| /* |
| * arch/sh/kernel/cpu/init.c |
| * |
| * CPU init code |
| * |
| * Copyright (C) 2002 - 2007 Paul Mundt |
| * Copyright (C) 2003 Richard Curnow |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <asm/mmu_context.h> |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/page.h> |
| #include <asm/system.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cache.h> |
| #include <asm/io.h> |
| #include <asm/ubc.h> |
| |
| /* |
| * Generic wrapper for command line arguments to disable on-chip |
| * peripherals (nofpu, nodsp, and so forth). |
| */ |
| #define onchip_setup(x) \ |
| static int x##_disabled __initdata = 0; \ |
| \ |
| static int __init x##_setup(char *opts) \ |
| { \ |
| x##_disabled = 1; \ |
| return 1; \ |
| } \ |
| __setup("no" __stringify(x), x##_setup); |
| |
| onchip_setup(fpu); |
| onchip_setup(dsp); |
| |
| #ifdef CONFIG_SPECULATIVE_EXECUTION |
| #define CPUOPM 0xff2f0000 |
| #define CPUOPM_RABD (1 << 5) |
| |
| static void __init speculative_execution_init(void) |
| { |
| /* Clear RABD */ |
| ctrl_outl(ctrl_inl(CPUOPM) & ~CPUOPM_RABD, CPUOPM); |
| |
| /* Flush the update */ |
| (void)ctrl_inl(CPUOPM); |
| ctrl_barrier(); |
| } |
| #else |
| #define speculative_execution_init() do { } while (0) |
| #endif |
| |
| /* |
| * Generic first-level cache init |
| */ |
| static void __init cache_init(void) |
| { |
| unsigned long ccr, flags; |
| |
| /* First setup the rest of the I-cache info */ |
| current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr - |
| current_cpu_data.icache.linesz; |
| |
| current_cpu_data.icache.way_size = current_cpu_data.icache.sets * |
| current_cpu_data.icache.linesz; |
| |
| /* And the D-cache too */ |
| current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr - |
| current_cpu_data.dcache.linesz; |
| |
| current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets * |
| current_cpu_data.dcache.linesz; |
| |
| jump_to_P2(); |
| ccr = ctrl_inl(CCR); |
| |
| /* |
| * At this point we don't know whether the cache is enabled or not - a |
| * bootloader may have enabled it. There are at least 2 things that |
| * could be dirty in the cache at this point: |
| * 1. kernel command line set up by boot loader |
| * 2. spilled registers from the prolog of this function |
| * => before re-initialising the cache, we must do a purge of the whole |
| * cache out to memory for safety. As long as nothing is spilled |
| * during the loop to lines that have already been done, this is safe. |
| * - RPC |
| */ |
| if (ccr & CCR_CACHE_ENABLE) { |
| unsigned long ways, waysize, addrstart; |
| |
| waysize = current_cpu_data.dcache.sets; |
| |
| #ifdef CCR_CACHE_ORA |
| /* |
| * If the OC is already in RAM mode, we only have |
| * half of the entries to flush.. |
| */ |
| if (ccr & CCR_CACHE_ORA) |
| waysize >>= 1; |
| #endif |
| |
| waysize <<= current_cpu_data.dcache.entry_shift; |
| |
| #ifdef CCR_CACHE_EMODE |
| /* If EMODE is not set, we only have 1 way to flush. */ |
| if (!(ccr & CCR_CACHE_EMODE)) |
| ways = 1; |
| else |
| #endif |
| ways = current_cpu_data.dcache.ways; |
| |
| addrstart = CACHE_OC_ADDRESS_ARRAY; |
| do { |
| unsigned long addr; |
| |
| for (addr = addrstart; |
| addr < addrstart + waysize; |
| addr += current_cpu_data.dcache.linesz) |
| ctrl_outl(0, addr); |
| |
| addrstart += current_cpu_data.dcache.way_incr; |
| } while (--ways); |
| } |
| |
| /* |
| * Default CCR values .. enable the caches |
| * and invalidate them immediately.. |
| */ |
| flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE; |
