| /* |
| * Derived from "arch/i386/kernel/process.c" |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and |
| * Paul Mackerras (paulus@cs.anu.edu.au) |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/elf.h> |
| #include <linux/init.h> |
| #include <linux/prctl.h> |
| #include <linux/init_task.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/mqueue.h> |
| #include <linux/hardirq.h> |
| #include <linux/utsname.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| #include <asm/time.h> |
| #include <asm/syscalls.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/firmware.h> |
| #endif |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| |
| extern unsigned long _get_SP(void); |
| |
| #ifndef CONFIG_SMP |
| struct task_struct *last_task_used_math = NULL; |
| struct task_struct *last_task_used_altivec = NULL; |
| struct task_struct *last_task_used_vsx = NULL; |
| struct task_struct *last_task_used_spe = NULL; |
| #endif |
| |
| /* |
| * Make sure the floating-point register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_fp_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| /* |
| * We need to disable preemption here because if we didn't, |
| * another process could get scheduled after the regs->msr |
| * test but before we have finished saving the FP registers |
| * to the thread_struct. That process could take over the |
| * FPU, and then when we get scheduled again we would store |
| * bogus values for the remaining FP registers. |
| */ |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_FP) { |
| #ifdef CONFIG_SMP |
| /* |
| * This should only ever be called for current or |
| * for a stopped child process. Since we save away |
| * the FP register state on context switch on SMP, |
| * there is something wrong if a stopped child appears |
| * to still have its FP state in the CPU registers. |
| */ |
| BUG_ON(tsk != current); |
| #endif |
| giveup_fpu(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| |
| void enable_kernel_fp(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) |
| giveup_fpu(current); |
| else |
| giveup_fpu(NULL); /* just enables FP for kernel */ |
| #else |
| giveup_fpu(last_task_used_math); |
| #endif /* CONFIG_SMP */ |
| } |
| EXPORT_SYMBOL(enable_kernel_fp); |
| |
| #ifdef CONFIG_ALTIVEC |
| void enable_kernel_altivec(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) |
| giveup_altivec(current); |
| else |
| giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ |
| #else |
| giveup_altivec(last_task_used_altivec); |
| #endif /* CONFIG_SMP */ |
| } |
| EXPORT_SYMBOL(enable_kernel_altivec); |
| |
| /* |
| * Make sure the VMX/Altivec register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_altivec_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VEC) { |
| #ifdef CONFIG_SMP |
| BUG_ON(tsk != current); |
| #endif |
| giveup_altivec(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_VSX |
| #if 0 |
| /* not currently used, but some crazy RAID module might want to later */ |
| void enable_kernel_vsx(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) |
| giveup_vsx(current); |
| else |
| giveup_vsx(NULL); /* just enable vsx for kernel - force */ |
| #else |
| giveup_vsx(last_task_used_vsx); |
| #endif /* CONFIG_SMP */ |
| } |
| EXPORT_SYMBOL(enable_kernel_vsx); |
| #endif |
| |
| void giveup_vsx(struct task_struct *tsk) |
| { |
| giveup_fpu(tsk); |
| giveup_altivec(tsk); |
| __giveup_vsx(tsk); |
| } |
| |
| void flush_vsx_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VSX) { |
| #ifdef CONFIG_SMP |
| BUG_ON(tsk != current); |
| #endif |
| giveup_vsx(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_SPE |
| |
| void enable_kernel_spe(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) |
| giveup_spe(current); |
| else |
| giveup_spe(NULL); /* just enable SPE for kernel - force */ |
| #else |
| giveup_spe(last_task_used_spe); |
| #endif /* __SMP __ */ |
