| /* |
| * linux/kernel/time/tick-broadcast.c |
| * |
| * This file contains functions which emulate a local clock-event |
| * device via a broadcast event source. |
| * |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner |
| * |
| * This code is licenced under the GPL version 2. For details see |
| * kernel-base/COPYING. |
| */ |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/hrtimer.h> |
| #include <linux/interrupt.h> |
| #include <linux/percpu.h> |
| #include <linux/profile.h> |
| #include <linux/sched.h> |
| |
| #include "tick-internal.h" |
| |
| /* |
| * Broadcast support for broken x86 hardware, where the local apic |
| * timer stops in C3 state. |
| */ |
| |
| static struct tick_device tick_broadcast_device; |
| /* FIXME: Use cpumask_var_t. */ |
| static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS); |
| static DECLARE_BITMAP(tmpmask, NR_CPUS); |
| static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); |
| static int tick_broadcast_force; |
| |
| #ifdef CONFIG_TICK_ONESHOT |
| static void tick_broadcast_clear_oneshot(int cpu); |
| #else |
| static inline void tick_broadcast_clear_oneshot(int cpu) { } |
| #endif |
| |
| /* |
| * Debugging: see timer_list.c |
| */ |
| struct tick_device *tick_get_broadcast_device(void) |
| { |
| return &tick_broadcast_device; |
| } |
| |
| struct cpumask *tick_get_broadcast_mask(void) |
| { |
| return to_cpumask(tick_broadcast_mask); |
| } |
| |
| /* |
| * Start the device in periodic mode |
| */ |
| static void tick_broadcast_start_periodic(struct clock_event_device *bc) |
| { |
| if (bc) |
| tick_setup_periodic(bc, 1); |
| } |
| |
| /* |
| * Check, if the device can be utilized as broadcast device: |
| */ |
| int tick_check_broadcast_device(struct clock_event_device *dev) |
| { |
| if ((tick_broadcast_device.evtdev && |
| tick_broadcast_device.evtdev->rating >= dev->rating) || |
| (dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| return 0; |
| |
| clockevents_exchange_device(NULL, dev); |
| tick_broadcast_device.evtdev = dev; |
| if (!cpumask_empty(tick_get_broadcast_mask())) |
| tick_broadcast_start_periodic(dev); |
| return 1; |
| } |
| |
| /* |
| * Check, if the device is the broadcast device |
| */ |
| int tick_is_broadcast_device(struct clock_event_device *dev) |
| { |
| return (dev && tick_broadcast_device.evtdev == dev); |
| } |
| |
| /* |
| * Check, if the device is disfunctional and a place holder, which |
| * needs to be handled by the broadcast device. |
| */ |
| int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| /* |
| * Devices might be registered with both periodic and oneshot |
| * mode disabled. This signals, that the device needs to be |
| * operated from the broadcast device and is a placeholder for |
| * the cpu local device. |
| */ |
| if (!tick_device_is_functional(dev)) { |
| dev->event_handler = tick_handle_periodic; |
| cpumask_set_cpu(cpu, tick_get_broadcast_mask()); |
| tick_broadcast_start_periodic(tick_broadcast_device.evtdev); |
| ret = 1; |
| } else { |
| /* |
| * When the new device is not affected by the stop |
| * feature and the cpu is marked in the broadcast mask |
| * then clear the broadcast bit. |
| */ |
| if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { |
| int cpu = smp_processor_id(); |
| |
| cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); |
| tick_broadcast_clear_oneshot(cpu); |
| } |
| } |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Broadcast the event to the cpus, which are set in the mask (mangled). |
| */ |
| static void tick_do_broadcast(struct cpumask *mask) |
| { |
| int cpu = smp_processor_id(); |
| struct tick_device *td; |
| |
| /* |
| * Check, if the current cpu is in the mask |
| */ |
| if (cpumask_test_cpu(cpu, mask)) { |
| cpumask_clear_cpu(cpu, mask); |
| td = &per_cpu(tick_cpu_device, cpu); |
| td->evtdev->event_handler(td->evtdev); |
| } |
| |
| if (!cpumask_empty(mask)) { |
| /* |
| * It might be necessary to actually check whether the devices |
| * have different broadcast functions. For now, just use the |
| * one of the first device. This works as long as we have this |
