |
| { |
| int error; |
| int delete; |
| xfs_ino_t first_ino; |
| xfs_dinode_t *dip; |
| xfs_buf_t *ibp; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(ip->i_transp == tp); |
| ASSERT(ip->i_d.di_nlink == 0); |
| ASSERT(ip->i_d.di_nextents == 0); |
| ASSERT(ip->i_d.di_anextents == 0); |
| ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || |
| ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); |
| ASSERT(ip->i_d.di_nblocks == 0); |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| error = xfs_iunlink_remove(tp, ip); |
| if (error != 0) { |
| return error; |
| } |
| |
| error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); |
| if (error != 0) { |
| return error; |
| } |
| ip->i_d.di_mode = 0; /* mark incore inode as free */ |
| ip->i_d.di_flags = 0; |
| ip->i_d.di_dmevmask = 0; |
| ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ |
| ip->i_df.if_ext_max = |
| XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); |
| ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| /* |
| * Bump the generation count so no one will be confused |
| * by reincarnations of this inode. |
| */ |
| ip->i_d.di_gen++; |
| |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK); |
| if (error) |
| return error; |
| |
| /* |
| * Clear the on-disk di_mode. This is to prevent xfs_bulkstat |
| * from picking up this inode when it is reclaimed (its incore state |
| * initialzed but not flushed to disk yet). The in-core di_mode is |
| * already cleared and a corresponding transaction logged. |
| * The hack here just synchronizes the in-core to on-disk |
| * di_mode value in advance before the actual inode sync to disk. |
| * This is OK because the inode is already unlinked and would never |
| * change its di_mode again for this inode generation. |
| * This is a temporary hack that would require a proper fix |
| * in the future. |
| */ |
| dip->di_core.di_mode = 0; |
| |
| if (delete) { |
| xfs_ifree_cluster(ip, tp, first_ino); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reallocate the space for if_broot based on the number of records |
| * being added or deleted as indicated in rec_diff. Move the records |
| * and pointers in if_broot to fit the new size. When shrinking this |
| * will eliminate holes between the records and pointers created by |
| * the caller. When growing this will create holes to be filled in |
| * by the caller. |
| * |
| * The caller must not request to add more records than would fit in |
| * the on-disk inode root. If the if_broot is currently NULL, then |
| * if we adding records one will be allocated. The caller must also |
| * not request that the number of records go below zero, although |
| * it can go to zero. |
| * |
| * ip -- the inode whose if_broot area is changing |
| * ext_diff -- the change in the number of records, positive or negative, |
| * requested for the if_broot array. |
| */ |
| void |
| xfs_iroot_realloc( |
| xfs_inode_t *ip, |
| int rec_diff, |
| int whichfork) |
| { |
| int cur_max; |
| xfs_ifork_t *ifp; |
| xfs_bmbt_block_t *new_broot; |
| int new_max; |
| size_t new_size; |
| char *np; |
| char *op; |
| |
| /* |
| * Handle the degenerate case quietly. |
| */ |
| if (rec_diff == 0) { |
| return; |
| } |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| if (rec_diff > 0) { |
| /* |
| * If there wasn't any memory allocated before, just |
| * allocate it now and get out. |
| */ |
| if (ifp->if_broot_bytes == 0) { |
| new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); |
| ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, |
| KM_SLEEP); |
| ifp->if_broot_bytes = (int)new_size; |
| return; |
| } |
| |
| /* |
| * If there is already an existing if_broot, then we need |
| * to realloc() it and shift the pointers to their new |
| * location. The records don't change location because |
| * they are kept butted up against the btree block header. |
| */ |
| cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); |
| new_max = cur_max + rec_diff; |
| new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); |
| ifp->if_broot = (xfs_bmbt_block_t *) |
| kmem_realloc(ifp->if_broot, |
| new_size, |
| (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ |
| KM_SLEEP); |
| op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| ifp->if_broot_bytes); |
| np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| (int)new_size); |
| ifp->if_broot_bytes = (int)new_size; |
| ASSERT(ifp->if_broot_bytes <= |
| XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); |
| memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); |
| return; |
| } |
| |
| /* |
| * rec_diff is less than 0. In this case, we are shrinking the |
| * if_broot buffer. It must already exist. If we go to zero |
| * records, just get rid of the root and clear the status bit. |
| */ |
| ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); |
| cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); |
| new_max = cur_max + rec_diff; |
| ASSERT(new_max >= 0); |
| if (new_max > 0) |
| new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); |
| else |
| new_size = 0; |
| if (new_size > 0) { |
| new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); |
| /* |
| * First copy over the btree block header. |
| */ |
| memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); |
| } else { |
| new_broot = NULL; |
| ifp->if_flags &= ~XFS_IFBROOT; |
| } |
| |
| /* |
| * Only copy the records and pointers if there are any. |
| */ |
| if (new_max > 0) { |
| /* |
| * First copy the records. |
| */ |
| op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, |
| ifp->if_broot_bytes); |
| np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, |
| (int)new_size); |
| memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); |
| |
| /* |
| * Then copy the pointers. |
| */ |
| op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, |
| ifp->if_broot_bytes); |
| np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, |
| (int)new_size); |
| memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); |
| } |
| kmem_free(ifp->if_broot); |
| ifp->if_broot = new_broot; |
| ifp->if_broot_bytes = (int)new_size; |
| ASSERT(ifp->if_broot_bytes <= |
| XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); |
| return; |
| } |
| |
| |
| /* |
| * This is called when the amount of space needed for if_data |
| * is increased or decreased. The change in size is indicated by |
| * the number of bytes that need to be added or deleted in the |
| * byte_diff parameter. |
| * |
| * If the amount of space needed has decreased below the size of the |
| * inline buffer, then switch to using the inline buffer. Otherwise, |
| * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer |
| * to what is needed. |
| * |
| * ip -- the inode whose if_data area is changing |
| * byte_diff -- the change in the number of bytes, positive or negative, |
| * requested for the if_data array. |
| */ |
| void |
| xfs_idata_realloc( |
| xfs_inode_t *ip, |
| int byte_diff, |
| int whichfork) |
| { |
| xfs_ifork_t *ifp; |
| int new_size; |
| int real_size; |
| |
| if (byte_diff == 0) { |
| return; |
| } |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| new_size = (int)ifp->if_bytes + byte_diff; |
| ASSERT(new_size >= 0); |
| |
| if (new_size == 0) { |
| if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| kmem_free(ifp->if_u1.if_data); |
| } |
| ifp->if_u1.if_data = NULL; |
| real_size = 0; |
| } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { |
| /* |
| * If the valid extents/data can fit in if_inline_ext/data, |
| * copy them from the malloc'd vector and free it. |
| */ |
| if (ifp->if_u1.if_data == NULL) { |
| ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| ASSERT(ifp->if_real_bytes != 0); |
| memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, |
| new_size); |
| kmem_free(ifp->if_u1.if_data); |
| ifp->if_u1.if_data = ifp->if_u2.if_inline_data; |
| } |
| real_size = 0; |
| } else { |
| /* |
| * Stuck with malloc/realloc. |
| * For inline data, the underlying buffer must be |
| * a multiple of 4 bytes in size so that it can be |
| * logged and stay on word boundaries. We enforce |
| * that here. |
| */ |
| real_size = roundup(new_size, 4); |
| if (ifp->if_u1.if_data == NULL) { |
| ASSERT(ifp->if_real_bytes == 0); |
| ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { |
| /* |
| * Only do the realloc if the underlying size |
| * is really changing. |
| */ |
| if (ifp->if_real_bytes != real_size) { |
| ifp->if_u1.if_data = |
| kmem_realloc(ifp->if_u1.if_data, |
| real_size, |
| ifp->if_real_bytes, |
| KM_SLEEP); |
| } |
| } else { |
| ASSERT(ifp->if_real_bytes == 0); |
| ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); |
| memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, |
| ifp->if_bytes); |
| } |
| } |
| ifp->if_real_bytes = real_size; |
| ifp->if_bytes = new_size; |
| ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); |
| } |
| |
| |
| |
| |
| /* |
| * Map inode to disk block and offset. |
| * |
| * mp -- the mount point structure for the current file system |
| * tp -- the current transaction |
| * ino -- the inode number of the inode to be located |
