| /* |
| * net/dccp/ipv4.c |
| * |
| * An implementation of the DCCP protocol |
| * Arnaldo Carvalho de Melo <acme@conectiva.com.br> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/dccp.h> |
| #include <linux/icmp.h> |
| #include <linux/module.h> |
| #include <linux/skbuff.h> |
| #include <linux/random.h> |
| |
| #include <net/icmp.h> |
| #include <net/inet_hashtables.h> |
| #include <net/sock.h> |
| #include <net/tcp_states.h> |
| #include <net/xfrm.h> |
| |
| #include "ccid.h" |
| #include "dccp.h" |
| |
| struct inet_hashinfo __cacheline_aligned dccp_hashinfo = { |
| .lhash_lock = RW_LOCK_UNLOCKED, |
| .lhash_users = ATOMIC_INIT(0), |
| .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(dccp_hashinfo.lhash_wait), |
| .portalloc_lock = SPIN_LOCK_UNLOCKED, |
| .port_rover = 1024 - 1, |
| }; |
| |
| EXPORT_SYMBOL_GPL(dccp_hashinfo); |
| |
| static int dccp_v4_get_port(struct sock *sk, const unsigned short snum) |
| { |
| return inet_csk_get_port(&dccp_hashinfo, sk, snum); |
| } |
| |
| static void dccp_v4_hash(struct sock *sk) |
| { |
| inet_hash(&dccp_hashinfo, sk); |
| } |
| |
| static void dccp_v4_unhash(struct sock *sk) |
| { |
| inet_unhash(&dccp_hashinfo, sk); |
| } |
| |
| /* called with local bh disabled */ |
| static int __dccp_v4_check_established(struct sock *sk, const __u16 lport, |
| struct inet_timewait_sock **twp) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| const u32 daddr = inet->rcv_saddr; |
| const u32 saddr = inet->daddr; |
| const int dif = sk->sk_bound_dev_if; |
| INET_ADDR_COOKIE(acookie, saddr, daddr) |
| const __u32 ports = INET_COMBINED_PORTS(inet->dport, lport); |
| const int hash = inet_ehashfn(daddr, lport, saddr, inet->dport, |
| dccp_hashinfo.ehash_size); |
| struct inet_ehash_bucket *head = &dccp_hashinfo.ehash[hash]; |
| const struct sock *sk2; |
| const struct hlist_node *node; |
| struct inet_timewait_sock *tw; |
| |
| write_lock(&head->lock); |
| |
| /* Check TIME-WAIT sockets first. */ |
| sk_for_each(sk2, node, &(head + dccp_hashinfo.ehash_size)->chain) { |
| tw = inet_twsk(sk2); |
| |
| if (INET_TW_MATCH(sk2, acookie, saddr, daddr, ports, dif)) |
| goto not_unique; |
| } |
| tw = NULL; |
| |
| /* And established part... */ |
| sk_for_each(sk2, node, &head->chain) { |
| if (INET_MATCH(sk2, acookie, saddr, daddr, ports, dif)) |
| goto not_unique; |
| } |
| |
| /* Must record num and sport now. Otherwise we will see |
| * in hash table socket with a funny identity. */ |
| inet->num = lport; |
| inet->sport = htons(lport); |
| sk->sk_hashent = hash; |
| BUG_TRAP(sk_unhashed(sk)); |
| __sk_add_node(sk, &head->chain); |
| sock_prot_inc_use(sk->sk_prot); |
| write_unlock(&head->lock); |
| |
| if (twp != NULL) { |
| *twp = tw; |
| NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED); |
| } else if (tw != NULL) { |
| /* Silly. Should hash-dance instead... */ |
| inet_twsk_deschedule(tw, &dccp_death_row); |
| NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED); |
| |
| inet_twsk_put(tw); |
| } |
| |
| return 0; |
| |
| not_unique: |
| write_unlock(&head->lock); |
| return -EADDRNOTAVAIL; |
| } |
| |
| /* |
| * Bind a port for a connect operation and hash it. |
| */ |
| static int dccp_v4_hash_connect(struct sock *sk) |