| * misfeature only on x86 (lapic) |
| */ |
| td = &per_cpu(tick_cpu_device, cpumask_first(mask)); |
| td->evtdev->broadcast(mask); |
| } |
| } |
| |
| /* |
| * Periodic broadcast: |
| * - invoke the broadcast handlers |
| */ |
| static void tick_do_periodic_broadcast(void) |
| { |
| raw_spin_lock(&tick_broadcast_lock); |
| |
| cpumask_and(to_cpumask(tmpmask), |
| cpu_online_mask, tick_get_broadcast_mask()); |
| tick_do_broadcast(to_cpumask(tmpmask)); |
| |
| raw_spin_unlock(&tick_broadcast_lock); |
| } |
| |
| /* |
| * Event handler for periodic broadcast ticks |
| */ |
| static void tick_handle_periodic_broadcast(struct clock_event_device *dev) |
| { |
| ktime_t next; |
| |
| tick_do_periodic_broadcast(); |
| |
| /* |
| * The device is in periodic mode. No reprogramming necessary: |
| */ |
| if (dev->mode == CLOCK_EVT_MODE_PERIODIC) |
| return; |
| |
| /* |
| * Setup the next period for devices, which do not have |
| * periodic mode. We read dev->next_event first and add to it |
| * when the event already expired. clockevents_program_event() |
| * sets dev->next_event only when the event is really |
| * programmed to the device. |
| */ |
| for (next = dev->next_event; ;) { |
| next = ktime_add(next, tick_period); |
| |
| if (!clockevents_program_event(dev, next, ktime_get())) |
| return; |
| tick_do_periodic_broadcast(); |
| } |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop |
| */ |
| static void tick_do_broadcast_on_off(unsigned long *reason) |
| { |
| struct clock_event_device *bc, *dev; |
| struct tick_device *td; |
| unsigned long flags; |
| int cpu, bc_stopped; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| cpu = smp_processor_id(); |
| td = &per_cpu(tick_cpu_device, cpu); |
| dev = td->evtdev; |
| bc = tick_broadcast_device.evtdev; |
| |
| /* |
| * Is the device not affected by the powerstate ? |
| */ |
| if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| goto out; |
| |
| if (!tick_device_is_functional(dev)) |
| goto out; |
| |
| bc_stopped = cpumask_empty(tick_get_broadcast_mask()); |
| |
| switch (*reason) { |
| case CLOCK_EVT_NOTIFY_BROADCAST_ON: |
| case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: |
| if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { |
| cpumask_set_cpu(cpu, tick_get_broadcast_mask()); |
| if (tick_broadcast_device.mode == |
| TICKDEV_MODE_PERIODIC) |
| clockevents_shutdown(dev); |
| } |
| if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) |
| tick_broadcast_force = 1; |
| break; |
| case CLOCK_EVT_NOTIFY_BROADCAST_OFF: |
| if (!tick_broadcast_force && |
| cpumask_test_cpu(cpu, tick_get_broadcast_mask())) { |
| cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); |
| if (tick_broadcast_device.mode == |
| TICKDEV_MODE_PERIODIC) |
| tick_setup_periodic(dev, 0); |
| } |
| break; |
| } |
| |
| if (cpumask_empty(tick_get_broadcast_mask())) { |
| if (!bc_stopped) |
| clockevents_shutdown(bc); |
| } else if (bc_stopped) { |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| tick_broadcast_start_periodic(bc); |
| else |
| tick_broadcast_setup_oneshot(bc); |
| } |
| out: |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop. |
| */ |
| void tick_broadcast_on_off(unsigned long reason, int *oncpu) |
| { |
| if (!cpumask_test_cpu(*oncpu, cpu_online_mask)) |
| printk(KERN_ERR "tick-broadcast: ignoring broadcast for " |
| "offline CPU #%d\n", *oncpu); |
| else |
| tick_do_broadcast_on_off(&reason); |
| } |
| |
| /* |
| * Set the periodic handler depending on broadcast on/off |
| */ |
| void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) |
| { |
| if (!broadcast) |
| dev->event_handler = tick_handle_periodic; |
| else |
| dev->event_handler = tick_handle_periodic_broadcast; |
| } |
| |
| /* |
| * Remove a CPU from broadcasting |
| */ |
| void tick_shutdown_broadcast(unsigned int *cpup) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| unsigned int cpu = *cpup; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| cpumask_clear_cpu(cpu, tick_get_broadcast_mask()); |
| |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { |
| if (bc && cpumask_empty(tick_get_broadcast_mask())) |
