| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/hpet.h> |
| #include <linux/init.h> |
| #include <linux/sysdev.h> |
| #include <linux/pm.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/hpet.h> |
| #include <asm/i8253.h> |
| #include <asm/io.h> |
| |
| #define HPET_MASK CLOCKSOURCE_MASK(32) |
| #define HPET_SHIFT 22 |
| |
| /* FSEC = 10^-15 |
| NSEC = 10^-9 */ |
| #define FSEC_PER_NSEC 1000000 |
| |
| /* |
| * HPET address is set in acpi/boot.c, when an ACPI entry exists |
| */ |
| unsigned long hpet_address; |
| static void __iomem *hpet_virt_address; |
| |
| unsigned long hpet_readl(unsigned long a) |
| { |
| return readl(hpet_virt_address + a); |
| } |
| |
| static inline void hpet_writel(unsigned long d, unsigned long a) |
| { |
| writel(d, hpet_virt_address + a); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| #include <asm/pgtable.h> |
| |
| static inline void hpet_set_mapping(void) |
| { |
| set_fixmap_nocache(FIX_HPET_BASE, hpet_address); |
| __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); |
| hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); |
| } |
| |
| static inline void hpet_clear_mapping(void) |
| { |
| hpet_virt_address = NULL; |
| } |
| |
| #else |
| |
| static inline void hpet_set_mapping(void) |
| { |
| hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); |
| } |
| |
| static inline void hpet_clear_mapping(void) |
| { |
| iounmap(hpet_virt_address); |
| hpet_virt_address = NULL; |
| } |
| #endif |
| |
| /* |
| * HPET command line enable / disable |
| */ |
| static int boot_hpet_disable; |
| int hpet_force_user; |
| |
| static int __init hpet_setup(char* str) |
| { |
| if (str) { |
| if (!strncmp("disable", str, 7)) |
| boot_hpet_disable = 1; |
| if (!strncmp("force", str, 5)) |
| hpet_force_user = 1; |
| } |
| return 1; |
| } |
| __setup("hpet=", hpet_setup); |
| |
| static int __init disable_hpet(char *str) |
| { |
| boot_hpet_disable = 1; |
| return 1; |
| } |
| __setup("nohpet", disable_hpet); |
| |
| static inline int is_hpet_capable(void) |
| { |
| return (!boot_hpet_disable && hpet_address); |
| } |
| |
| /* |
| * HPET timer interrupt enable / disable |
| */ |
| static int hpet_legacy_int_enabled; |
| |
| /** |
| * is_hpet_enabled - check whether the hpet timer interrupt is enabled |
| */ |
| int is_hpet_enabled(void) |
| { |
| return is_hpet_capable() && hpet_legacy_int_enabled; |
| } |
| EXPORT_SYMBOL_GPL(is_hpet_enabled); |
| |
| /* |
| * When the hpet driver (/dev/hpet) is enabled, we need to reserve |
| * timer 0 and timer 1 in case of RTC emulation. |
| */ |
| #ifdef CONFIG_HPET |
| static void hpet_reserve_platform_timers(unsigned long id) |
| { |
| struct hpet __iomem *hpet = hpet_virt_address; |
| struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; |
| unsigned int nrtimers, i; |
| struct hpet_data hd; |
| |
| nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; |
| |
| memset(&hd, 0, sizeof (hd)); |
| hd.hd_phys_address = hpet_address; |
| hd.hd_address = hpet; |
| hd.hd_nirqs = nrtimers; |
| hd.hd_flags = HPET_DATA_PLATFORM; |
| hpet_reserve_timer(&hd, 0); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| hpet_reserve_timer(&hd, 1); |
| #endif |
| |
| hd.hd_irq[0] = HPET_LEGACY_8254; |
| hd.hd_irq[1] = HPET_LEGACY_RTC; |
| |
| for (i = 2; i < nrtimers; timer++, i++) { |
| hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >> |
| Tn_INT_ROUTE_CNF_SHIFT; |
| } |
| |
| hpet_alloc(&hd); |
| |
| } |
| #else |
| static void hpet_reserve_platform_timers(unsigned long id) { } |
| #endif |
| |
| /* |
| * Common hpet info |
| */ |
| static unsigned long hpet_period; |
| |
| static void hpet_legacy_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt); |
| static int hpet_legacy_next_event(unsigned long delta, |
| struct clock_event_device *evt); |
| |
| /* |
| * The hpet clock event device |
| */ |
| static struct clock_event_device hpet_clockevent = { |
| .name = "hpet", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .set_mode = hpet_legacy_set_mode, |
| .set_next_event = hpet_legacy_next_event, |
| .shift = 32, |
| .irq = 0, |
| .rating = 50, |
| }; |
| |
| static void hpet_start_counter(void) |
| { |
| unsigned long cfg = hpet_readl(HPET_CFG); |
| |
| cfg &= ~HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| hpet_writel(0, HPET_COUNTER); |
| hpet_writel(0, HPET_COUNTER + 4); |