| { |
| const unsigned short snum = inet_sk(sk)->num; |
| struct inet_bind_hashbucket *head; |
| struct inet_bind_bucket *tb; |
| int ret; |
| |
| if (snum == 0) { |
| int rover; |
| int low = sysctl_local_port_range[0]; |
| int high = sysctl_local_port_range[1]; |
| int remaining = (high - low) + 1; |
| struct hlist_node *node; |
| struct inet_timewait_sock *tw = NULL; |
| |
| local_bh_disable(); |
| |
| /* TODO. Actually it is not so bad idea to remove |
| * dccp_hashinfo.portalloc_lock before next submission to |
| * Linus. |
| * As soon as we touch this place at all it is time to think. |
| * |
| * Now it protects single _advisory_ variable |
| * dccp_hashinfo.port_rover, hence it is mostly useless. |
| * Code will work nicely if we just delete it, but |
| * I am afraid in contented case it will work not better or |
| * even worse: another cpu just will hit the same bucket |
| * and spin there. |
| * So some cpu salt could remove both contention and |
| * memory pingpong. Any ideas how to do this in a nice way? |
| */ |
| spin_lock(&dccp_hashinfo.portalloc_lock); |
| rover = dccp_hashinfo.port_rover; |
| |
| do { |
| rover++; |
| if ((rover < low) || (rover > high)) |
| rover = low; |
| head = &dccp_hashinfo.bhash[inet_bhashfn(rover, |
| dccp_hashinfo.bhash_size)]; |
| spin_lock(&head->lock); |
| |
| /* Does not bother with rcv_saddr checks, |
| * because the established check is already |
| * unique enough. |
| */ |
| inet_bind_bucket_for_each(tb, node, &head->chain) { |
| if (tb->port == rover) { |
| BUG_TRAP(!hlist_empty(&tb->owners)); |
| if (tb->fastreuse >= 0) |
| goto next_port; |
| if (!__dccp_v4_check_established(sk, |
| rover, |
| &tw)) |
| goto ok; |
| goto next_port; |
| } |
| } |
| |
| tb = inet_bind_bucket_create(dccp_hashinfo.bind_bucket_cachep, |
| head, rover); |
| if (tb == NULL) { |
| spin_unlock(&head->lock); |
| break; |
| } |
| tb->fastreuse = -1; |
| goto ok; |
| |
| next_port: |
| spin_unlock(&head->lock); |
| } while (--remaining > 0); |
| dccp_hashinfo.port_rover = rover; |
| spin_unlock(&dccp_hashinfo.portalloc_lock); |
| |
| local_bh_enable(); |
| |
| return -EADDRNOTAVAIL; |
| |
| ok: |
| /* All locks still held and bhs disabled */ |
| dccp_hashinfo.port_rover = rover; |
| spin_unlock(&dccp_hashinfo.portalloc_lock); |
| |
| inet_bind_hash(sk, tb, rover); |
| if (sk_unhashed(sk)) { |
| inet_sk(sk)->sport = htons(rover); |
| __inet_hash(&dccp_hashinfo, sk, 0); |
| } |
| spin_unlock(&head->lock); |
| |
| if (tw != NULL) { |
| inet_twsk_deschedule(tw, &dccp_death_row); |
| inet_twsk_put(tw); |
| } |
| |
| ret = 0; |
| goto out; |
| } |
| |
| head = &dccp_hashinfo.bhash[inet_bhashfn(snum, |
| dccp_hashinfo.bhash_size)]; |
| tb = inet_csk(sk)->icsk_bind_hash; |
| spin_lock_bh(&head->lock); |
| if (sk_head(&tb->owners) == sk && sk->sk_bind_node.next == NULL) { |
| __inet_hash(&dccp_hashinfo, sk, 0); |
| spin_unlock_bh(&head->lock); |
| return 0; |
| } else { |
| spin_unlock(&head->lock); |
| /* No definite answer... Walk to established hash table */ |
| ret = __dccp_v4_check_established(sk, snum, NULL); |
| out: |
| local_bh_enable(); |
| return ret; |
| } |
| } |
| |
| static int dccp_v4_connect(struct sock *sk, struct sockaddr *uaddr, |