| clockevents_shutdown(bc); |
| } |
| |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| void tick_suspend_broadcast(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| if (bc) |
| clockevents_shutdown(bc); |
| |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| int tick_resume_broadcast(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| int broadcast = 0; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| |
| if (bc) { |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); |
| |
| switch (tick_broadcast_device.mode) { |
| case TICKDEV_MODE_PERIODIC: |
| if (!cpumask_empty(tick_get_broadcast_mask())) |
| tick_broadcast_start_periodic(bc); |
| broadcast = cpumask_test_cpu(smp_processor_id(), |
| tick_get_broadcast_mask()); |
| break; |
| case TICKDEV_MODE_ONESHOT: |
| broadcast = tick_resume_broadcast_oneshot(bc); |
| break; |
| } |
| } |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| |
| return broadcast; |
| } |
| |
| |
| #ifdef CONFIG_TICK_ONESHOT |
| |
| /* FIXME: use cpumask_var_t. */ |
| static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS); |
| |
| /* |
| * Exposed for debugging: see timer_list.c |
| */ |
| struct cpumask *tick_get_broadcast_oneshot_mask(void) |
| { |
| return to_cpumask(tick_broadcast_oneshot_mask); |
| } |
| |
| static int tick_broadcast_set_event(ktime_t expires, int force) |
| { |
| struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| |
| return tick_dev_program_event(bc, expires, force); |
| } |
| |
| int tick_resume_broadcast_oneshot(struct clock_event_device *bc) |
| { |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); |
| return 0; |
| } |
| |
| /* |
| * Called from irq_enter() when idle was interrupted to reenable the |
| * per cpu device. |
| */ |
| void tick_check_oneshot_broadcast(int cpu) |
| { |
| if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) { |
| struct tick_device *td = &per_cpu(tick_cpu_device, cpu); |
| |
| clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); |
| } |
| } |
| |
| /* |
| * Handle oneshot mode broadcasting |
| */ |
| static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) |
| { |
| struct tick_device *td; |
| ktime_t now, next_event; |
| int cpu; |
| |
| raw_spin_lock(&tick_broadcast_lock); |
| again: |
| dev->next_event.tv64 = KTIME_MAX; |
| next_event.tv64 = KTIME_MAX; |
| cpumask_clear(to_cpumask(tmpmask)); |
| now = ktime_get(); |
| /* Find all expired events */ |
| for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) { |
| td = &per_cpu(tick_cpu_device, cpu); |
| if (td->evtdev->next_event.tv64 <= now.tv64) |
| cpumask_set_cpu(cpu, to_cpumask(tmpmask)); |
| else if (td->evtdev->next_event.tv64 < next_event.tv64) |
| next_event.tv64 = td->evtdev->next_event.tv64; |
| } |
| |
| /* |
| * Wakeup the cpus which have an expired event. |
| */ |
| tick_do_broadcast(to_cpumask(tmpmask)); |
| |
| /* |
| * Two reasons for reprogram: |
| * |
| * - The global event did not expire any CPU local |
| * events. This happens in dyntick mode, as the maximum PIT |
| * delta is quite small. |
| * |
| * - There are pending events on sleeping CPUs which were not |
| * in the event mask |
| */ |
| if (next_event.tv64 != KTIME_MAX) { |
| /* |
| * Rearm the broadcast device. If event expired, |
| * repeat the above |
| */ |
| if (tick_broadcast_set_event(next_event, 0)) |
| goto again; |
| } |
| raw_spin_unlock(&tick_broadcast_lock); |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop |
| */ |
| void tick_broadcast_oneshot_control(unsigned long reason) |
| { |
| struct clock_event_device *bc, *dev; |
| struct tick_device *td; |
| unsigned long flags; |
| int cpu; |
| |
| /* |
| * Periodic mode does not care about the enter/exit of power |
| * states |
| */ |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| return; |
| |
| /* |
| * We are called with preemtion disabled from the depth of the |
| * idle code, so we can't be moved away. |
| */ |
| cpu = smp_processor_id(); |
| td = &per_cpu(tick_cpu_device, cpu); |
| dev = td->evtdev; |
| |
| if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| return; |