| } |
| EXPORT_SYMBOL(enable_kernel_spe); |
| |
| void flush_spe_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_SPE) { |
| #ifdef CONFIG_SMP |
| BUG_ON(tsk != current); |
| #endif |
| giveup_spe(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| #endif /* CONFIG_SPE */ |
| |
| #ifndef CONFIG_SMP |
| /* |
| * If we are doing lazy switching of CPU state (FP, altivec or SPE), |
| * and the current task has some state, discard it. |
| */ |
| void discard_lazy_cpu_state(void) |
| { |
| preempt_disable(); |
| if (last_task_used_math == current) |
| last_task_used_math = NULL; |
| #ifdef CONFIG_ALTIVEC |
| if (last_task_used_altivec == current) |
| last_task_used_altivec = NULL; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| if (last_task_used_vsx == current) |
| last_task_used_vsx = NULL; |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_SPE |
| if (last_task_used_spe == current) |
| last_task_used_spe = NULL; |
| #endif |
| preempt_enable(); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| void do_dabr(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| siginfo_t info; |
| |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (debugger_dabr_match(regs)) |
| return; |
| |
| /* Clear the DAC and struct entries. One shot trigger */ |
| #if defined(CONFIG_BOOKE) |
| mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W |
| | DBCR0_IDM)); |
| #endif |
| |
| /* Clear the DABR */ |
| set_dabr(0); |
| |
| /* Deliver the signal to userspace */ |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_HWBKPT; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| |
| static DEFINE_PER_CPU(unsigned long, current_dabr); |
| |
| int set_dabr(unsigned long dabr) |
| { |
| __get_cpu_var(current_dabr) = dabr; |
| |
| if (ppc_md.set_dabr) |
| return ppc_md.set_dabr(dabr); |
| |
| /* XXX should we have a CPU_FTR_HAS_DABR ? */ |
| #if defined(CONFIG_PPC64) || defined(CONFIG_6xx) |
| mtspr(SPRN_DABR, dabr); |
| #endif |
| |
| #if defined(CONFIG_BOOKE) |
| mtspr(SPRN_DAC1, dabr); |
| #endif |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); |
| #endif |
| |
| struct task_struct *__switch_to(struct task_struct *prev, |
| struct task_struct *new) |
| { |
| struct thread_struct *new_thread, *old_thread; |
| unsigned long flags; |
| struct task_struct *last; |
| |
| #ifdef CONFIG_SMP |
| /* avoid complexity of lazy save/restore of fpu |
| * by just saving it every time we switch out if |
| * this task used the fpu during the last quantum. |
| * |
| * If it tries to use the fpu again, it'll trap and |
| * reload its fp regs. So we don't have to do a restore |
| * every switch, just a save. |
| * -- Cort |
| */ |
| if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) |
| giveup_fpu(prev); |
| #ifdef CONFIG_ALTIVEC |
| /* |
| * If the previous thread used altivec in the last quantum |
| * (thus changing altivec regs) then save them. |
| * We used to check the VRSAVE register but not all apps |
| * set it, so we don't rely on it now (and in fact we need |
| * to save & restore VSCR even if VRSAVE == 0). -- paulus |
| * |
| * On SMP we always save/restore altivec regs just to avoid the |
| * complexity of changing processors. |
| * -- Cort |
| */ |
| if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) |
| giveup_altivec(prev); |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) |
| /* VMX and FPU registers are already save here */ |
| __giveup_vsx(prev); |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_SPE |
| /* |
| * If the previous thread used spe in the last quantum |
| * (thus changing spe regs) then save them. |
| * |
| * On SMP we always save/restore spe regs just to avoid the |
| * complexity of changing processors. |
| */ |
| if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) |
| giveup_spe(prev); |
| #endif /* CONFIG_SPE */ |
| |
| #else /* CONFIG_SMP */ |
| #ifdef CONFIG_ALTIVEC |