| int addr_len) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct dccp_sock *dp = dccp_sk(sk); |
| const struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; |
| struct rtable *rt; |
| u32 daddr, nexthop; |
| int tmp; |
| int err; |
| |
| dp->dccps_role = DCCP_ROLE_CLIENT; |
| |
| if (addr_len < sizeof(struct sockaddr_in)) |
| return -EINVAL; |
| |
| if (usin->sin_family != AF_INET) |
| return -EAFNOSUPPORT; |
| |
| nexthop = daddr = usin->sin_addr.s_addr; |
| if (inet->opt != NULL && inet->opt->srr) { |
| if (daddr == 0) |
| return -EINVAL; |
| nexthop = inet->opt->faddr; |
| } |
| |
| tmp = ip_route_connect(&rt, nexthop, inet->saddr, |
| RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, |
| IPPROTO_DCCP, |
| inet->sport, usin->sin_port, sk); |
| if (tmp < 0) |
| return tmp; |
| |
| if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { |
| ip_rt_put(rt); |
| return -ENETUNREACH; |
| } |
| |
| if (inet->opt == NULL || !inet->opt->srr) |
| daddr = rt->rt_dst; |
| |
| if (inet->saddr == 0) |
| inet->saddr = rt->rt_src; |
| inet->rcv_saddr = inet->saddr; |
| |
| inet->dport = usin->sin_port; |
| inet->daddr = daddr; |
| |
| dp->dccps_ext_header_len = 0; |
| if (inet->opt != NULL) |
| dp->dccps_ext_header_len = inet->opt->optlen; |
| /* |
| * Socket identity is still unknown (sport may be zero). |
| * However we set state to DCCP_REQUESTING and not releasing socket |
| * lock select source port, enter ourselves into the hash tables and |
| * complete initialization after this. |
| */ |
| dccp_set_state(sk, DCCP_REQUESTING); |
| err = dccp_v4_hash_connect(sk); |
| if (err != 0) |
| goto failure; |
| |
| err = ip_route_newports(&rt, inet->sport, inet->dport, sk); |
| if (err != 0) |
| goto failure; |
| |
| /* OK, now commit destination to socket. */ |
| sk_setup_caps(sk, &rt->u.dst); |
| |
| dp->dccps_gar = |
| dp->dccps_iss = secure_dccp_sequence_number(inet->saddr, |
| inet->daddr, |
| inet->sport, |
| usin->sin_port); |
| dccp_update_gss(sk, dp->dccps_iss); |
| |
| /* |
| * SWL and AWL are initially adjusted so that they are not less than |
| * the initial Sequence Numbers received and sent, respectively: |
| * SWL := max(GSR + 1 - floor(W/4), ISR), |
| * AWL := max(GSS - W' + 1, ISS). |
| * These adjustments MUST be applied only at the beginning of the |
| * connection. |
| */ |
| dccp_set_seqno(&dp->dccps_awl, max48(dp->dccps_awl, dp->dccps_iss)); |
| |
| inet->id = dp->dccps_iss ^ jiffies; |
| |
| err = dccp_connect(sk); |
| rt = NULL; |
| if (err != 0) |
| goto failure; |
| out: |
| return err; |
| failure: |
| /* |
| * This unhashes the socket and releases the local port, if necessary. |
| */ |
| dccp_set_state(sk, DCCP_CLOSED); |
| ip_rt_put(rt); |
| sk->sk_route_caps = 0; |
| inet->dport = 0; |
| goto out; |
| } |
| |
| /* |
| * This routine does path mtu discovery as defined in RFC1191. |
| */ |
| static inline void dccp_do_pmtu_discovery(struct sock *sk, |
| const struct iphdr *iph, |
| u32 mtu) |
| { |
| struct dst_entry *dst; |
| const struct inet_sock *inet = inet_sk(sk); |
| const struct dccp_sock *dp = dccp_sk(sk); |
| |
| /* We are not interested in DCCP_LISTEN and request_socks (RESPONSEs |
| * send out by Linux are always < 576bytes so they should go through |