| * imap -- this structure is filled in with the information necessary |
| * to retrieve the given inode from disk |
| * flags -- flags to pass to xfs_dilocate indicating whether or not |
| * lookups in the inode btree were OK or not |
| */ |
| int |
| xfs_imap( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| xfs_imap_t *imap, |
| uint flags) |
| { |
| xfs_fsblock_t fsbno; |
| int len; |
| int off; |
| int error; |
| |
| fsbno = imap->im_blkno ? |
| XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; |
| error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); |
| if (error) |
| return error; |
| |
| imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); |
| imap->im_len = XFS_FSB_TO_BB(mp, len); |
| imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); |
| imap->im_ioffset = (ushort)off; |
| imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); |
| |
| /* |
| * If the inode number maps to a block outside the bounds |
| * of the file system then return NULL rather than calling |
| * read_buf and panicing when we get an error from the |
| * driver. |
| */ |
| if ((imap->im_blkno + imap->im_len) > |
| XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { |
| xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: " |
| "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > " |
| " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)", |
| (unsigned long long) imap->im_blkno, |
| (unsigned long long) imap->im_len, |
| XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); |
| return EINVAL; |
| } |
| return 0; |
| } |
| |
| void |
| xfs_idestroy_fork( |
| xfs_inode_t *ip, |
| int whichfork) |
| { |
| xfs_ifork_t *ifp; |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| if (ifp->if_broot != NULL) { |
| kmem_free(ifp->if_broot); |
| ifp->if_broot = NULL; |
| } |
| |
| /* |
| * If the format is local, then we can't have an extents |
| * array so just look for an inline data array. If we're |
| * not local then we may or may not have an extents list, |
| * so check and free it up if we do. |
| */ |
| if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { |
| if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && |
| (ifp->if_u1.if_data != NULL)) { |
| ASSERT(ifp->if_real_bytes != 0); |
| kmem_free(ifp->if_u1.if_data); |
| ifp->if_u1.if_data = NULL; |
| ifp->if_real_bytes = 0; |
| } |
| } else if ((ifp->if_flags & XFS_IFEXTENTS) && |
| ((ifp->if_flags & XFS_IFEXTIREC) || |
| ((ifp->if_u1.if_extents != NULL) && |
| (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { |
| ASSERT(ifp->if_real_bytes != 0); |
| xfs_iext_destroy(ifp); |
| } |
| ASSERT(ifp->if_u1.if_extents == NULL || |
| ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); |
| ASSERT(ifp->if_real_bytes == 0); |
| if (whichfork == XFS_ATTR_FORK) { |
| kmem_zone_free(xfs_ifork_zone, ip->i_afp); |
| ip->i_afp = NULL; |
| } |
| } |
| |
| /* |
| * This is called free all the memory associated with an inode. |
| * It must free the inode itself and any buffers allocated for |
| * if_extents/if_data and if_broot. It must also free the lock |
| * associated with the inode. |
| */ |
| void |
| xfs_idestroy( |
| xfs_inode_t *ip) |
| { |
| switch (ip->i_d.di_mode & S_IFMT) { |
| case S_IFREG: |
| case S_IFDIR: |
| case S_IFLNK: |
| xfs_idestroy_fork(ip, XFS_DATA_FORK); |
| break; |
| } |
| if (ip->i_afp) |
| xfs_idestroy_fork(ip, XFS_ATTR_FORK); |
| mrfree(&ip->i_lock); |
| mrfree(&ip->i_iolock); |
| |
| #ifdef XFS_INODE_TRACE |
| ktrace_free(ip->i_trace); |
| #endif |
| #ifdef XFS_BMAP_TRACE |
| ktrace_free(ip->i_xtrace); |
| #endif |
| #ifdef XFS_BMBT_TRACE |
| ktrace_free(ip->i_btrace); |
| #endif |
| #ifdef XFS_RW_TRACE |
| ktrace_free(ip->i_rwtrace); |
| #endif |
| #ifdef XFS_ILOCK_TRACE |
| ktrace_free(ip->i_lock_trace); |
| #endif |
| #ifdef XFS_DIR2_TRACE |
| ktrace_free(ip->i_dir_trace); |
| #endif |
| if (ip->i_itemp) { |
| /* |
| * Only if we are shutting down the fs will we see an |
| * inode still in the AIL. If it is there, we should remove |
| * it to prevent a use-after-free from occurring. |
| */ |
| xfs_mount_t *mp = ip->i_mount; |
| xfs_log_item_t *lip = &ip->i_itemp->ili_item; |
| |
| ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || |
| XFS_FORCED_SHUTDOWN(ip->i_mount)); |
| if (lip->li_flags & XFS_LI_IN_AIL) { |
| spin_lock(&mp->m_ail_lock); |
| if (lip->li_flags & XFS_LI_IN_AIL) |
| xfs_trans_delete_ail(mp, lip); |
| else |
| spin_unlock(&mp->m_ail_lock); |
| } |
| xfs_inode_item_destroy(ip); |
| } |
| kmem_zone_free(xfs_inode_zone, ip); |
| } |
| |
| |
| /* |
| * Increment the pin count of the given buffer. |
| * This value is protected by ipinlock spinlock in the mount structure. |
| */ |
| void |
| xfs_ipin( |
| xfs_inode_t *ip) |
| { |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| atomic_inc(&ip->i_pincount); |
| } |
| |
| /* |
| * Decrement the pin count of the given inode, and wake up |
| * anyone in xfs_iwait_unpin() if the count goes to 0. The |
| * inode must have been previously pinned with a call to xfs_ipin(). |
| */ |
| void |
| xfs_iunpin( |
| xfs_inode_t *ip) |
| { |
| ASSERT(atomic_read(&ip->i_pincount) > 0); |
| |
| if (atomic_dec_and_test(&ip->i_pincount)) |
| wake_up(&ip->i_ipin_wait); |
| } |
| |
| /* |
| * This is called to unpin an inode. It can be directed to wait or to return |
| * immediately without waiting for the inode to be unpinned. The caller must |
| * have the inode locked in at least shared mode so that the buffer cannot be |
| * subsequently pinned once someone is waiting for it to be unpinned. |
| */ |
| STATIC void |
| __xfs_iunpin_wait( |
| xfs_inode_t *ip, |
| int wait) |
| { |
| xfs_inode_log_item_t *iip = ip->i_itemp; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| if (atomic_read(&ip->i_pincount) == 0) |
| return; |
| |
| /* Give the log a push to start the unpinning I/O */ |
| xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? |
| iip->ili_last_lsn : 0, XFS_LOG_FORCE); |
| if (wait) |
| wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); |
| } |
| |
| static inline void |
| xfs_iunpin_wait( |
| xfs_inode_t *ip) |
| { |
| __xfs_iunpin_wait(ip, 1); |
| } |
| |
| static inline void |
| xfs_iunpin_nowait( |
| xfs_inode_t *ip) |
| { |
| __xfs_iunpin_wait(ip, 0); |
| } |
| |
| |
| /* |
| * xfs_iextents_copy() |
| * |
| * This is called to copy the REAL extents (as opposed to the delayed |
| * allocation extents) from the inode into the given buffer. It |
| * returns the number of bytes copied into the buffer. |
| * |
| * If there are no delayed allocation extents, then we can just |
| * memcpy() the extents into the buffer. Otherwise, we need to |
| * examine each extent in turn and skip those which are delayed. |
| */ |
| int |
| xfs_iextents_copy( |
| xfs_inode_t *ip, |
| xfs_bmbt_rec_t *dp, |
| int whichfork) |
| { |
| int copied; |
| int i; |
| xfs_ifork_t *ifp; |
| int nrecs; |
| xfs_fsblock_t start_block; |
| |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(ifp->if_bytes > 0); |
| |
| nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); |
| ASSERT(nrecs > 0); |
| |
| /* |
| * There are some delayed allocation extents in the |
| * inode, so copy the extents one at a time and skip |
| * the delayed ones. There must be at least one |
| * non-delayed extent. |
| */ |
| copied = 0; |
| for (i = 0; i < nrecs; i++) { |
| xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); |
| start_block = xfs_bmbt_get_startblock(ep); |
| if (ISNULLSTARTBLOCK(start_block)) { |
| /* |
| * It's a delayed allocation extent, so skip it. |
| */ |
| continue; |
| } |
| |
| /* Translate to on disk format */ |
| put_unaligned(cpu_to_be64(ep->l0), &dp->l0); |
| put_unaligned(cpu_to_be64(ep->l1), &dp->l1); |
| dp++; |
| copied++; |
| } |
| ASSERT(copied != 0); |
| xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); |
| |
| return (copied * (uint)sizeof(xfs_bmbt_rec_t)); |
| } |
| |
| /* |
| * Each of the following cases stores data into the same region |
| * of the on-disk inode, so only one of them can be valid at |
| * any given time. While it is possible to have conflicting formats |
| * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is |
| * in EXTENTS format, this can only happen when the fork has |
| * changed formats after being modified but before being flushed. |
| * In these cases, the format always takes precedence, because the |
| * format indicates the current state of the fork. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_iflush_fork( |
| xfs_inode_t *ip, |
| xfs_dinode_t *dip, |
| xfs_inode_log_item_t *iip, |
| int whichfork, |
| xfs_buf_t *bp) |
| { |
| char *cp; |
| xfs_ifork_t *ifp; |
| xfs_mount_t *mp; |
| #ifdef XFS_TRANS_DEBUG |
| int first; |
| #endif |
| static const short brootflag[2] = |
| { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; |
| static const short dataflag[2] = |
| { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; |
| static const short extflag[2] = |
| { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; |
| |
| if (!iip) |
| return; |
| ifp = XFS_IFORK_PTR(ip, whichfork); |
| /* |