| cfg |= HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| } |
| |
| static void hpet_resume_device(void) |
| { |
| force_hpet_resume(); |
| } |
| |
| static void hpet_restart_counter(void) |
| { |
| hpet_resume_device(); |
| hpet_start_counter(); |
| } |
| |
| static void hpet_enable_legacy_int(void) |
| { |
| unsigned long cfg = hpet_readl(HPET_CFG); |
| |
| cfg |= HPET_CFG_LEGACY; |
| hpet_writel(cfg, HPET_CFG); |
| hpet_legacy_int_enabled = 1; |
| } |
| |
| static void hpet_legacy_clockevent_register(void) |
| { |
| uint64_t hpet_freq; |
| |
| /* Start HPET legacy interrupts */ |
| hpet_enable_legacy_int(); |
| |
| /* |
| * The period is a femto seconds value. We need to calculate the |
| * scaled math multiplication factor for nanosecond to hpet tick |
| * conversion. |
| */ |
| hpet_freq = 1000000000000000ULL; |
| do_div(hpet_freq, hpet_period); |
| hpet_clockevent.mult = div_sc((unsigned long) hpet_freq, |
| NSEC_PER_SEC, hpet_clockevent.shift); |
| /* Calculate the min / max delta */ |
| hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, |
| &hpet_clockevent); |
| hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30, |
| &hpet_clockevent); |
| |
| /* |
| * Start hpet with the boot cpu mask and make it |
| * global after the IO_APIC has been initialized. |
| */ |
| hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id()); |
| clockevents_register_device(&hpet_clockevent); |
| global_clock_event = &hpet_clockevent; |
| printk(KERN_DEBUG "hpet clockevent registered\n"); |
| } |
| |
| static void hpet_legacy_set_mode(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| unsigned long cfg, cmp, now; |
| uint64_t delta; |
| |
| switch(mode) { |
| case CLOCK_EVT_MODE_PERIODIC: |
| delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult; |
| delta >>= hpet_clockevent.shift; |
| now = hpet_readl(HPET_COUNTER); |
| cmp = now + (unsigned long) delta; |
| cfg = hpet_readl(HPET_T0_CFG); |
| cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | |
| HPET_TN_SETVAL | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T0_CFG); |
| /* |
| * The first write after writing TN_SETVAL to the |
| * config register sets the counter value, the second |
| * write sets the period. |
| */ |
| hpet_writel(cmp, HPET_T0_CMP); |
| udelay(1); |
| hpet_writel((unsigned long) delta, HPET_T0_CMP); |
| break; |
| |
| case CLOCK_EVT_MODE_ONESHOT: |
| cfg = hpet_readl(HPET_T0_CFG); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T0_CFG); |
| break; |
| |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| cfg = hpet_readl(HPET_T0_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T0_CFG); |
| break; |
| |
| case CLOCK_EVT_MODE_RESUME: |
| hpet_enable_legacy_int(); |
| break; |
| } |
| } |
| |
| static int hpet_legacy_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| unsigned long cnt; |
| |
| cnt = hpet_readl(HPET_COUNTER); |
| cnt += delta; |
| hpet_writel(cnt, HPET_T0_CMP); |
| |
| return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0; |
| } |
| |
| /* |
| * Clock source related code |
| */ |
| static cycle_t read_hpet(void) |
| { |
| return (cycle_t)hpet_readl(HPET_COUNTER); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static cycle_t __vsyscall_fn vread_hpet(void) |
| { |
| return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); |
| } |
| #endif |
| |
| static struct clocksource clocksource_hpet = { |
| .name = "hpet", |
| .rating = 250, |
| .read = read_hpet, |
| .mask = HPET_MASK, |
| .shift = HPET_SHIFT, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .resume = hpet_restart_counter, |
| #ifdef CONFIG_X86_64 |
| .vread = vread_hpet, |
| #endif |
| }; |
| |
| static int hpet_clocksource_register(void) |
| { |
| u64 tmp, start, now; |
| cycle_t t1; |
| |
| /* Start the counter */ |
| hpet_start_counter(); |
| |
| /* Verify whether hpet counter works */ |
| t1 = read_hpet(); |
| rdtscll(start); |
| |
| /* |
| * We don't know the TSC frequency yet, but waiting for |
| * 200000 TSC cycles is safe: |
| * 4 GHz == 50us |
| * 1 GHz == 200us |
| */ |
| do { |
| rep_nop(); |
| rdtscll(now); |
| } while ((now - start) < 200000UL); |
| |
| if (t1 == read_hpet()) { |
| printk(KERN_WARNING |
| "HPET counter not counting. HPET disabled\n"); |
| return -ENODEV; |
| } |
| |
| /* Initialize and register HPET clocksource |
| * |
| * hpet period is in femto seconds per cycle |