| * unfragmented). |
| */ |
| if (sk->sk_state == DCCP_LISTEN) |
| return; |
| |
| /* We don't check in the destentry if pmtu discovery is forbidden |
| * on this route. We just assume that no packet_to_big packets |
| * are send back when pmtu discovery is not active. |
| * There is a small race when the user changes this flag in the |
| * route, but I think that's acceptable. |
| */ |
| if ((dst = __sk_dst_check(sk, 0)) == NULL) |
| return; |
| |
| dst->ops->update_pmtu(dst, mtu); |
| |
| /* Something is about to be wrong... Remember soft error |
| * for the case, if this connection will not able to recover. |
| */ |
| if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) |
| sk->sk_err_soft = EMSGSIZE; |
| |
| mtu = dst_mtu(dst); |
| |
| if (inet->pmtudisc != IP_PMTUDISC_DONT && |
| dp->dccps_pmtu_cookie > mtu) { |
| dccp_sync_mss(sk, mtu); |
| |
| /* |
| * From: draft-ietf-dccp-spec-11.txt |
| * |
| * DCCP-Sync packets are the best choice for upward |
| * probing, since DCCP-Sync probes do not risk application |
| * data loss. |
| */ |
| dccp_send_sync(sk, dp->dccps_gsr, DCCP_PKT_SYNC); |
| } /* else let the usual retransmit timer handle it */ |
| } |
| |
| static void dccp_v4_ctl_send_ack(struct sk_buff *rxskb) |
| { |
| int err; |
| struct dccp_hdr *rxdh = dccp_hdr(rxskb), *dh; |
| const int dccp_hdr_ack_len = sizeof(struct dccp_hdr) + |
| sizeof(struct dccp_hdr_ext) + |
| sizeof(struct dccp_hdr_ack_bits); |
| struct sk_buff *skb; |
| |
| if (((struct rtable *)rxskb->dst)->rt_type != RTN_LOCAL) |
| return; |
| |
| skb = alloc_skb(MAX_DCCP_HEADER + 15, GFP_ATOMIC); |
| if (skb == NULL) |
| return; |
| |
| /* Reserve space for headers. */ |
| skb_reserve(skb, MAX_DCCP_HEADER); |
| |
| skb->dst = dst_clone(rxskb->dst); |
| |
| skb->h.raw = skb_push(skb, dccp_hdr_ack_len); |
| dh = dccp_hdr(skb); |
| memset(dh, 0, dccp_hdr_ack_len); |
| |
| /* Build DCCP header and checksum it. */ |
| dh->dccph_type = DCCP_PKT_ACK; |
| dh->dccph_sport = rxdh->dccph_dport; |
| dh->dccph_dport = rxdh->dccph_sport; |
| dh->dccph_doff = dccp_hdr_ack_len / 4; |
| dh->dccph_x = 1; |
| |
| dccp_hdr_set_seq(dh, DCCP_SKB_CB(rxskb)->dccpd_ack_seq); |
| dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), |
| DCCP_SKB_CB(rxskb)->dccpd_seq); |
| |
| bh_lock_sock(dccp_ctl_socket->sk); |
| err = ip_build_and_send_pkt(skb, dccp_ctl_socket->sk, |
| rxskb->nh.iph->daddr, |
| rxskb->nh.iph->saddr, NULL); |
| bh_unlock_sock(dccp_ctl_socket->sk); |
| |
| if (err == NET_XMIT_CN || err == 0) { |
| DCCP_INC_STATS_BH(DCCP_MIB_OUTSEGS); |
| DCCP_INC_STATS_BH(DCCP_MIB_OUTRSTS); |
| } |
| } |
| |
| static void dccp_v4_reqsk_send_ack(struct sk_buff *skb, |
| struct request_sock *req) |
| { |
| dccp_v4_ctl_send_ack(skb); |
| } |
| |
| static int dccp_v4_send_response(struct sock *sk, struct request_sock *req, |
| struct dst_entry *dst) |
| { |
| int err = -1; |
| struct sk_buff *skb; |
| |
| /* First, grab a route. */ |
| |
| if (dst == NULL && (dst = inet_csk_route_req(sk, req)) == NULL) |
| goto out; |
| |
| skb = dccp_make_response(sk, dst, req); |
| if (skb != NULL) { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| |
| err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, |