| * This can happen if we gave up in iformat in an error path, |
| * for the attribute fork. |
| */ |
| if (!ifp) { |
| ASSERT(whichfork == XFS_ATTR_FORK); |
| return; |
| } |
| cp = XFS_DFORK_PTR(dip, whichfork); |
| mp = ip->i_mount; |
| switch (XFS_IFORK_FORMAT(ip, whichfork)) { |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && |
| (ifp->if_bytes > 0)) { |
| ASSERT(ifp->if_u1.if_data != NULL); |
| ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); |
| memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); |
| } |
| break; |
| |
| case XFS_DINODE_FMT_EXTENTS: |
| ASSERT((ifp->if_flags & XFS_IFEXTENTS) || |
| !(iip->ili_format.ilf_fields & extflag[whichfork])); |
| ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || |
| (ifp->if_bytes == 0)); |
| ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || |
| (ifp->if_bytes > 0)); |
| if ((iip->ili_format.ilf_fields & extflag[whichfork]) && |
| (ifp->if_bytes > 0)) { |
| ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); |
| (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, |
| whichfork); |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && |
| (ifp->if_broot_bytes > 0)) { |
| ASSERT(ifp->if_broot != NULL); |
| ASSERT(ifp->if_broot_bytes <= |
| (XFS_IFORK_SIZE(ip, whichfork) + |
| XFS_BROOT_SIZE_ADJ)); |
| xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, |
| (xfs_bmdr_block_t *)cp, |
| XFS_DFORK_SIZE(dip, mp, whichfork)); |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { |
| ASSERT(whichfork == XFS_DATA_FORK); |
| dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev); |
| } |
| break; |
| |
| case XFS_DINODE_FMT_UUID: |
| if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { |
| ASSERT(whichfork == XFS_DATA_FORK); |
| memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, |
| sizeof(uuid_t)); |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| STATIC int |
| xfs_iflush_cluster( |
| xfs_inode_t *ip, |
| xfs_buf_t *bp) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); |
| unsigned long first_index, mask; |
| unsigned long inodes_per_cluster; |
| int ilist_size; |
| xfs_inode_t **ilist; |
| xfs_inode_t *iq; |
| int nr_found; |
| int clcount = 0; |
| int bufwasdelwri; |
| int i; |
| |
| ASSERT(pag->pagi_inodeok); |
| ASSERT(pag->pag_ici_init); |
| |
| inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; |
| ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); |
| ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); |
| if (!ilist) |
| return 0; |
| |
| mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; |
| read_lock(&pag->pag_ici_lock); |
| /* really need a gang lookup range call here */ |
| nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, |
| first_index, inodes_per_cluster); |
| if (nr_found == 0) |
| goto out_free; |
| |
| for (i = 0; i < nr_found; i++) { |
| iq = ilist[i]; |
| if (iq == ip) |
| continue; |
| /* if the inode lies outside this cluster, we're done. */ |
| if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) |
| break; |
| /* |
| * Do an un-protected check to see if the inode is dirty and |
| * is a candidate for flushing. These checks will be repeated |
| * later after the appropriate locks are acquired. |
| */ |
| if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) |
| continue; |
| |
| /* |
| * Try to get locks. If any are unavailable or it is pinned, |
| * then this inode cannot be flushed and is skipped. |
| */ |
| |
| if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) |
| continue; |
| if (!xfs_iflock_nowait(iq)) { |
| xfs_iunlock(iq, XFS_ILOCK_SHARED); |
| continue; |
| } |
| if (xfs_ipincount(iq)) { |
| xfs_ifunlock(iq); |
| xfs_iunlock(iq, XFS_ILOCK_SHARED); |
| continue; |
| } |
| |
| /* |
| * arriving here means that this inode can be flushed. First |
| * re-check that it's dirty before flushing. |
| */ |
| if (!xfs_inode_clean(iq)) { |
| int error; |
| error = xfs_iflush_int(iq, bp); |
| if (error) { |
| xfs_iunlock(iq, XFS_ILOCK_SHARED); |
| goto cluster_corrupt_out; |
| } |
| clcount++; |
| } else { |
| xfs_ifunlock(iq); |
| } |
| xfs_iunlock(iq, XFS_ILOCK_SHARED); |
| } |
| |
| if (clcount) { |
| XFS_STATS_INC(xs_icluster_flushcnt); |
| XFS_STATS_ADD(xs_icluster_flushinode, clcount); |
| } |
| |
| out_free: |
| read_unlock(&pag->pag_ici_lock); |
| kmem_free(ilist); |
| return 0; |
| |
| |
| cluster_corrupt_out: |
| /* |
| * Corruption detected in the clustering loop. Invalidate the |
| * inode buffer and shut down the filesystem. |
| */ |
| read_unlock(&pag->pag_ici_lock); |
| /* |
| * Clean up the buffer. If it was B_DELWRI, just release it -- |
| * brelse can handle it with no problems. If not, shut down the |
| * filesystem before releasing the buffer. |
| */ |
| bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); |
| if (bufwasdelwri) |
| xfs_buf_relse(bp); |
| |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| |
| if (!bufwasdelwri) { |
| /* |
| * Just like incore_relse: if we have b_iodone functions, |
| * mark the buffer as an error and call them. Otherwise |
| * mark it as stale and brelse. |
| */ |
| if (XFS_BUF_IODONE_FUNC(bp)) { |
| XFS_BUF_CLR_BDSTRAT_FUNC(bp); |
| XFS_BUF_UNDONE(bp); |
| XFS_BUF_STALE(bp); |
| XFS_BUF_SHUT(bp); |
| XFS_BUF_ERROR(bp,EIO); |
| xfs_biodone(bp); |
| } else { |
| XFS_BUF_STALE(bp); |
| xfs_buf_relse(bp); |
| } |
| } |
| |
| /* |
| * Unlocks the flush lock |
| */ |
| xfs_iflush_abort(iq); |
| kmem_free(ilist); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| /* |
| * xfs_iflush() will write a modified inode's changes out to the |
| * inode's on disk home. The caller must have the inode lock held |
| * in at least shared mode and the inode flush completion must be |
| * active as well. The inode lock will still be held upon return from |
| * the call and the caller is free to unlock it. |
| * The inode flush will be completed when the inode reaches the disk. |
| * The flags indicate how the inode's buffer should be written out. |
| */ |
| int |
| xfs_iflush( |
| xfs_inode_t *ip, |
| uint flags) |
| { |
| xfs_inode_log_item_t *iip; |
| xfs_buf_t *bp; |
| xfs_dinode_t *dip; |
| xfs_mount_t *mp; |
| int error; |
| int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); |
| enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; |
| |
| XFS_STATS_INC(xs_iflush_count); |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(!completion_done(&ip->i_flush)); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| ip->i_d.di_nextents > ip->i_df.if_ext_max); |
| |
| iip = ip->i_itemp; |
| mp = ip->i_mount; |
| |
| /* |
| * If the inode isn't dirty, then just release the inode |
| * flush lock and do nothing. |
| */ |
| if (xfs_inode_clean(ip)) { |
| xfs_ifunlock(ip); |
| return 0; |
| } |
| |
| /* |
| * We can't flush the inode until it is unpinned, so wait for it if we |
| * are allowed to block. We know noone new can pin it, because we are |
| * holding the inode lock shared and you need to hold it exclusively to |
| * pin the inode. |
| * |
| * If we are not allowed to block, force the log out asynchronously so |
| * that when we come back the inode will be unpinned. If other inodes |
| * in the same cluster are dirty, they will probably write the inode |
| * out for us if they occur after the log force completes. |
| */ |
| if (noblock && xfs_ipincount(ip)) { |
| xfs_iunpin_nowait(ip); |
| xfs_ifunlock(ip); |
| return EAGAIN; |
| } |
| xfs_iunpin_wait(ip); |
| |
| /* |
| * This may have been unpinned because the filesystem is shutting |
| * down forcibly. If that's the case we must not write this inode |
| * to disk, because the log record didn't make it to disk! |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| ip->i_update_core = 0; |
| if (iip) |
| iip->ili_format.ilf_fields = 0; |
| xfs_ifunlock(ip); |
| return XFS_ERROR(EIO); |
| } |
| |
| /* |
| * Decide how buffer will be flushed out. This is done before |
| * the call to xfs_iflush_int because this field is zeroed by it. |
| */ |
| if (iip != NULL && iip->ili_format.ilf_fields != 0) { |
| /* |
| * Flush out the inode buffer according to the directions |
| * of the caller. In the cases where the caller has given |
| * us a choice choose the non-delwri case. This is because |
| * the inode is in the AIL and we need to get it out soon. |
| */ |
| switch (flags) { |
| case XFS_IFLUSH_SYNC: |
| case XFS_IFLUSH_DELWRI_ELSE_SYNC: |
| flags = 0; |
| break; |
| case XFS_IFLUSH_ASYNC_NOBLOCK: |
| case XFS_IFLUSH_ASYNC: |
| case XFS_IFLUSH_DELWRI_ELSE_ASYNC: |
| flags = INT_ASYNC; |
| break; |
| case XFS_IFLUSH_DELWRI: |
| flags = INT_DELWRI; |
| break; |
| default: |
| ASSERT(0); |
| flags = 0; |
| break; |
| } |
| } else { |
| switch (flags) { |
| case XFS_IFLUSH_DELWRI_ELSE_SYNC: |
| case XFS_IFLUSH_DELWRI_ELSE_ASYNC: |
| case XFS_IFLUSH_DELWRI: |
| flags = INT_DELWRI; |
| break; |
| case XFS_IFLUSH_ASYNC_NOBLOCK: |
| case XFS_IFLUSH_ASYNC: |
| flags = INT_ASYNC; |
| break; |
| case XFS_IFLUSH_SYNC: |
| flags = 0; |
| break; |
| default: |
| ASSERT(0); |
| flags = 0; |
| break; |
| } |
| } |
| |
| /* |
| * Get the buffer containing the on-disk inode. |
| */ |
| error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0, |
| noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); |
| if (error || !bp) { |
| xfs_ifunlock(ip); |
| return error; |
| } |
| |
| /* |
| * First flush out the inode that xfs_iflush was called with. |
| */ |
| error = xfs_iflush_int(ip, bp); |
| if (error) |
| goto corrupt_out; |
| |
| /* |
| * If the buffer is pinned then push on the log now so we won't |
| * get stuck waiting in the write for too long. |
| */ |
| if (XFS_BUF_ISPINNED(bp)) |
| xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); |
| |
| /* |
| * inode clustering: |
| * see if other inodes can be gathered into this write |
| */ |
| error = xfs_iflush_cluster(ip, bp); |
| if (error) |
| goto cluster_corrupt_out; |
| |
| if (flags & INT_DELWRI) { |
| xfs_bdwrite(mp, bp); |
| } else if (flags & INT_ASYNC) { |
| error = xfs_bawrite(mp, bp); |
| } else { |
| error = xfs_bwrite(mp, bp); |
| } |
| return error; |
| |
| corrupt_out: |
| xfs_buf_relse(bp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| cluster_corrupt_out: |
| /* |
| * Unlocks the flush lock |
| */ |
| xfs_iflush_abort(ip); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| |
| STATIC int |
| xfs_iflush_int( |
| xfs_inode_t *ip, |
| xfs_buf_t *bp) |
| { |
| xfs_inode_log_item_t *iip; |
| xfs_dinode_t *dip; |
| xfs_mount_t *mp; |
| #ifdef XFS_TRANS_DEBUG |
| int first; |
| #endif |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(!completion_done(&ip->i_flush)); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| ip->i_d.di_nextents > ip->i_df.if_ext_max); |
| |
| iip = ip->i_itemp; |
| mp = ip->i_mount; |
| |
| |
| /* |
| * If the inode isn't dirty, then just release the inode |
| * flush lock and do nothing. |
| */ |
| if (xfs_inode_clean(ip)) { |
| xfs_ifunlock(ip); |
| return 0; |
| } |
| |
| /* set *dip = inode's place in the buffer */ |
| dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); |
| |
| /* |
| * Clear i_update_core before copying out the data. |
| * This is for coordination with our timestamp updates |
| * that don't hold the inode lock. They will always |
| * update the timestamps BEFORE setting i_update_core, |
| * so if we clear i_update_core after they set it we |
| * are guaranteed to see their updates to the timestamps. |
| * I believe that this depends on strongly ordered memory |
| * semantics, but we have that. We use the SYNCHRONIZE |
| * macro to make sure that the compiler does not reorder |
| * the i_update_core access below the data copy below. |
| */ |
| ip->i_update_core = 0; |
| SYNCHRONIZE(); |
| |
| /* |
| * Make sure to get the latest atime from the Linux inode. |
| */ |
| xfs_synchronize_atime(ip); |
| |
| if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC, |
| mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", |
| ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip); |
| goto corrupt_out; |
| } |
| if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, |
| mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", |
| ip->i_ino, ip, ip->i_d.di_magic); |
| goto corrupt_out; |
| } |
| if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { |
| if (XFS_TEST_ERROR( |
| (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), |
| mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", |
| ip->i_ino, ip); |
| goto corrupt_out; |
| } |
| } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { |
| if (XFS_TEST_ERROR( |
| (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), |
| mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", |
| ip->i_ino, ip); |
| goto corrupt_out; |
| } |
| } |
| if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > |
| ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, |
| XFS_RANDOM_IFLUSH_5)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", |
| ip->i_ino, |
| ip->i_d.di_nextents + ip->i_d.di_anextents, |
| ip->i_d.di_nblocks, |
| ip); |
| goto corrupt_out; |
| } |
| if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, |
| mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { |
| xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, |
| "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", |
| ip->i_ino, ip->i_d.di_forkoff, ip); |
| goto corrupt_out; |
| } |
| /* |
| * bump the flush iteration count, used to detect flushes which |
| * postdate a log record during recovery. |
| */ |
| |
| ip->i_d.di_flushiter++; |
| |
| /* |
| * Copy the dirty parts of the inode into the on-disk |
| * inode. We always copy out the core of the inode, |
| * because if the inode is dirty at all the core must |
| * be. |
| */ |
| xfs_dinode_to_disk(&dip->di_core, &ip->i_d); |
| |
| /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| if (ip->i_d.di_flushiter == DI_MAX_FLUSH) |
| ip->i_d.di_flushiter = 0; |
| |
| /* |
| * If this is really an old format inode and the superblock version |
| * has not been updated to support only new format inodes, then |
| * convert back to the old inode format. If the superblock version |
| * has been updated, then make the conversion permanent. |
| */ |
| ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || |
| xfs_sb_version_hasnlink(&mp->m_sb)); |
| if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| if (!xfs_sb_version_hasnlink(&mp->m_sb)) { |
| /* |
| * Convert it back. |
| */ |
| ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); |
| dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink); |
| } else { |
| /* |
| * The superblock version has already been bumped, |
| * so just make the conversion to the new inode |
| * format permanent. |
| */ |
| ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| dip->di_core.di_version = XFS_DINODE_VERSION_2; |
| ip->i_d.di_onlink = 0; |
| dip->di_core.di_onlink = 0; |
| memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| memset(&(dip->di_core.di_pad[0]), 0, |
| sizeof(dip->di_core.di_pad)); |
| ASSERT(ip->i_d.di_projid == 0); |
| } |
| } |
| |
| xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); |
| if (XFS_IFORK_Q(ip)) |
| xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); |
| xfs_inobp_check(mp, bp); |
| |
| /* |
| * We've recorded everything logged in the inode, so we'd |
| * like to clear the ilf_fields bits so we don't log and |
| * flush things unnecessarily. However, we can't stop |
| * logging all this information until the data we've copied |
| * into the disk buffer is written to disk. If we did we might |
| * overwrite the copy of the inode in the log with all the |
| * data after re-logging only part of it, and in the face of |
| * a crash we wouldn't have all the data we need to recover. |
| * |
| * What we do is move the bits to the ili_last_fields field. |
| * When logging the inode, these bits are moved back to the |
| * ilf_fields field. In the xfs_iflush_done() routine we |
| * clear ili_last_fields, since we know that the information |
| * those bits represent is permanently on disk. As long as |
| * the flush completes before the inode is logged again, then |
| * both ilf_fields and ili_last_fields will be cleared. |
| * |
| * We can play with the ilf_fields bits here, because the inode |
| * lock must be held exclusively in order to set bits there |
| * and the flush lock protects the ili_last_fields bits. |
| * Set ili_logged so the flush done |
| * routine can tell whether or not to look in the AIL. |
| * Also, store the current LSN of the inode so that we can tell |
| * whether the item has moved in the AIL from xfs_iflush_done(). |
| * In order to read the lsn we need the AIL lock, because |
| * it is a 64 bit value that cannot be read atomically. |
| */ |
| if (iip != NULL && iip->ili_format.ilf_fields != 0) { |
| iip->ili_last_fields = iip->ili_format.ilf_fields; |
| iip->ili_format.ilf_fields = 0; |
| iip->ili_logged = 1; |
| |
| ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ |
| spin_lock(&mp->m_ail_lock); |
| iip->ili_flush_lsn = iip->ili_item.li_lsn; |
| spin_unlock(&mp->m_ail_lock); |
| |
| /* |
| * Attach the function xfs_iflush_done to the inode's |
| * buffer. This will remove the inode from the AIL |
| * and unlock the inode's flush lock when the inode is |
| * completely written to disk. |
| */ |
| xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) |
| xfs_iflush_done, (xfs_log_item_t *)iip); |
| |
| ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); |
| ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); |
| } else { |
| /* |
| * We're flushing an inode which is not in the AIL and has |
| * not been logged but has i_update_core set. For this |
| * case we can use a B_DELWRI flush and immediately drop |
| * the inode flush lock because we can avoid the whole |
| * AIL state thing. It's OK to drop the flush lock now, |
| * because we've already locked the buffer and to do anything |
| * you really need both. |
| */ |
| if (iip != NULL) { |
| ASSERT(iip->ili_logged == 0); |
| ASSERT(iip->ili_last_fields == 0); |
| ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); |
| } |
| xfs_ifunlock(ip); |
| } |
| |
| return 0; |
| |
| corrupt_out: |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| |
| |
| /* |
| * Flush all inactive inodes in mp. |