| /* Avoid the trap. On smp this this never happens since |
| * we don't set last_task_used_altivec -- Cort |
| */ |
| if (new->thread.regs && last_task_used_altivec == new) |
| new->thread.regs->msr |= MSR_VEC; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_VSX |
| if (new->thread.regs && last_task_used_vsx == new) |
| new->thread.regs->msr |= MSR_VSX; |
| #endif /* CONFIG_VSX */ |
| #ifdef CONFIG_SPE |
| /* Avoid the trap. On smp this this never happens since |
| * we don't set last_task_used_spe |
| */ |
| if (new->thread.regs && last_task_used_spe == new) |
| new->thread.regs->msr |= MSR_SPE; |
| #endif /* CONFIG_SPE */ |
| |
| #endif /* CONFIG_SMP */ |
| |
| if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) |
| set_dabr(new->thread.dabr); |
| |
| #if defined(CONFIG_BOOKE) |
| /* If new thread DAC (HW breakpoint) is the same then leave it */ |
| if (new->thread.dabr) |
| set_dabr(new->thread.dabr); |
| #endif |
| |
| new_thread = &new->thread; |
| old_thread = ¤t->thread; |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Collect processor utilization data per process |
| */ |
| if (firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); |
| long unsigned start_tb, current_tb; |
| start_tb = old_thread->start_tb; |
| cu->current_tb = current_tb = mfspr(SPRN_PURR); |
| old_thread->accum_tb += (current_tb - start_tb); |
| new_thread->start_tb = current_tb; |
| } |
| #endif |
| |
| local_irq_save(flags); |
| |
| account_system_vtime(current); |
| account_process_vtime(current); |
| calculate_steal_time(); |
| |
| /* |
| * We can't take a PMU exception inside _switch() since there is a |
| * window where the kernel stack SLB and the kernel stack are out |
| * of sync. Hard disable here. |
| */ |
| hard_irq_disable(); |
| last = _switch(old_thread, new_thread); |
| |
| local_irq_restore(flags); |
| |
| return last; |
| } |
| |
| static int instructions_to_print = 16; |
| |
| static void show_instructions(struct pt_regs *regs) |
| { |
| int i; |
| unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * |
| sizeof(int)); |
| |
| printk("Instruction dump:"); |
| |
| for (i = 0; i < instructions_to_print; i++) { |
| int instr; |
| |
| if (!(i % 8)) |
| printk("\n"); |
| |
| #if !defined(CONFIG_BOOKE) |
| /* If executing with the IMMU off, adjust pc rather |
| * than print XXXXXXXX. |
| */ |
| if (!(regs->msr & MSR_IR)) |
| pc = (unsigned long)phys_to_virt(pc); |
| #endif |
| |
| /* We use __get_user here *only* to avoid an OOPS on a |
| * bad address because the pc *should* only be a |
| * kernel address. |
| */ |
| if (!__kernel_text_address(pc) || |
| __get_user(instr, (unsigned int __user *)pc)) { |
| printk("XXXXXXXX "); |
| } else { |
| if (regs->nip == pc) |
| printk("<%08x> ", instr); |
| else |
| printk("%08x ", instr); |
| } |
| |
| pc += sizeof(int); |
| } |
| |
| printk("\n"); |
| } |
| |
| static struct regbit { |
| unsigned long bit; |
| const char *name; |
| } msr_bits[] = { |
| {MSR_EE, "EE"}, |
| {MSR_PR, "PR"}, |
| {MSR_FP, "FP"}, |
| {MSR_VEC, "VEC"}, |
| {MSR_VSX, "VSX"}, |
| {MSR_ME, "ME"}, |
| {MSR_IR, "IR"}, |
| {MSR_DR, "DR"}, |
| {0, NULL} |
| }; |
| |
| static void printbits(unsigned long val, struct regbit *bits) |
| { |
| const char *sep = ""; |
| |
| printk("<"); |
| for (; bits->bit; ++bits) |
| if (val & bits->bit) { |
| printk("%s%s", sep, bits->name); |
| sep = ","; |
| } |
| printk(">"); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| #define REG "%016lx" |
| #define REGS_PER_LINE 4 |
| #define LAST_VOLATILE 13 |
| #else |
| #define REG "%08lx" |
| #define REGS_PER_LINE 8 |
| #define LAST_VOLATILE 12 |
| #endif |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| int i, trap; |
| |
| printk("NIP: "REG" LR: "REG" CTR: "REG"\n", |
| regs->nip, regs->link, regs->ctr); |
| printk("REGS: %p TRAP: %04lx %s (%s)\n", |
| regs, regs->trap, print_tainted(), init_utsname()->release); |
| printk("MSR: "REG" ", regs->msr); |