| ireq->rmt_addr, |
| ireq->opt); |
| if (err == NET_XMIT_CN) |
| err = 0; |
| } |
| |
| out: |
| dst_release(dst); |
| return err; |
| } |
| |
| /* |
| * This routine is called by the ICMP module when it gets some sort of error |
| * condition. If err < 0 then the socket should be closed and the error |
| * returned to the user. If err > 0 it's just the icmp type << 8 | icmp code. |
| * After adjustment header points to the first 8 bytes of the tcp header. We |
| * need to find the appropriate port. |
| * |
| * The locking strategy used here is very "optimistic". When someone else |
| * accesses the socket the ICMP is just dropped and for some paths there is no |
| * check at all. A more general error queue to queue errors for later handling |
| * is probably better. |
| */ |
| void dccp_v4_err(struct sk_buff *skb, u32 info) |
| { |
| const struct iphdr *iph = (struct iphdr *)skb->data; |
| const struct dccp_hdr *dh = (struct dccp_hdr *)(skb->data + |
| (iph->ihl << 2)); |
| struct dccp_sock *dp; |
| struct inet_sock *inet; |
| const int type = skb->h.icmph->type; |
| const int code = skb->h.icmph->code; |
| struct sock *sk; |
| __u64 seq; |
| int err; |
| |
| if (skb->len < (iph->ihl << 2) + 8) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| |
| sk = inet_lookup(&dccp_hashinfo, iph->daddr, dh->dccph_dport, |
| iph->saddr, dh->dccph_sport, inet_iif(skb)); |
| if (sk == NULL) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| |
| if (sk->sk_state == DCCP_TIME_WAIT) { |
| inet_twsk_put((struct inet_timewait_sock *)sk); |
| return; |
| } |
| |
| bh_lock_sock(sk); |
| /* If too many ICMPs get dropped on busy |
| * servers this needs to be solved differently. |
| */ |
| if (sock_owned_by_user(sk)) |
| NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); |
| |
| if (sk->sk_state == DCCP_CLOSED) |
| goto out; |
| |
| dp = dccp_sk(sk); |
| seq = dccp_hdr_seq(skb); |
| if (sk->sk_state != DCCP_LISTEN && |
| !between48(seq, dp->dccps_swl, dp->dccps_swh)) { |
| NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| switch (type) { |
| case ICMP_SOURCE_QUENCH: |
| /* Just silently ignore these. */ |
| goto out; |
| case ICMP_PARAMETERPROB: |
| err = EPROTO; |
| break; |
| case ICMP_DEST_UNREACH: |
| if (code > NR_ICMP_UNREACH) |
| goto out; |
| |
| if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ |
| if (!sock_owned_by_user(sk)) |
| dccp_do_pmtu_discovery(sk, iph, info); |
| goto out; |
| } |
| |
| err = icmp_err_convert[code].errno; |
| break; |
| case ICMP_TIME_EXCEEDED: |
| err = EHOSTUNREACH; |
| break; |
| default: |
| goto out; |
| } |
| |
| switch (sk->sk_state) { |
| struct request_sock *req , **prev; |
| case DCCP_LISTEN: |
| if (sock_owned_by_user(sk)) |
| goto out; |
| req = inet_csk_search_req(sk, &prev, dh->dccph_dport, |
| iph->daddr, iph->saddr); |
| if (!req) |
| goto out; |
| |
| /* |
| * ICMPs are not backlogged, hence we cannot get an established |
| * socket here. |
| */ |
| BUG_TRAP(!req->sk); |
| |
| if (seq != dccp_rsk(req)->dreq_iss) { |
| NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| /* |
| * Still in RESPOND, just remove it silently. |
| * There is no good way to pass the error to the newly |