| */ |
| void |
| xfs_iflush_all( |
| xfs_mount_t *mp) |
| { |
| xfs_inode_t *ip; |
| |
| again: |
| XFS_MOUNT_ILOCK(mp); |
| ip = mp->m_inodes; |
| if (ip == NULL) |
| goto out; |
| |
| do { |
| /* Make sure we skip markers inserted by sync */ |
| if (ip->i_mount == NULL) { |
| ip = ip->i_mnext; |
| continue; |
| } |
| |
| if (!VFS_I(ip)) { |
| XFS_MOUNT_IUNLOCK(mp); |
| xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); |
| goto again; |
| } |
| |
| ASSERT(vn_count(VFS_I(ip)) == 0); |
| |
| ip = ip->i_mnext; |
| } while (ip != mp->m_inodes); |
| out: |
| XFS_MOUNT_IUNLOCK(mp); |
| } |
| |
| #ifdef XFS_ILOCK_TRACE |
| ktrace_t *xfs_ilock_trace_buf; |
| |
| void |
| xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) |
| { |
| ktrace_enter(ip->i_lock_trace, |
| (void *)ip, |
| (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ |
| (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ |
| (void *)ra, /* caller of ilock */ |
| (void *)(unsigned long)current_cpu(), |
| (void *)(unsigned long)current_pid(), |
| NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); |
| } |
| #endif |
| |
| /* |
| * Return a pointer to the extent record at file index idx. |
| */ |
| xfs_bmbt_rec_host_t * |
| xfs_iext_get_ext( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx) /* index of target extent */ |
| { |
| ASSERT(idx >= 0); |
| if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { |
| return ifp->if_u1.if_ext_irec->er_extbuf; |
| } else if (ifp->if_flags & XFS_IFEXTIREC) { |
| xfs_ext_irec_t *erp; /* irec pointer */ |
| int erp_idx = 0; /* irec index */ |
| xfs_extnum_t page_idx = idx; /* ext index in target list */ |
| |
| erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); |
| return &erp->er_extbuf[page_idx]; |
| } else if (ifp->if_bytes) { |
| return &ifp->if_u1.if_extents[idx]; |
| } else { |
| return NULL; |
| } |
| } |
| |
| /* |
| * Insert new item(s) into the extent records for incore inode |
| * fork 'ifp'. 'count' new items are inserted at index 'idx'. |
| */ |
| void |
| xfs_iext_insert( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* starting index of new items */ |
| xfs_extnum_t count, /* number of inserted items */ |
| xfs_bmbt_irec_t *new) /* items to insert */ |
| { |
| xfs_extnum_t i; /* extent record index */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTENTS); |
| xfs_iext_add(ifp, idx, count); |
| for (i = idx; i < idx + count; i++, new++) |
| xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); |
| } |
| |
| /* |
| * This is called when the amount of space required for incore file |
| * extents needs to be increased. The ext_diff parameter stores the |
| * number of new extents being added and the idx parameter contains |
| * the extent index where the new extents will be added. If the new |
| * extents are being appended, then we just need to (re)allocate and |
| * initialize the space. Otherwise, if the new extents are being |
| * inserted into the middle of the existing entries, a bit more work |
| * is required to make room for the new extents to be inserted. The |
| * caller is responsible for filling in the new extent entries upon |
| * return. |
| */ |
| void |
| xfs_iext_add( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* index to begin adding exts */ |
| int ext_diff) /* number of extents to add */ |
| { |
| int byte_diff; /* new bytes being added */ |
| int new_size; /* size of extents after adding */ |
| xfs_extnum_t nextents; /* number of extents in file */ |
| |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| ASSERT((idx >= 0) && (idx <= nextents)); |
| byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); |
| new_size = ifp->if_bytes + byte_diff; |
| /* |
| * If the new number of extents (nextents + ext_diff) |
| * fits inside the inode, then continue to use the inline |
| * extent buffer. |
| */ |
| if (nextents + ext_diff <= XFS_INLINE_EXTS) { |
| if (idx < nextents) { |
| memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], |
| &ifp->if_u2.if_inline_ext[idx], |
| (nextents - idx) * sizeof(xfs_bmbt_rec_t)); |
| memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); |
| } |
| ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
| ifp->if_real_bytes = 0; |
| ifp->if_lastex = nextents + ext_diff; |
| } |
| /* |
| * Otherwise use a linear (direct) extent list. |
| * If the extents are currently inside the inode, |
| * xfs_iext_realloc_direct will switch us from |
| * inline to direct extent allocation mode. |
| */ |
| else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { |
| xfs_iext_realloc_direct(ifp, new_size); |
| if (idx < nextents) { |
| memmove(&ifp->if_u1.if_extents[idx + ext_diff], |
| &ifp->if_u1.if_extents[idx], |
| (nextents - idx) * sizeof(xfs_bmbt_rec_t)); |
| memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); |
| } |
| } |
| /* Indirection array */ |
| else { |
| xfs_ext_irec_t *erp; |
| int erp_idx = 0; |
| int page_idx = idx; |
| |
| ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); |
| if (ifp->if_flags & XFS_IFEXTIREC) { |
| erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); |
| } else { |
| xfs_iext_irec_init(ifp); |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| erp = ifp->if_u1.if_ext_irec; |
| } |
| /* Extents fit in target extent page */ |
| if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { |
| if (page_idx < erp->er_extcount) { |
| memmove(&erp->er_extbuf[page_idx + ext_diff], |
| &erp->er_extbuf[page_idx], |
| (erp->er_extcount - page_idx) * |
| sizeof(xfs_bmbt_rec_t)); |
| memset(&erp->er_extbuf[page_idx], 0, byte_diff); |
| } |
| erp->er_extcount += ext_diff; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); |
| } |
| /* Insert a new extent page */ |
| else if (erp) { |
| xfs_iext_add_indirect_multi(ifp, |
| erp_idx, page_idx, ext_diff); |
| } |
| /* |
| * If extent(s) are being appended to the last page in |
| * the indirection array and the new extent(s) don't fit |
| * in the page, then erp is NULL and erp_idx is set to |
| * the next index needed in the indirection array. |
| */ |
| else { |
| int count = ext_diff; |
| |
| while (count) { |
| erp = xfs_iext_irec_new(ifp, erp_idx); |
| erp->er_extcount = count; |
| count -= MIN(count, (int)XFS_LINEAR_EXTS); |
| if (count) { |
| erp_idx++; |
| } |
| } |
| } |
| } |
| ifp->if_bytes = new_size; |
| } |
| |
| /* |
| * This is called when incore extents are being added to the indirection |
| * array and the new extents do not fit in the target extent list. The |
| * erp_idx parameter contains the irec index for the target extent list |
| * in the indirection array, and the idx parameter contains the extent |
| * index within the list. The number of extents being added is stored |
| * in the count parameter. |
| * |
| * |-------| |-------| |
| * | | | | idx - number of extents before idx |
| * | idx | | count | |
| * | | | | count - number of extents being inserted at idx |
| * |-------| |-------| |
| * | count | | nex2 | nex2 - number of extents after idx + count |
| * |-------| |-------| |
| */ |
| void |
| xfs_iext_add_indirect_multi( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int erp_idx, /* target extent irec index */ |
| xfs_extnum_t idx, /* index within target list */ |
| int count) /* new extents being added */ |
| { |
| int byte_diff; /* new bytes being added */ |
| xfs_ext_irec_t *erp; /* pointer to irec entry */ |
| xfs_extnum_t ext_diff; /* number of extents to add */ |
| xfs_extnum_t ext_cnt; /* new extents still needed */ |
| xfs_extnum_t nex2; /* extents after idx + count */ |
| xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ |
| int nlists; /* number of irec's (lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| nex2 = erp->er_extcount - idx; |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| |
| /* |
| * Save second part of target extent list |
| * (all extents past */ |
| if (nex2) { |
| byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); |
| nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); |
| memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); |
| erp->er_extcount -= nex2; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); |
| memset(&erp->er_extbuf[idx], 0, byte_diff); |
| } |
| |
| /* |
| * Add the new extents to the end of the target |
| * list, then allocate new irec record(s) and |
| * extent buffer(s) as needed to store the rest |
| * of the new extents. |
| */ |
| ext_cnt = count; |
| ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); |
| if (ext_diff) { |
| erp->er_extcount += ext_diff; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); |
| ext_cnt -= ext_diff; |
| } |
| while (ext_cnt) { |
| erp_idx++; |
| erp = xfs_iext_irec_new(ifp, erp_idx); |
| ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); |
| erp->er_extcount = ext_diff; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); |
| ext_cnt -= ext_diff; |
| } |
| |
| /* Add nex2 extents back to indirection array */ |
| if (nex2) { |
| xfs_extnum_t ext_avail; |
| int i; |
| |
| byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); |
| ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; |