| printbits(regs->msr, msr_bits); |
| printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); |
| trap = TRAP(regs); |
| if (trap == 0x300 || trap == 0x600) |
| #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) |
| printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); |
| #else |
| printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); |
| #endif |
| printk("TASK = %p[%d] '%s' THREAD: %p", |
| current, task_pid_nr(current), current->comm, task_thread_info(current)); |
| |
| #ifdef CONFIG_SMP |
| printk(" CPU: %d", raw_smp_processor_id()); |
| #endif /* CONFIG_SMP */ |
| |
| for (i = 0; i < 32; i++) { |
| if ((i % REGS_PER_LINE) == 0) |
| printk("\n" KERN_INFO "GPR%02d: ", i); |
| printk(REG " ", regs->gpr[i]); |
| if (i == LAST_VOLATILE && !FULL_REGS(regs)) |
| break; |
| } |
| printk("\n"); |
| #ifdef CONFIG_KALLSYMS |
| /* |
| * Lookup NIP late so we have the best change of getting the |
| * above info out without failing |
| */ |
| printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); |
| printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); |
| #endif |
| show_stack(current, (unsigned long *) regs->gpr[1]); |
| if (!user_mode(regs)) |
| show_instructions(regs); |
| } |
| |
| void exit_thread(void) |
| { |
| discard_lazy_cpu_state(); |
| } |
| |
| void flush_thread(void) |
| { |
| #ifdef CONFIG_PPC64 |
| struct thread_info *t = current_thread_info(); |
| |
| if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { |
| clear_ti_thread_flag(t, TIF_ABI_PENDING); |
| if (test_ti_thread_flag(t, TIF_32BIT)) |
| clear_ti_thread_flag(t, TIF_32BIT); |
| else |
| set_ti_thread_flag(t, TIF_32BIT); |
| } |
| #endif |
| |
| discard_lazy_cpu_state(); |
| |
| if (current->thread.dabr) { |
| current->thread.dabr = 0; |
| set_dabr(0); |
| |
| #if defined(CONFIG_BOOKE) |
| current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W); |
| #endif |
| } |
| } |
| |
| void |
| release_thread(struct task_struct *t) |
| { |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| flush_fp_to_thread(current); |
| flush_altivec_to_thread(current); |
| flush_vsx_to_thread(current); |
| flush_spe_to_thread(current); |
| } |
| |
| /* |
| * Copy a thread.. |
| */ |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, |
| unsigned long unused, struct task_struct *p, |
| struct pt_regs *regs) |
| { |
| struct pt_regs *childregs, *kregs; |
| extern void ret_from_fork(void); |
| unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; |
| |
| CHECK_FULL_REGS(regs); |
| /* Copy registers */ |
| sp -= sizeof(struct pt_regs); |
| childregs = (struct pt_regs *) sp; |
| *childregs = *regs; |
| if ((childregs->msr & MSR_PR) == 0) { |
| /* for kernel thread, set `current' and stackptr in new task */ |
| childregs->gpr[1] = sp + sizeof(struct pt_regs); |
| #ifdef CONFIG_PPC32 |
| childregs->gpr[2] = (unsigned long) p; |
| #else |
| clear_tsk_thread_flag(p, TIF_32BIT); |
| #endif |
| p->thread.regs = NULL; /* no user register state */ |
| } else { |
| childregs->gpr[1] = usp; |
| p->thread.regs = childregs; |
| if (clone_flags & CLONE_SETTLS) { |
| #ifdef CONFIG_PPC64 |
| if (!test_thread_flag(TIF_32BIT)) |
| childregs->gpr[13] = childregs->gpr[6]; |
| else |
| #endif |
| childregs->gpr[2] = childregs->gpr[6]; |
| } |
| } |
| childregs->gpr[3] = 0; /* Result from fork() */ |
| sp -= STACK_FRAME_OVERHEAD; |
| |
| /* |
| * The way this works is that at some point in the future |
| * some task will call _switch to switch to the new task. |
| * That will pop off the stack frame created below and start |
| * the new task running at ret_from_fork. The new task will |
| * do some house keeping and then return from the fork or clone |
| * system call, using the stack frame created above. |
| */ |
| sp -= sizeof(struct pt_regs); |
| kregs = (struct pt_regs *) sp; |
| sp -= STACK_FRAME_OVERHEAD; |
| p->thread.ksp = sp; |