| * created socket, and POSIX does not want network |
| * errors returned from accept(). |
| */ |
| inet_csk_reqsk_queue_drop(sk, req, prev); |
| goto out; |
| |
| case DCCP_REQUESTING: |
| case DCCP_RESPOND: |
| if (!sock_owned_by_user(sk)) { |
| DCCP_INC_STATS_BH(DCCP_MIB_ATTEMPTFAILS); |
| sk->sk_err = err; |
| |
| sk->sk_error_report(sk); |
| |
| dccp_done(sk); |
| } else |
| sk->sk_err_soft = err; |
| goto out; |
| } |
| |
| /* If we've already connected we will keep trying |
| * until we time out, or the user gives up. |
| * |
| * rfc1122 4.2.3.9 allows to consider as hard errors |
| * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, |
| * but it is obsoleted by pmtu discovery). |
| * |
| * Note, that in modern internet, where routing is unreliable |
| * and in each dark corner broken firewalls sit, sending random |
| * errors ordered by their masters even this two messages finally lose |
| * their original sense (even Linux sends invalid PORT_UNREACHs) |
| * |
| * Now we are in compliance with RFCs. |
| * --ANK (980905) |
| */ |
| |
| inet = inet_sk(sk); |
| if (!sock_owned_by_user(sk) && inet->recverr) { |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } else /* Only an error on timeout */ |
| sk->sk_err_soft = err; |
| out: |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| int dccp_v4_send_reset(struct sock *sk, enum dccp_reset_codes code) |
| { |
| struct sk_buff *skb; |
| /* |
| * FIXME: what if rebuild_header fails? |
| * Should we be doing a rebuild_header here? |
| */ |
| int err = inet_sk_rebuild_header(sk); |
| |
| if (err != 0) |
| return err; |
| |
| skb = dccp_make_reset(sk, sk->sk_dst_cache, code); |
| if (skb != NULL) { |
| const struct dccp_sock *dp = dccp_sk(sk); |
| const struct inet_sock *inet = inet_sk(sk); |
| |
| err = ip_build_and_send_pkt(skb, sk, |
| inet->saddr, inet->daddr, NULL); |
| if (err == NET_XMIT_CN) |
| err = 0; |
| |
| ccid_hc_rx_exit(dp->dccps_hc_rx_ccid, sk); |
| ccid_hc_tx_exit(dp->dccps_hc_tx_ccid, sk); |
| } |
| |
| return err; |
| } |
| |
| static inline u64 dccp_v4_init_sequence(const struct sock *sk, |
| const struct sk_buff *skb) |
| { |
| return secure_dccp_sequence_number(skb->nh.iph->daddr, |
| skb->nh.iph->saddr, |
| dccp_hdr(skb)->dccph_dport, |
| dccp_hdr(skb)->dccph_sport); |
| } |
| |
| int dccp_v4_conn_request(struct sock *sk, struct sk_buff *skb) |
| { |
| struct inet_request_sock *ireq; |
| struct dccp_sock dp; |
| struct request_sock *req; |
| struct dccp_request_sock *dreq; |
| const __u32 saddr = skb->nh.iph->saddr; |
| const __u32 daddr = skb->nh.iph->daddr; |
| struct dst_entry *dst = NULL; |
| |
| /* Never answer to DCCP_PKT_REQUESTs send to broadcast or multicast */ |
| if (((struct rtable *)skb->dst)->rt_flags & |
| (RTCF_BROADCAST | RTCF_MULTICAST)) |
| goto drop; |
| |
| /* |
| * TW buckets are converted to open requests without |
| * limitations, they conserve resources and peer is |
| * evidently real one. |
| */ |
| if (inet_csk_reqsk_queue_is_full(sk)) |
| goto drop; |
| |
| /* |
| * Accept backlog is full. If we have already queued enough |
| * of warm entries in syn queue, drop request. It is better than |
| * clogging syn queue with openreqs with exponentially increasing |
| * timeout. |
| */ |