| i = 0; |
| /* |
| * If nex2 extents fit in the current page, append |
| * nex2_ep after the new extents. |
| */ |
| if (nex2 <= ext_avail) { |
| i = erp->er_extcount; |
| } |
| /* |
| * Otherwise, check if space is available in the |
| * next page. |
| */ |
| else if ((erp_idx < nlists - 1) && |
| (nex2 <= (ext_avail = XFS_LINEAR_EXTS - |
| ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { |
| erp_idx++; |
| erp++; |
| /* Create a hole for nex2 extents */ |
| memmove(&erp->er_extbuf[nex2], erp->er_extbuf, |
| erp->er_extcount * sizeof(xfs_bmbt_rec_t)); |
| } |
| /* |
| * Final choice, create a new extent page for |
| * nex2 extents. |
| */ |
| else { |
| erp_idx++; |
| erp = xfs_iext_irec_new(ifp, erp_idx); |
| } |
| memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); |
| kmem_free(nex2_ep); |
| erp->er_extcount += nex2; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); |
| } |
| } |
| |
| /* |
| * This is called when the amount of space required for incore file |
| * extents needs to be decreased. The ext_diff parameter stores the |
| * number of extents to be removed and the idx parameter contains |
| * the extent index where the extents will be removed from. |
| * |
| * If the amount of space needed has decreased below the linear |
| * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous |
| * extent array. Otherwise, use kmem_realloc() to adjust the |
| * size to what is needed. |
| */ |
| void |
| xfs_iext_remove( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* index to begin removing exts */ |
| int ext_diff) /* number of extents to remove */ |
| { |
| xfs_extnum_t nextents; /* number of extents in file */ |
| int new_size; /* size of extents after removal */ |
| |
| ASSERT(ext_diff > 0); |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); |
| |
| if (new_size == 0) { |
| xfs_iext_destroy(ifp); |
| } else if (ifp->if_flags & XFS_IFEXTIREC) { |
| xfs_iext_remove_indirect(ifp, idx, ext_diff); |
| } else if (ifp->if_real_bytes) { |
| xfs_iext_remove_direct(ifp, idx, ext_diff); |
| } else { |
| xfs_iext_remove_inline(ifp, idx, ext_diff); |
| } |
| ifp->if_bytes = new_size; |
| } |
| |
| /* |
| * This removes ext_diff extents from the inline buffer, beginning |
| * at extent index idx. |
| */ |
| void |
| xfs_iext_remove_inline( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* index to begin removing exts */ |
| int ext_diff) /* number of extents to remove */ |
| { |
| int nextents; /* number of extents in file */ |
| |
| ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
| ASSERT(idx < XFS_INLINE_EXTS); |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| ASSERT(((nextents - ext_diff) > 0) && |
| (nextents - ext_diff) < XFS_INLINE_EXTS); |
| |
| if (idx + ext_diff < nextents) { |
| memmove(&ifp->if_u2.if_inline_ext[idx], |
| &ifp->if_u2.if_inline_ext[idx + ext_diff], |
| (nextents - (idx + ext_diff)) * |
| sizeof(xfs_bmbt_rec_t)); |
| memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], |
| 0, ext_diff * sizeof(xfs_bmbt_rec_t)); |
| } else { |
| memset(&ifp->if_u2.if_inline_ext[idx], 0, |
| ext_diff * sizeof(xfs_bmbt_rec_t)); |
| } |
| } |
| |
| /* |
| * This removes ext_diff extents from a linear (direct) extent list, |
| * beginning at extent index idx. If the extents are being removed |
| * from the end of the list (ie. truncate) then we just need to re- |
| * allocate the list to remove the extra space. Otherwise, if the |
| * extents are being removed from the middle of the existing extent |
| * entries, then we first need to move the extent records beginning |
| * at idx + ext_diff up in the list to overwrite the records being |
| * removed, then remove the extra space via kmem_realloc. |
| */ |
| void |
| xfs_iext_remove_direct( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* index to begin removing exts */ |
| int ext_diff) /* number of extents to remove */ |
| { |
| xfs_extnum_t nextents; /* number of extents in file */ |
| int new_size; /* size of extents after removal */ |
| |
| ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
| new_size = ifp->if_bytes - |
| (ext_diff * sizeof(xfs_bmbt_rec_t)); |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| |
| if (new_size == 0) { |
| xfs_iext_destroy(ifp); |
| return; |
| } |
| /* Move extents up in the list (if needed) */ |
| if (idx + ext_diff < nextents) { |
| memmove(&ifp->if_u1.if_extents[idx], |
| &ifp->if_u1.if_extents[idx + ext_diff], |
| (nextents - (idx + ext_diff)) * |
| sizeof(xfs_bmbt_rec_t)); |
| } |
| memset(&ifp->if_u1.if_extents[nextents - ext_diff], |
| 0, ext_diff * sizeof(xfs_bmbt_rec_t)); |
| /* |
| * Reallocate the direct extent list. If the extents |
| * will fit inside the inode then xfs_iext_realloc_direct |
| * will switch from direct to inline extent allocation |
| * mode for us. |
| */ |
| xfs_iext_realloc_direct(ifp, new_size); |
| ifp->if_bytes = new_size; |
| } |
| |
| /* |
| * This is called when incore extents are being removed from the |
| * indirection array and the extents being removed span multiple extent |
| * buffers. The idx parameter contains the file extent index where we |
| * want to begin removing extents, and the count parameter contains |
| * how many extents need to be removed. |
| * |
| * |-------| |-------| |
| * | nex1 | | | nex1 - number of extents before idx |
| * |-------| | count | |
| * | | | | count - number of extents being removed at idx |
| * | count | |-------| |
| * | | | nex2 | nex2 - number of extents after idx + count |
| * |-------| |-------| |
| */ |
| void |
| xfs_iext_remove_indirect( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t idx, /* index to begin removing extents */ |
| int count) /* number of extents to remove */ |
| { |
| xfs_ext_irec_t *erp; /* indirection array pointer */ |
| int erp_idx = 0; /* indirection array index */ |
| xfs_extnum_t ext_cnt; /* extents left to remove */ |
| xfs_extnum_t ext_diff; /* extents to remove in current list */ |
| xfs_extnum_t nex1; /* number of extents before idx */ |
| xfs_extnum_t nex2; /* extents after idx + count */ |
| int nlists; /* entries in indirection array */ |
| int page_idx = idx; /* index in target extent list */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); |
| ASSERT(erp != NULL); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| nex1 = page_idx; |
| ext_cnt = count; |
| while (ext_cnt) { |
| nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); |
| ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); |
| /* |
| * Check for deletion of entire list; |
| * xfs_iext_irec_remove() updates extent offsets. |
| */ |
| if (ext_diff == erp->er_extcount) { |
| xfs_iext_irec_remove(ifp, erp_idx); |
| ext_cnt -= ext_diff; |
| nex1 = 0; |
| if (ext_cnt) { |
| ASSERT(erp_idx < ifp->if_real_bytes / |
| XFS_IEXT_BUFSZ); |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| nex1 = 0; |
| continue; |
| } else { |
| break; |
| } |
| } |
| /* Move extents up (if needed) */ |
| if (nex2) { |
| memmove(&erp->er_extbuf[nex1], |
| &erp->er_extbuf[nex1 + ext_diff], |
| nex2 * sizeof(xfs_bmbt_rec_t)); |
| } |
| /* Zero out rest of page */ |
| memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - |
| ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); |
| /* Update remaining counters */ |
| erp->er_extcount -= ext_diff; |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); |
| ext_cnt -= ext_diff; |
| nex1 = 0; |
| erp_idx++; |
| erp++; |
| } |
| ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); |
| xfs_iext_irec_compact(ifp); |
| } |
| |
| /* |
| * Create, destroy, or resize a linear (direct) block of extents. |
| */ |
| void |
| xfs_iext_realloc_direct( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int new_size) /* new size of extents */ |
| { |
| int rnew_size; /* real new size of extents */ |
| |
| rnew_size = new_size; |
| |
| ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || |
| ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && |
| (new_size != ifp->if_real_bytes))); |
| |
| /* Free extent records */ |
| if (new_size == 0) { |
| xfs_iext_destroy(ifp); |
| } |
| /* Resize direct extent list and zero any new bytes */ |
| else if (ifp->if_real_bytes) { |
| /* Check if extents will fit inside the inode */ |
| if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { |
| xfs_iext_direct_to_inline(ifp, new_size / |
| (uint)sizeof(xfs_bmbt_rec_t)); |
| ifp->if_bytes = new_size; |
| return; |
| } |
| if (!is_power_of_2(new_size)){ |
| rnew_size = roundup_pow_of_two(new_size); |
| } |
| if (rnew_size != ifp->if_real_bytes) { |
| ifp->if_u1.if_extents = |
| kmem_realloc(ifp->if_u1.if_extents, |
| rnew_size, |
| ifp->if_real_bytes, KM_NOFS); |
| } |
| if (rnew_size > ifp->if_real_bytes) { |
| memset(&ifp->if_u1.if_extents[ifp->if_bytes / |
| (uint)sizeof(xfs_bmbt_rec_t)], 0, |
| rnew_size - ifp->if_real_bytes); |
| } |
| } |
| /* |
| * Switch from the inline extent buffer to a direct |
| * extent list. Be sure to include the inline extent |
| * bytes in new_size. |
| */ |
| else { |
| new_size += ifp->if_bytes; |
| if (!is_power_of_2(new_size)) { |
| rnew_size = roundup_pow_of_two(new_size); |