| p->thread.ksp_limit = (unsigned long)task_stack_page(p) + |
| _ALIGN_UP(sizeof(struct thread_info), 16); |
| |
| #ifdef CONFIG_PPC64 |
| if (cpu_has_feature(CPU_FTR_SLB)) { |
| unsigned long sp_vsid; |
| unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| |
| if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) |
| << SLB_VSID_SHIFT_1T; |
| else |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) |
| << SLB_VSID_SHIFT; |
| sp_vsid |= SLB_VSID_KERNEL | llp; |
| p->thread.ksp_vsid = sp_vsid; |
| } |
| |
| /* |
| * The PPC64 ABI makes use of a TOC to contain function |
| * pointers. The function (ret_from_except) is actually a pointer |
| * to the TOC entry. The first entry is a pointer to the actual |
| * function. |
| */ |
| kregs->nip = *((unsigned long *)ret_from_fork); |
| #else |
| kregs->nip = (unsigned long)ret_from_fork; |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Set up a thread for executing a new program |
| */ |
| void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ |
| #endif |
| |
| set_fs(USER_DS); |
| |
| /* |
| * If we exec out of a kernel thread then thread.regs will not be |
| * set. Do it now. |
| */ |
| if (!current->thread.regs) { |
| struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; |
| current->thread.regs = regs - 1; |
| } |
| |
| memset(regs->gpr, 0, sizeof(regs->gpr)); |
| regs->ctr = 0; |
| regs->link = 0; |
| regs->xer = 0; |
| regs->ccr = 0; |
| regs->gpr[1] = sp; |
| |
| /* |
| * We have just cleared all the nonvolatile GPRs, so make |
| * FULL_REGS(regs) return true. This is necessary to allow |
| * ptrace to examine the thread immediately after exec. |
| */ |
| regs->trap &= ~1UL; |
| |
| #ifdef CONFIG_PPC32 |
| regs->mq = 0; |
| regs->nip = start; |
| regs->msr = MSR_USER; |
| #else |
| if (!test_thread_flag(TIF_32BIT)) { |
| unsigned long entry, toc; |
| |
| /* start is a relocated pointer to the function descriptor for |
| * the elf _start routine. The first entry in the function |
| * descriptor is the entry address of _start and the second |
| * entry is the TOC value we need to use. |
| */ |
| __get_user(entry, (unsigned long __user *)start); |
| __get_user(toc, (unsigned long __user *)start+1); |
| |
| /* Check whether the e_entry function descriptor entries |
| * need to be relocated before we can use them. |
| */ |
| if (load_addr != 0) { |
| entry += load_addr; |
| toc += load_addr; |
| } |
| regs->nip = entry; |
| regs->gpr[2] = toc; |
| regs->msr = MSR_USER64; |
| } else { |
| regs->nip = start; |
| regs->gpr[2] = 0; |
| regs->msr = MSR_USER32; |
| } |
| #endif |
| |
| discard_lazy_cpu_state(); |
| #ifdef CONFIG_VSX |
| current->thread.used_vsr = 0; |
| #endif |
| memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); |
| current->thread.fpscr.val = 0; |
| #ifdef CONFIG_ALTIVEC |
| memset(current->thread.vr, 0, sizeof(current->thread.vr)); |
| memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); |
| current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ |
| current->thread.vrsave = 0; |
| current->thread.used_vr = 0; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| memset(current->thread.evr, 0, sizeof(current->thread.evr)); |
| current->thread.acc = 0; |
| current->thread.spefscr = 0; |
| current->thread.used_spe = 0; |
| #endif /* CONFIG_SPE */ |
| } |
| |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ |
| | PR_FP_EXC_RES | PR_FP_EXC_INV) |
| |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| /* This is a bit hairy. If we are an SPE enabled processor |
| * (have embedded fp) we store the IEEE exception enable flags in |
| * fpexc_mode. fpexc_mode is also used for setting FP exception |
| * mode (asyn, precise, disabled) for 'Classic' FP. */ |
| if (val & PR_FP_EXC_SW_ENABLE) { |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) { |
| tsk->thread.fpexc_mode = val & |
| (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| #else |
| return -EINVAL; |