| |
| bc = tick_broadcast_device.evtdev; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { |
| if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { |
| cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask()); |
| clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); |
| if (dev->next_event.tv64 < bc->next_event.tv64) |
| tick_broadcast_set_event(dev->next_event, 1); |
| } |
| } else { |
| if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) { |
| cpumask_clear_cpu(cpu, |
| tick_get_broadcast_oneshot_mask()); |
| clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); |
| if (dev->next_event.tv64 != KTIME_MAX) |
| tick_program_event(dev->next_event, 1); |
| } |
| } |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| /* |
| * Reset the one shot broadcast for a cpu |
| * |
| * Called with tick_broadcast_lock held |
| */ |
| static void tick_broadcast_clear_oneshot(int cpu) |
| { |
| cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); |
| } |
| |
| static void tick_broadcast_init_next_event(struct cpumask *mask, |
| ktime_t expires) |
| { |
| struct tick_device *td; |
| int cpu; |
| |
| for_each_cpu(cpu, mask) { |
| td = &per_cpu(tick_cpu_device, cpu); |
| if (td->evtdev) |
| td->evtdev->next_event = expires; |
| } |
| } |
| |
| /** |
| * tick_broadcast_setup_oneshot - setup the broadcast device |
| */ |
| void tick_broadcast_setup_oneshot(struct clock_event_device *bc) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* Set it up only once ! */ |
| if (bc->event_handler != tick_handle_oneshot_broadcast) { |
| int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; |
| |
| bc->event_handler = tick_handle_oneshot_broadcast; |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); |
| |
| /* Take the do_timer update */ |
| tick_do_timer_cpu = cpu; |
| |
| /* |
| * We must be careful here. There might be other CPUs |
| * waiting for periodic broadcast. We need to set the |
| * oneshot_mask bits for those and program the |
| * broadcast device to fire. |
| */ |
| cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask()); |
| cpumask_clear_cpu(cpu, to_cpumask(tmpmask)); |
| cpumask_or(tick_get_broadcast_oneshot_mask(), |
| tick_get_broadcast_oneshot_mask(), |
| to_cpumask(tmpmask)); |
| |
| if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) { |
| tick_broadcast_init_next_event(to_cpumask(tmpmask), |
| tick_next_period); |
| tick_broadcast_set_event(tick_next_period, 1); |
| } else |
| bc->next_event.tv64 = KTIME_MAX; |
| } else { |
| /* |
| * The first cpu which switches to oneshot mode sets |
| * the bit for all other cpus which are in the general |
| * (periodic) broadcast mask. So the bit is set and |
| * would prevent the first broadcast enter after this |
| * to program the bc device. |
| */ |
| tick_broadcast_clear_oneshot(cpu); |
| } |
| } |
| |
| /* |
| * Select oneshot operating mode for the broadcast device |
| */ |
| void tick_broadcast_switch_to_oneshot(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; |
| bc = tick_broadcast_device.evtdev; |
| if (bc) |
| tick_broadcast_setup_oneshot(bc); |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| |
| /* |
| * Remove a dead CPU from broadcasting |
| */ |
| void tick_shutdown_broadcast_oneshot(unsigned int *cpup) |
| { |
| unsigned long flags; |
| unsigned int cpu = *cpup; |
| |
| raw_spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| /* |
| * Clear the broadcast mask flag for the dead cpu, but do not |
| * stop the broadcast device! |
| */ |
| cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask()); |
| |
| raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| /* |
| * Check, whether the broadcast device is in one shot mode |
| */ |
| int tick_broadcast_oneshot_active(void) |
| { |
| return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; |
| } |
| |
| /* |
| * Check whether the broadcast device supports oneshot. |
| */ |
| bool tick_broadcast_oneshot_available(void) |
| { |
| struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| |
| return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; |
| } |
| |
| #endif |