| } |
| xfs_iext_inline_to_direct(ifp, rnew_size); |
| } |
| ifp->if_real_bytes = rnew_size; |
| ifp->if_bytes = new_size; |
| } |
| |
| /* |
| * Switch from linear (direct) extent records to inline buffer. |
| */ |
| void |
| xfs_iext_direct_to_inline( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t nextents) /* number of extents in file */ |
| { |
| ASSERT(ifp->if_flags & XFS_IFEXTENTS); |
| ASSERT(nextents <= XFS_INLINE_EXTS); |
| /* |
| * The inline buffer was zeroed when we switched |
| * from inline to direct extent allocation mode, |
| * so we don't need to clear it here. |
| */ |
| memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, |
| nextents * sizeof(xfs_bmbt_rec_t)); |
| kmem_free(ifp->if_u1.if_extents); |
| ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; |
| ifp->if_real_bytes = 0; |
| } |
| |
| /* |
| * Switch from inline buffer to linear (direct) extent records. |
| * new_size should already be rounded up to the next power of 2 |
| * by the caller (when appropriate), so use new_size as it is. |
| * However, since new_size may be rounded up, we can't update |
| * if_bytes here. It is the caller's responsibility to update |
| * if_bytes upon return. |
| */ |
| void |
| xfs_iext_inline_to_direct( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int new_size) /* number of extents in file */ |
| { |
| ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); |
| memset(ifp->if_u1.if_extents, 0, new_size); |
| if (ifp->if_bytes) { |
| memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, |
| ifp->if_bytes); |
| memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * |
| sizeof(xfs_bmbt_rec_t)); |
| } |
| ifp->if_real_bytes = new_size; |
| } |
| |
| /* |
| * Resize an extent indirection array to new_size bytes. |
| */ |
| void |
| xfs_iext_realloc_indirect( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int new_size) /* new indirection array size */ |
| { |
| int nlists; /* number of irec's (ex lists) */ |
| int size; /* current indirection array size */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| size = nlists * sizeof(xfs_ext_irec_t); |
| ASSERT(ifp->if_real_bytes); |
| ASSERT((new_size >= 0) && (new_size != size)); |
| if (new_size == 0) { |
| xfs_iext_destroy(ifp); |
| } else { |
| ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) |
| kmem_realloc(ifp->if_u1.if_ext_irec, |
| new_size, size, KM_NOFS); |
| } |
| } |
| |
| /* |
| * Switch from indirection array to linear (direct) extent allocations. |
| */ |
| void |
| xfs_iext_indirect_to_direct( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| xfs_bmbt_rec_host_t *ep; /* extent record pointer */ |
| xfs_extnum_t nextents; /* number of extents in file */ |
| int size; /* size of file extents */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| ASSERT(nextents <= XFS_LINEAR_EXTS); |
| size = nextents * sizeof(xfs_bmbt_rec_t); |
| |
| xfs_iext_irec_compact_full(ifp); |
| ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); |
| |
| ep = ifp->if_u1.if_ext_irec->er_extbuf; |
| kmem_free(ifp->if_u1.if_ext_irec); |
| ifp->if_flags &= ~XFS_IFEXTIREC; |
| ifp->if_u1.if_extents = ep; |
| ifp->if_bytes = size; |
| if (nextents < XFS_LINEAR_EXTS) { |
| xfs_iext_realloc_direct(ifp, size); |
| } |
| } |
| |
| /* |
| * Free incore file extents. |
| */ |
| void |
| xfs_iext_destroy( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| if (ifp->if_flags & XFS_IFEXTIREC) { |
| int erp_idx; |
| int nlists; |
| |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { |
| xfs_iext_irec_remove(ifp, erp_idx); |
| } |
| ifp->if_flags &= ~XFS_IFEXTIREC; |
| } else if (ifp->if_real_bytes) { |
| kmem_free(ifp->if_u1.if_extents); |
| } else if (ifp->if_bytes) { |
| memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * |
| sizeof(xfs_bmbt_rec_t)); |
| } |
| ifp->if_u1.if_extents = NULL; |
| ifp->if_real_bytes = 0; |
| ifp->if_bytes = 0; |
| } |
| |
| /* |
| * Return a pointer to the extent record for file system block bno. |
| */ |
| xfs_bmbt_rec_host_t * /* pointer to found extent record */ |
| xfs_iext_bno_to_ext( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_fileoff_t bno, /* block number to search for */ |
| xfs_extnum_t *idxp) /* index of target extent */ |
| { |
| xfs_bmbt_rec_host_t *base; /* pointer to first extent */ |
| xfs_filblks_t blockcount = 0; /* number of blocks in extent */ |
| xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ |
| xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ |
| int high; /* upper boundary in search */ |
| xfs_extnum_t idx = 0; /* index of target extent */ |
| int low; /* lower boundary in search */ |
| xfs_extnum_t nextents; /* number of file extents */ |
| xfs_fileoff_t startoff = 0; /* start offset of extent */ |
| |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| if (nextents == 0) { |
| *idxp = 0; |
| return NULL; |
| } |
| low = 0; |
| if (ifp->if_flags & XFS_IFEXTIREC) { |
| /* Find target extent list */ |
| int erp_idx = 0; |
| erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); |
| base = erp->er_extbuf; |
| high = erp->er_extcount - 1; |
| } else { |
| base = ifp->if_u1.if_extents; |
| high = nextents - 1; |
| } |
| /* Binary search extent records */ |
| while (low <= high) { |
| idx = (low + high) >> 1; |
| ep = base + idx; |
| startoff = xfs_bmbt_get_startoff(ep); |
| blockcount = xfs_bmbt_get_blockcount(ep); |
| if (bno < startoff) { |
| high = idx - 1; |
| } else if (bno >= startoff + blockcount) { |
| low = idx + 1; |
| } else { |
| /* Convert back to file-based extent index */ |
| if (ifp->if_flags & XFS_IFEXTIREC) { |
| idx += erp->er_extoff; |
| } |
| *idxp = idx; |
| return ep; |
| } |
| } |
| /* Convert back to file-based extent index */ |
| if (ifp->if_flags & XFS_IFEXTIREC) { |
| idx += erp->er_extoff; |
| } |
| if (bno >= startoff + blockcount) { |
| if (++idx == nextents) { |
| ep = NULL; |
| } else { |
| ep = xfs_iext_get_ext(ifp, idx); |
| } |
| } |
| *idxp = idx; |
| return ep; |
| } |
| |
| /* |
| * Return a pointer to the indirection array entry containing the |
| * extent record for filesystem block bno. Store the index of the |
| * target irec in *erp_idxp. |
| */ |
| xfs_ext_irec_t * /* pointer to found extent record */ |
| xfs_iext_bno_to_irec( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_fileoff_t bno, /* block number to search for */ |
| int *erp_idxp) /* irec index of target ext list */ |
| { |
| xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ |
| xfs_ext_irec_t *erp_next; /* next indirection array entry */ |
| int erp_idx; /* indirection array index */ |
| int nlists; /* number of extent irec's (lists) */ |
| int high; /* binary search upper limit */ |
| int low; /* binary search lower limit */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| erp_idx = 0; |
| low = 0; |
| high = nlists - 1; |
| while (low <= high) { |
| erp_idx = (low + high) >> 1; |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; |
| if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { |
| high = erp_idx - 1; |
| } else if (erp_next && bno >= |
| xfs_bmbt_get_startoff(erp_next->er_extbuf)) { |
| low = erp_idx + 1; |
| } else { |
| break; |
| } |
| } |
| *erp_idxp = erp_idx; |
| return erp; |
| } |
| |
| /* |
| * Return a pointer to the indirection array entry containing the |
| * extent record at file extent index *idxp. Store the index of the |
| * target irec in *erp_idxp and store the page index of the target |
| * extent record in *idxp. |
| */ |
| xfs_ext_irec_t * |
| xfs_iext_idx_to_irec( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| xfs_extnum_t *idxp, /* extent index (file -> page) */ |
| int *erp_idxp, /* pointer to target irec */ |
| int realloc) /* new bytes were just added */ |
| { |
| xfs_ext_irec_t *prev; /* pointer to previous irec */ |
| xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ |
| int erp_idx; /* indirection array index */ |
| int nlists; /* number of irec's (ex lists) */ |
| int high; /* binary search upper limit */ |
| int low; /* binary search lower limit */ |
| xfs_extnum_t page_idx = *idxp; /* extent index in target list */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| ASSERT(page_idx >= 0 && page_idx <= |
| ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| erp_idx = 0; |
| low = 0; |
| high = nlists - 1; |
| |
| /* Binary search extent irec's */ |
| while (low <= high) { |
| erp_idx = (low + high) >> 1; |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| prev = erp_idx > 0 ? erp - 1 : NULL; |
| if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && |
| realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { |
| high = erp_idx - 1; |
| } else if (page_idx > erp->er_extoff + erp->er_extcount || |
| (page_idx == erp->er_extoff + erp->er_extcount && |
| !realloc)) { |
| low = erp_idx + 1; |
| } else if (page_idx == erp->er_extoff + erp->er_extcount && |
| erp->er_extcount == XFS_LINEAR_EXTS) { |
| ASSERT(realloc); |
| page_idx = 0; |
| erp_idx++; |
| erp = erp_idx < nlists ? erp + 1 : NULL; |
| break; |
| } else { |
| page_idx -= erp->er_extoff; |
| break; |
| } |
| } |
| *idxp = page_idx; |