| if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) |
| goto drop; |
| |
| req = reqsk_alloc(sk->sk_prot->rsk_prot); |
| if (req == NULL) |
| goto drop; |
| |
| /* FIXME: process options */ |
| |
| dccp_openreq_init(req, &dp, skb); |
| |
| ireq = inet_rsk(req); |
| ireq->loc_addr = daddr; |
| ireq->rmt_addr = saddr; |
| /* FIXME: Merge Aristeu's option parsing code when ready */ |
| req->rcv_wnd = 100; /* Fake, option parsing will get the |
| right value */ |
| ireq->opt = NULL; |
| |
| /* |
| * Step 3: Process LISTEN state |
| * |
| * Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie |
| * |
| * In fact we defer setting S.GSR, S.SWL, S.SWH to |
| * dccp_create_openreq_child. |
| */ |
| dreq = dccp_rsk(req); |
| dreq->dreq_isr = DCCP_SKB_CB(skb)->dccpd_seq; |
| dreq->dreq_iss = dccp_v4_init_sequence(sk, skb); |
| dreq->dreq_service = dccp_hdr_request(skb)->dccph_req_service; |
| |
| if (dccp_v4_send_response(sk, req, dst)) |
| goto drop_and_free; |
| |
| inet_csk_reqsk_queue_hash_add(sk, req, DCCP_TIMEOUT_INIT); |
| return 0; |
| |
| drop_and_free: |
| /* |
| * FIXME: should be reqsk_free after implementing req->rsk_ops |
| */ |
| __reqsk_free(req); |
| drop: |
| DCCP_INC_STATS_BH(DCCP_MIB_ATTEMPTFAILS); |
| return -1; |
| } |
| |
| /* |
| * The three way handshake has completed - we got a valid ACK or DATAACK - |
| * now create the new socket. |
| * |
| * This is the equivalent of TCP's tcp_v4_syn_recv_sock |
| */ |
| struct sock *dccp_v4_request_recv_sock(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct dst_entry *dst) |
| { |
| struct inet_request_sock *ireq; |
| struct inet_sock *newinet; |
| struct dccp_sock *newdp; |
| struct sock *newsk; |
| |
| if (sk_acceptq_is_full(sk)) |
| goto exit_overflow; |
| |
| if (dst == NULL && (dst = inet_csk_route_req(sk, req)) == NULL) |
| goto exit; |
| |
| newsk = dccp_create_openreq_child(sk, req, skb); |
| if (newsk == NULL) |
| goto exit; |
| |
| sk_setup_caps(newsk, dst); |
| |
| newdp = dccp_sk(newsk); |
| newinet = inet_sk(newsk); |
| ireq = inet_rsk(req); |
| newinet->daddr = ireq->rmt_addr; |
| newinet->rcv_saddr = ireq->loc_addr; |
| newinet->saddr = ireq->loc_addr; |
| newinet->opt = ireq->opt; |
| ireq->opt = NULL; |
| newinet->mc_index = inet_iif(skb); |
| newinet->mc_ttl = skb->nh.iph->ttl; |
| newinet->id = jiffies; |
| |
| dccp_sync_mss(newsk, dst_mtu(dst)); |
| |
| __inet_hash(&dccp_hashinfo, newsk, 0); |
| __inet_inherit_port(&dccp_hashinfo, sk, newsk); |
| |
| return newsk; |
| |
| exit_overflow: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS); |
| exit: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS); |
| dst_release(dst); |
| return NULL; |
| } |
| |
| static struct sock *dccp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) |
| { |
| const struct dccp_hdr *dh = dccp_hdr(skb); |
| const struct iphdr *iph = skb->nh.iph; |
| struct sock *nsk; |
| struct request_sock **prev; |
| /* Find possible connection requests. */ |
| struct request_sock *req = inet_csk_search_req(sk, &prev, |
| dh->dccph_sport, |
| iph->saddr, iph->daddr); |
| if (req != NULL) |
| return dccp_check_req(sk, skb, req, prev); |
| |
| nsk = __inet_lookup_established(&dccp_hashinfo, |
| iph->saddr, dh->dccph_sport, |