| * so we need to convert this to ns/cyc units |
| * approximated by mult/2^shift |
| * |
| * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift |
| * fsec/cyc * 1ns/1000000fsec * 2^shift = mult |
| * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult |
| * (fsec/cyc << shift)/1000000 = mult |
| * (hpet_period << shift)/FSEC_PER_NSEC = mult |
| */ |
| tmp = (u64)hpet_period << HPET_SHIFT; |
| do_div(tmp, FSEC_PER_NSEC); |
| clocksource_hpet.mult = (u32)tmp; |
| |
| clocksource_register(&clocksource_hpet); |
| |
| return 0; |
| } |
| |
| /** |
| * hpet_enable - Try to setup the HPET timer. Returns 1 on success. |
| */ |
| int __init hpet_enable(void) |
| { |
| unsigned long id; |
| |
| if (!is_hpet_capable()) |
| return 0; |
| |
| hpet_set_mapping(); |
| |
| /* |
| * Read the period and check for a sane value: |
| */ |
| hpet_period = hpet_readl(HPET_PERIOD); |
| if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) |
| goto out_nohpet; |
| |
| /* |
| * Read the HPET ID register to retrieve the IRQ routing |
| * information and the number of channels |
| */ |
| id = hpet_readl(HPET_ID); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| /* |
| * The legacy routing mode needs at least two channels, tick timer |
| * and the rtc emulation channel. |
| */ |
| if (!(id & HPET_ID_NUMBER)) |
| goto out_nohpet; |
| #endif |
| |
| if (hpet_clocksource_register()) |
| goto out_nohpet; |
| |
| if (id & HPET_ID_LEGSUP) { |
| hpet_legacy_clockevent_register(); |
| return 1; |
| } |
| return 0; |
| |
| out_nohpet: |
| hpet_clear_mapping(); |
| boot_hpet_disable = 1; |
| return 0; |
| } |
| |
| /* |
| * Needs to be late, as the reserve_timer code calls kalloc ! |
| * |
| * Not a problem on i386 as hpet_enable is called from late_time_init, |
| * but on x86_64 it is necessary ! |
| */ |
| static __init int hpet_late_init(void) |
| { |
| if (boot_hpet_disable) |
| return -ENODEV; |
| |
| if (!hpet_address) { |
| if (!force_hpet_address) |
| return -ENODEV; |
| |
| hpet_address = force_hpet_address; |
| hpet_enable(); |
| if (!hpet_virt_address) |
| return -ENODEV; |
| } |
| |
| hpet_reserve_platform_timers(hpet_readl(HPET_ID)); |
| |
| return 0; |
| } |
| fs_initcall(hpet_late_init); |
| |
| void hpet_disable(void) |
| { |
| if (is_hpet_capable()) { |
| unsigned long cfg = hpet_readl(HPET_CFG); |
| |
| if (hpet_legacy_int_enabled) { |
| cfg &= ~HPET_CFG_LEGACY; |
| hpet_legacy_int_enabled = 0; |
| } |
| cfg &= ~HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| } |
| } |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| * is enabled, we support RTC interrupt functionality in software. |
| * RTC has 3 kinds of interrupts: |
| * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| * is updated |
| * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| * (1) and (2) above are implemented using polling at a frequency of |
| * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| * overhead. (DEFAULT_RTC_INT_FREQ) |
| * For (3), we use interrupts at 64Hz or user specified periodic |
| * frequency, whichever is higher. |
| */ |
| #include <linux/mc146818rtc.h> |
| #include <linux/rtc.h> |
| #include <asm/rtc.h> |
| |
| #define DEFAULT_RTC_INT_FREQ 64 |
| #define DEFAULT_RTC_SHIFT 6 |
| #define RTC_NUM_INTS 1 |
| |
| static unsigned long hpet_rtc_flags; |
| static unsigned long hpet_prev_update_sec; |
| static struct rtc_time hpet_alarm_time; |
| static unsigned long hpet_pie_count; |
| static unsigned long hpet_t1_cmp; |
| static unsigned long hpet_default_delta; |
| static unsigned long hpet_pie_delta; |
| static unsigned long hpet_pie_limit; |
| |
| static rtc_irq_handler irq_handler; |
| |
| /* |
| * Registers a IRQ handler. |
| */ |
| int hpet_register_irq_handler(rtc_irq_handler handler) |
| { |
| if (!is_hpet_enabled()) |
| return -ENODEV; |
| if (irq_handler) |
| return -EBUSY; |
| |
| irq_handler = handler; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hpet_register_irq_handler); |
| |
| /* |
| * Deregisters the IRQ handler registered with hpet_register_irq_handler() |
| * and does cleanup. |
| */ |
| void hpet_unregister_irq_handler(rtc_irq_handler handler) |
| { |
| if (!is_hpet_enabled()) |
| return; |
| |
| irq_handler = NULL; |
| hpet_rtc_flags = 0; |
| } |
| EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); |
| |
| /* |
| * Timer 1 for RTC emulation. We use one shot mode, as periodic mode |