| #endif |
| } |
| |
| /* on a CONFIG_SPE this does not hurt us. The bits that |
| * __pack_fe01 use do not overlap with bits used for |
| * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits |
| * on CONFIG_SPE implementations are reserved so writing to |
| * them does not change anything */ |
| if (val > PR_FP_EXC_PRECISE) |
| return -EINVAL; |
| tsk->thread.fpexc_mode = __pack_fe01(val); |
| if (regs != NULL && (regs->msr & MSR_FP) != 0) |
| regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) |
| | tsk->thread.fpexc_mode; |
| return 0; |
| } |
| |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) |
| val = tsk->thread.fpexc_mode; |
| else |
| return -EINVAL; |
| #else |
| return -EINVAL; |
| #endif |
| else |
| val = __unpack_fe01(tsk->thread.fpexc_mode); |
| return put_user(val, (unsigned int __user *) adr); |
| } |
| |
| int set_endian(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || |
| (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (val == PR_ENDIAN_BIG) |
| regs->msr &= ~MSR_LE; |
| else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) |
| regs->msr |= MSR_LE; |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int get_endian(struct task_struct *tsk, unsigned long adr) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| unsigned int val; |
| |
| if (!cpu_has_feature(CPU_FTR_PPC_LE) && |
| !cpu_has_feature(CPU_FTR_REAL_LE)) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (regs->msr & MSR_LE) { |
| if (cpu_has_feature(CPU_FTR_REAL_LE)) |
| val = PR_ENDIAN_LITTLE; |
| else |
| val = PR_ENDIAN_PPC_LITTLE; |
| } else |
| val = PR_ENDIAN_BIG; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_unalign_ctl(struct task_struct *tsk, unsigned int val) |
| { |
| tsk->thread.align_ctl = val; |
| return 0; |
| } |
| |
| int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) |
| { |
| return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); |
| } |
| |
| #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) |
| |
| int sys_clone(unsigned long clone_flags, unsigned long usp, |
| int __user *parent_tidp, void __user *child_threadptr, |
| int __user *child_tidp, int p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| if (usp == 0) |
| usp = regs->gpr[1]; /* stack pointer for child */ |
| #ifdef CONFIG_PPC64 |
| if (test_thread_flag(TIF_32BIT)) { |
| parent_tidp = TRUNC_PTR(parent_tidp); |
| child_tidp = TRUNC_PTR(child_tidp); |
| } |
| #endif |
| return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); |
| } |
| |
| int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, |
| unsigned long p4, unsigned long p5, unsigned long p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); |
| } |
| |
| int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, |
| unsigned long p4, unsigned long p5, unsigned long p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], |
| regs, 0, NULL, NULL); |
| } |
| |
| int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, |
| unsigned long a3, unsigned long a4, unsigned long a5, |
| struct pt_regs *regs) |
| { |
| int error; |
| char *filename; |
| |
| filename = getname((char __user *) a0); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| flush_fp_to_thread(current); |
| flush_altivec_to_thread(current); |
| flush_spe_to_thread(current); |
| error = do_execve(filename, (char __user * __user *) a1, |
| (char __user * __user *) a2, regs); |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| #ifdef CONFIG_IRQSTACKS |
| static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page; |
| unsigned long cpu = task_cpu(p); |
| |
| /* |
| * Avoid crashing if the stack has overflowed and corrupted |
| * task_cpu(p), which is in the thread_info struct. |
| */ |
| if (cpu < NR_CPUS && cpu_possible(cpu)) { |
| stack_page = (unsigned long) hardirq_ctx[cpu]; |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| stack_page = (unsigned long) softirq_ctx[cpu]; |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| } |