| *erp_idxp = erp_idx; |
| return(erp); |
| } |
| |
| /* |
| * Allocate and initialize an indirection array once the space needed |
| * for incore extents increases above XFS_IEXT_BUFSZ. |
| */ |
| void |
| xfs_iext_irec_init( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| xfs_ext_irec_t *erp; /* indirection array pointer */ |
| xfs_extnum_t nextents; /* number of extents in file */ |
| |
| ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| ASSERT(nextents <= XFS_LINEAR_EXTS); |
| |
| erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); |
| |
| if (nextents == 0) { |
| ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
| } else if (!ifp->if_real_bytes) { |
| xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); |
| } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { |
| xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); |
| } |
| erp->er_extbuf = ifp->if_u1.if_extents; |
| erp->er_extcount = nextents; |
| erp->er_extoff = 0; |
| |
| ifp->if_flags |= XFS_IFEXTIREC; |
| ifp->if_real_bytes = XFS_IEXT_BUFSZ; |
| ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); |
| ifp->if_u1.if_ext_irec = erp; |
| |
| return; |
| } |
| |
| /* |
| * Allocate and initialize a new entry in the indirection array. |
| */ |
| xfs_ext_irec_t * |
| xfs_iext_irec_new( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int erp_idx) /* index for new irec */ |
| { |
| xfs_ext_irec_t *erp; /* indirection array pointer */ |
| int i; /* loop counter */ |
| int nlists; /* number of irec's (ex lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| |
| /* Resize indirection array */ |
| xfs_iext_realloc_indirect(ifp, ++nlists * |
| sizeof(xfs_ext_irec_t)); |
| /* |
| * Move records down in the array so the |
| * new page can use erp_idx. |
| */ |
| erp = ifp->if_u1.if_ext_irec; |
| for (i = nlists - 1; i > erp_idx; i--) { |
| memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); |
| } |
| ASSERT(i == erp_idx); |
| |
| /* Initialize new extent record */ |
| erp = ifp->if_u1.if_ext_irec; |
| erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); |
| ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; |
| memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); |
| erp[erp_idx].er_extcount = 0; |
| erp[erp_idx].er_extoff = erp_idx > 0 ? |
| erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; |
| return (&erp[erp_idx]); |
| } |
| |
| /* |
| * Remove a record from the indirection array. |
| */ |
| void |
| xfs_iext_irec_remove( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int erp_idx) /* irec index to remove */ |
| { |
| xfs_ext_irec_t *erp; /* indirection array pointer */ |
| int i; /* loop counter */ |
| int nlists; /* number of irec's (ex lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| if (erp->er_extbuf) { |
| xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, |
| -erp->er_extcount); |
| kmem_free(erp->er_extbuf); |
| } |
| /* Compact extent records */ |
| erp = ifp->if_u1.if_ext_irec; |
| for (i = erp_idx; i < nlists - 1; i++) { |
| memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); |
| } |
| /* |
| * Manually free the last extent record from the indirection |
| * array. A call to xfs_iext_realloc_indirect() with a size |
| * of zero would result in a call to xfs_iext_destroy() which |
| * would in turn call this function again, creating a nasty |
| * infinite loop. |
| */ |
| if (--nlists) { |
| xfs_iext_realloc_indirect(ifp, |
| nlists * sizeof(xfs_ext_irec_t)); |
| } else { |
| kmem_free(ifp->if_u1.if_ext_irec); |
| } |
| ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; |
| } |
| |
| /* |
| * This is called to clean up large amounts of unused memory allocated |
| * by the indirection array. Before compacting anything though, verify |
| * that the indirection array is still needed and switch back to the |
| * linear extent list (or even the inline buffer) if possible. The |
| * compaction policy is as follows: |
| * |
| * Full Compaction: Extents fit into a single page (or inline buffer) |
| * Full Compaction: Extents occupy less than 10% of allocated space |
| * Partial Compaction: Extents occupy > 10% and < 50% of allocated space |
| * No Compaction: Extents occupy at least 50% of allocated space |
| */ |
| void |
| xfs_iext_irec_compact( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| xfs_extnum_t nextents; /* number of extents in file */ |
| int nlists; /* number of irec's (ex lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); |
| |
| if (nextents == 0) { |
| xfs_iext_destroy(ifp); |
| } else if (nextents <= XFS_INLINE_EXTS) { |
| xfs_iext_indirect_to_direct(ifp); |
| xfs_iext_direct_to_inline(ifp, nextents); |
| } else if (nextents <= XFS_LINEAR_EXTS) { |
| xfs_iext_indirect_to_direct(ifp); |
| } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { |
| xfs_iext_irec_compact_full(ifp); |
| } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { |
| xfs_iext_irec_compact_pages(ifp); |
| } |
| } |
| |
| /* |
| * Combine extents from neighboring extent pages. |
| */ |
| void |
| xfs_iext_irec_compact_pages( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ |
| int erp_idx = 0; /* indirection array index */ |
| int nlists; /* number of irec's (ex lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| while (erp_idx < nlists - 1) { |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| erp_next = erp + 1; |
| if (erp_next->er_extcount <= |
| (XFS_LINEAR_EXTS - erp->er_extcount)) { |
| memmove(&erp->er_extbuf[erp->er_extcount], |
| erp_next->er_extbuf, erp_next->er_extcount * |
| sizeof(xfs_bmbt_rec_t)); |
| erp->er_extcount += erp_next->er_extcount; |
| /* |
| * Free page before removing extent record |
| * so er_extoffs don't get modified in |
| * xfs_iext_irec_remove. |
| */ |
| kmem_free(erp_next->er_extbuf); |
| erp_next->er_extbuf = NULL; |
| xfs_iext_irec_remove(ifp, erp_idx + 1); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| } else { |
| erp_idx++; |
| } |
| } |
| } |
| |
| /* |
| * Fully compact the extent records managed by the indirection array. |
| */ |
| void |
| xfs_iext_irec_compact_full( |
| xfs_ifork_t *ifp) /* inode fork pointer */ |
| { |
| xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */ |
| xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ |
| int erp_idx = 0; /* extent irec index */ |
| int ext_avail; /* empty entries in ex list */ |
| int ext_diff; /* number of exts to add */ |
| int nlists; /* number of irec's (ex lists) */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| erp = ifp->if_u1.if_ext_irec; |
| ep = &erp->er_extbuf[erp->er_extcount]; |
| erp_next = erp + 1; |
| ep_next = erp_next->er_extbuf; |
| |
| while (erp_idx < nlists - 1) { |
| /* |
| * Check how many extent records are available in this irec. |
| * If there is none skip the whole exercise. |
| */ |
| ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; |
| if (ext_avail) { |
| |
| /* |
| * Copy over as many as possible extent records into |
| * the previous page. |
| */ |
| ext_diff = MIN(ext_avail, erp_next->er_extcount); |
| memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); |
| erp->er_extcount += ext_diff; |
| erp_next->er_extcount -= ext_diff; |
| |
| /* |
| * If the next irec is empty now we can simply |
| * remove it. |
| */ |
| if (erp_next->er_extcount == 0) { |
| /* |
| * Free page before removing extent record |
| * so er_extoffs don't get modified in |
| * xfs_iext_irec_remove. |
| */ |
| kmem_free(erp_next->er_extbuf); |
| erp_next->er_extbuf = NULL; |
| xfs_iext_irec_remove(ifp, erp_idx + 1); |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| |
| /* |
| * If the next irec is not empty move up the content |
| * that has not been copied to the previous page to |
| * the beggining of this one. |
| */ |
| } else { |
| memmove(erp_next->er_extbuf, &ep_next[ext_diff], |
| erp_next->er_extcount * |
| sizeof(xfs_bmbt_rec_t)); |
| ep_next = erp_next->er_extbuf; |
| memset(&ep_next[erp_next->er_extcount], 0, |
| (XFS_LINEAR_EXTS - |
| erp_next->er_extcount) * |
| sizeof(xfs_bmbt_rec_t)); |
| } |
| } |
| |
| if (erp->er_extcount == XFS_LINEAR_EXTS) { |
| erp_idx++; |
| if (erp_idx < nlists) |
| erp = &ifp->if_u1.if_ext_irec[erp_idx]; |
| else |
| break; |
| } |
| ep = &erp->er_extbuf[erp->er_extcount]; |
| erp_next = erp + 1; |
| ep_next = erp_next->er_extbuf; |
| } |
| } |
| |
| /* |
| * This is called to update the er_extoff field in the indirection |
| * array when extents have been added or removed from one of the |
| * extent lists. erp_idx contains the irec index to begin updating |
| * at and ext_diff contains the number of extents that were added |
| * or removed. |
| */ |
| void |
| xfs_iext_irec_update_extoffs( |
| xfs_ifork_t *ifp, /* inode fork pointer */ |
| int erp_idx, /* irec index to update */ |
| int ext_diff) /* number of new extents */ |
| { |
| int i; /* loop counter */ |
| int nlists; /* number of irec's (ex lists */ |
| |
| ASSERT(ifp->if_flags & XFS_IFEXTIREC); |
| nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; |
| for (i = erp_idx; i < nlists; i++) { |
| ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; |
| } |
| } |