| * is not supported by all HPET implementations for timer 1. |
| * |
| * hpet_rtc_timer_init() is called when the rtc is initialized. |
| */ |
| int hpet_rtc_timer_init(void) |
| { |
| unsigned long cfg, cnt, delta, flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (!hpet_default_delta) { |
| uint64_t clc; |
| |
| clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; |
| clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; |
| hpet_default_delta = (unsigned long) clc; |
| } |
| |
| if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) |
| delta = hpet_default_delta; |
| else |
| delta = hpet_pie_delta; |
| |
| local_irq_save(flags); |
| |
| cnt = delta + hpet_readl(HPET_COUNTER); |
| hpet_writel(cnt, HPET_T1_CMP); |
| hpet_t1_cmp = cnt; |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_PERIODIC; |
| cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| local_irq_restore(flags); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); |
| |
| /* |
| * The functions below are called from rtc driver. |
| * Return 0 if HPET is not being used. |
| * Otherwise do the necessary changes and return 1. |
| */ |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_rtc_flags &= ~bit_mask; |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); |
| |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| { |
| unsigned long oldbits = hpet_rtc_flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_rtc_flags |= bit_mask; |
| |
| if (!oldbits) |
| hpet_rtc_timer_init(); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); |
| |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min, |
| unsigned char sec) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| hpet_alarm_time.tm_hour = hrs; |
| hpet_alarm_time.tm_min = min; |
| hpet_alarm_time.tm_sec = sec; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_alarm_time); |
| |
| int hpet_set_periodic_freq(unsigned long freq) |
| { |
| uint64_t clc; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (freq <= DEFAULT_RTC_INT_FREQ) |
| hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; |
| else { |
| clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; |
| do_div(clc, freq); |
| clc >>= hpet_clockevent.shift; |
| hpet_pie_delta = (unsigned long) clc; |
| } |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); |
| |
| int hpet_rtc_dropped_irq(void) |
| { |
| return is_hpet_enabled(); |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); |
| |
| static void hpet_rtc_timer_reinit(void) |
| { |
| unsigned long cfg, delta; |
| int lost_ints = -1; |
| |
| if (unlikely(!hpet_rtc_flags)) { |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T1_CFG); |
| return; |
| } |
| |
| if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) |
| delta = hpet_default_delta; |
| else |
| delta = hpet_pie_delta; |
| |
| /* |
| * Increment the comparator value until we are ahead of the |
| * current count. |
| */ |
| do { |
| hpet_t1_cmp += delta; |
| hpet_writel(hpet_t1_cmp, HPET_T1_CMP); |
| lost_ints++; |
| } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0); |
| |
| if (lost_ints) { |
| if (hpet_rtc_flags & RTC_PIE) |
| hpet_pie_count += lost_ints; |
| if (printk_ratelimit()) |
| printk(KERN_WARNING "rtc: lost %d interrupts\n", |
| lost_ints); |
| } |
| } |
| |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) |
| { |
| struct rtc_time curr_time; |
| unsigned long rtc_int_flag = 0; |
| |
| hpet_rtc_timer_reinit(); |
| memset(&curr_time, 0, sizeof(struct rtc_time)); |
| |
| if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) |
| get_rtc_time(&curr_time); |
| |
| if (hpet_rtc_flags & RTC_UIE && |
| curr_time.tm_sec != hpet_prev_update_sec) { |
| rtc_int_flag = RTC_UF; |
| hpet_prev_update_sec = curr_time.tm_sec; |
| } |
| |
| if (hpet_rtc_flags & RTC_PIE && |
| ++hpet_pie_count >= hpet_pie_limit) { |
| rtc_int_flag |= RTC_PF; |
| hpet_pie_count = 0; |
| } |
| |
| if (hpet_rtc_flags & RTC_AIE && |
| (curr_time.tm_sec == hpet_alarm_time.tm_sec) && |
| (curr_time.tm_min == hpet_alarm_time.tm_min) && |
| (curr_time.tm_hour == hpet_alarm_time.tm_hour)) |
| rtc_int_flag |= RTC_AF; |
| |
| if (rtc_int_flag) { |
| rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| if (irq_handler) |
| irq_handler(rtc_int_flag, dev_id); |
| } |
| return IRQ_HANDLED; |
| } |
| EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); |
| #endif |