| |
| #ifdef CCR_CACHE_EMODE |
| /* Force EMODE if possible */ |
| if (current_cpu_data.dcache.ways > 1) |
| flags |= CCR_CACHE_EMODE; |
| else |
| flags &= ~CCR_CACHE_EMODE; |
| #endif |
| |
| #if defined(CONFIG_CACHE_WRITETHROUGH) |
| /* Write-through */ |
| flags |= CCR_CACHE_WT; |
| #elif defined(CONFIG_CACHE_WRITEBACK) |
| /* Write-back */ |
| flags |= CCR_CACHE_CB; |
| #else |
| /* Off */ |
| flags &= ~CCR_CACHE_ENABLE; |
| #endif |
| |
| ctrl_outl(flags, CCR); |
| back_to_P1(); |
| } |
| |
| #ifdef CONFIG_SH_DSP |
| static void __init release_dsp(void) |
| { |
| unsigned long sr; |
| |
| /* Clear SR.DSP bit */ |
| __asm__ __volatile__ ( |
| "stc\tsr, %0\n\t" |
| "and\t%1, %0\n\t" |
| "ldc\t%0, sr\n\t" |
| : "=&r" (sr) |
| : "r" (~SR_DSP) |
| ); |
| } |
| |
| static void __init dsp_init(void) |
| { |
| unsigned long sr; |
| |
| /* |
| * Set the SR.DSP bit, wait for one instruction, and then read |
| * back the SR value. |
| */ |
| __asm__ __volatile__ ( |
| "stc\tsr, %0\n\t" |
| "or\t%1, %0\n\t" |
| "ldc\t%0, sr\n\t" |
| "nop\n\t" |
| "stc\tsr, %0\n\t" |
| : "=&r" (sr) |
| : "r" (SR_DSP) |
| ); |
| |
| /* If the DSP bit is still set, this CPU has a DSP */ |
| if (sr & SR_DSP) |
| current_cpu_data.flags |= CPU_HAS_DSP; |
| |
| /* Now that we've determined the DSP status, clear the DSP bit. */ |
| release_dsp(); |
| } |
| #endif /* CONFIG_SH_DSP */ |
| |
| /** |
| * sh_cpu_init |
| * |
| * This is our initial entry point for each CPU, and is invoked on the boot |
| * CPU prior to calling start_kernel(). For SMP, a combination of this and |
| * start_secondary() will bring up each processor to a ready state prior |
| * to hand forking the idle loop. |
| * |
| * We do all of the basic processor init here, including setting up the |
| * caches, FPU, DSP, kicking the UBC, etc. By the time start_kernel() is |
| * hit (and subsequently platform_setup()) things like determining the |
| * CPU subtype and initial configuration will all be done. |
| * |
| * Each processor family is still responsible for doing its own probing |
| * and cache configuration in detect_cpu_and_cache_system(). |
| */ |
| asmlinkage void __init sh_cpu_init(void) |
| { |
| /* First, probe the CPU */ |
| detect_cpu_and_cache_system(); |
| |
| if (current_cpu_data.type == CPU_SH_NONE) |
| panic("Unknown CPU"); |
| |
| /* Init the cache */ |
| cache_init(); |
| |
| shm_align_mask = max_t(unsigned long, |
| current_cpu_data.dcache.way_size - 1, |
| PAGE_SIZE - 1); |
| |
| /* Disable the FPU */ |
| if (fpu_disabled) { |
| printk("FPU Disabled\n"); |
| current_cpu_data.flags &= ~CPU_HAS_FPU; |
| disable_fpu(); |
| } |
| |
| /* FPU initialization */ |
| if ((current_cpu_data.flags & CPU_HAS_FPU)) { |
| clear_thread_flag(TIF_USEDFPU); |
| clear_used_math(); |
| } |
| |
| /* |
| * Initialize the per-CPU ASID cache very early, since the |
| * TLB flushing routines depend on this being setup. |
| */ |
| current_cpu_data.asid_cache = NO_CONTEXT; |
| |
| #ifdef CONFIG_SH_DSP |
| /* Probe for DSP */ |
| dsp_init(); |
| |
| /* Disable the DSP */ |
| if (dsp_disabled) { |
| printk("DSP Disabled\n"); |
| current_cpu_data.flags &= ~CPU_HAS_DSP; |
| release_dsp(); |
| } |
| #endif |
| |
| /* |
| * Some brain-damaged loaders decided it would be a good idea to put |
| * the UBC to sleep. This causes some issues when it comes to things |
| * like PTRACE_SINGLESTEP or doing hardware watchpoints in GDB. So .. |
| * we wake it up and hope that all is well. |
| */ |
| ubc_wakeup(); |
| speculative_execution_init(); |
| } |