| return 0; |
| } |
| |
| #else |
| #define valid_irq_stack(sp, p, nb) 0 |
| #endif /* CONFIG_IRQSTACKS */ |
| |
| int validate_sp(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page = (unsigned long)task_stack_page(p); |
| |
| if (sp >= stack_page + sizeof(struct thread_struct) |
| && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| return valid_irq_stack(sp, p, nbytes); |
| } |
| |
| EXPORT_SYMBOL(validate_sp); |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long ip, sp; |
| int count = 0; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| sp = p->thread.ksp; |
| if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| return 0; |
| |
| do { |
| sp = *(unsigned long *)sp; |
| if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) |
| return 0; |
| if (count > 0) { |
| ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; |
| if (!in_sched_functions(ip)) |
| return ip; |
| } |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| static int kstack_depth_to_print = 64; |
| |
| void show_stack(struct task_struct *tsk, unsigned long *stack) |
| { |
| unsigned long sp, ip, lr, newsp; |
| int count = 0; |
| int firstframe = 1; |
| |
| sp = (unsigned long) stack; |
| if (tsk == NULL) |
| tsk = current; |
| if (sp == 0) { |
| if (tsk == current) |
| asm("mr %0,1" : "=r" (sp)); |
| else |
| sp = tsk->thread.ksp; |
| } |
| |
| lr = 0; |
| printk("Call Trace:\n"); |
| do { |
| if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) |
| return; |
| |
| stack = (unsigned long *) sp; |
| newsp = stack[0]; |
| ip = stack[STACK_FRAME_LR_SAVE]; |
| if (!firstframe || ip != lr) { |
| printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); |
| if (firstframe) |
| printk(" (unreliable)"); |
| printk("\n"); |
| } |
| firstframe = 0; |
| |
| /* |
| * See if this is an exception frame. |
| * We look for the "regshere" marker in the current frame. |
| */ |
| if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) |
| && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { |
| struct pt_regs *regs = (struct pt_regs *) |
| (sp + STACK_FRAME_OVERHEAD); |
| lr = regs->link; |
| printk("--- Exception: %lx at %pS\n LR = %pS\n", |
| regs->trap, (void *)regs->nip, (void *)lr); |
| firstframe = 1; |
| } |
| |
| sp = newsp; |
| } while (count++ < kstack_depth_to_print); |
| } |
| |
| void dump_stack(void) |
| { |
| show_stack(current, NULL); |
| } |
| EXPORT_SYMBOL(dump_stack); |
| |
| #ifdef CONFIG_PPC64 |
| void ppc64_runlatch_on(void) |
| { |
| unsigned long ctrl; |
| |
| if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { |
| HMT_medium(); |
| |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl |= CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| |
| set_thread_flag(TIF_RUNLATCH); |
| } |
| } |
| |
| void ppc64_runlatch_off(void) |
| { |
| unsigned long ctrl; |
| |
| if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { |
| HMT_medium(); |
| |
| clear_thread_flag(TIF_RUNLATCH); |
| |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl &= ~CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| } |
| } |
| #endif |
| |
| #if THREAD_SHIFT < PAGE_SHIFT |
| |
| static struct kmem_cache *thread_info_cache; |
| |
| struct thread_info *alloc_thread_info(struct task_struct *tsk) |
| { |
| struct thread_info *ti; |
| |
| ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL); |
| if (unlikely(ti == NULL)) |
| return NULL; |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| memset(ti, 0, THREAD_SIZE); |
| #endif |
| return ti; |
| } |
| |
| void free_thread_info(struct thread_info *ti) |
| { |
| kmem_cache_free(thread_info_cache, ti); |
| } |
| |
| void thread_info_cache_init(void) |
| { |
| thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, |
| THREAD_SIZE, 0, NULL); |
| BUG_ON(thread_info_cache == NULL); |
| } |
| |
| #endif /* THREAD_SHIFT < PAGE_SHIFT */ |