| iph->daddr, ntohs(dh->dccph_dport), |
| inet_iif(skb)); |
| if (nsk != NULL) { |
| if (nsk->sk_state != DCCP_TIME_WAIT) { |
| bh_lock_sock(nsk); |
| return nsk; |
| } |
| inet_twsk_put((struct inet_timewait_sock *)nsk); |
| return NULL; |
| } |
| |
| return sk; |
| } |
| |
| int dccp_v4_checksum(const struct sk_buff *skb, const u32 saddr, |
| const u32 daddr) |
| { |
| const struct dccp_hdr* dh = dccp_hdr(skb); |
| int checksum_len; |
| u32 tmp; |
| |
| if (dh->dccph_cscov == 0) |
| checksum_len = skb->len; |
| else { |
| checksum_len = (dh->dccph_cscov + dh->dccph_x) * sizeof(u32); |
| checksum_len = checksum_len < skb->len ? checksum_len : |
| skb->len; |
| } |
| |
| tmp = csum_partial((unsigned char *)dh, checksum_len, 0); |
| return csum_tcpudp_magic(saddr, daddr, checksum_len, |
| IPPROTO_DCCP, tmp); |
| } |
| |
| static int dccp_v4_verify_checksum(struct sk_buff *skb, |
| const u32 saddr, const u32 daddr) |
| { |
| struct dccp_hdr *dh = dccp_hdr(skb); |
| int checksum_len; |
| u32 tmp; |
| |
| if (dh->dccph_cscov == 0) |
| checksum_len = skb->len; |
| else { |
| checksum_len = (dh->dccph_cscov + dh->dccph_x) * sizeof(u32); |
| checksum_len = checksum_len < skb->len ? checksum_len : |
| skb->len; |
| } |
| tmp = csum_partial((unsigned char *)dh, checksum_len, 0); |
| return csum_tcpudp_magic(saddr, daddr, checksum_len, |
| IPPROTO_DCCP, tmp) == 0 ? 0 : -1; |
| } |
| |
| static struct dst_entry* dccp_v4_route_skb(struct sock *sk, |
| struct sk_buff *skb) |
| { |
| struct rtable *rt; |
| struct flowi fl = { .oif = ((struct rtable *)skb->dst)->rt_iif, |
| .nl_u = { .ip4_u = |
| { .daddr = skb->nh.iph->saddr, |
| .saddr = skb->nh.iph->daddr, |
| .tos = RT_CONN_FLAGS(sk) } }, |
| .proto = sk->sk_protocol, |
| .uli_u = { .ports = |
| { .sport = dccp_hdr(skb)->dccph_dport, |
| .dport = dccp_hdr(skb)->dccph_sport } |
| } |
| }; |
| |
| if (ip_route_output_flow(&rt, &fl, sk, 0)) { |
| IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); |
| return NULL; |
| } |
| |
| return &rt->u.dst; |
| } |
| |
| static void dccp_v4_ctl_send_reset(struct sk_buff *rxskb) |
| { |
| int err; |
| struct dccp_hdr *rxdh = dccp_hdr(rxskb), *dh; |
| const int dccp_hdr_reset_len = sizeof(struct dccp_hdr) + |
| sizeof(struct dccp_hdr_ext) + |
| sizeof(struct dccp_hdr_reset); |
| struct sk_buff *skb; |
| struct dst_entry *dst; |
| u64 seqno; |
| |
| /* Never send a reset in response to a reset. */ |
| if (rxdh->dccph_type == DCCP_PKT_RESET) |
| return; |
| |
| if (((struct rtable *)rxskb->dst)->rt_type != RTN_LOCAL) |
| return; |
| |
| dst = dccp_v4_route_skb(dccp_ctl_socket->sk, rxskb); |
| if (dst == NULL) |
| return; |
| |
| skb = alloc_skb(MAX_DCCP_HEADER + 15, GFP_ATOMIC); |
| if (skb == NULL) |
| goto out; |
| |
| /* Reserve space for headers. */ |
| skb_reserve(skb, MAX_DCCP_HEADER); |
| skb->dst = dst_clone(dst); |
| |
| skb->h.raw = skb_push(skb, dccp_hdr_reset_len); |
| dh = dccp_hdr(skb); |
| memset(dh, 0, dccp_hdr_reset_len); |
| |
| /* Build DCCP header and checksum it. */ |
| dh->dccph_type = DCCP_PKT_RESET; |
| dh->dccph_sport = rxdh->dccph_dport; |
| dh->dccph_dport = rxdh->dccph_sport; |
| dh->dccph_doff = dccp_hdr_reset_len / 4; |
| dh->dccph_x = 1; |
| dccp_hdr_reset(skb)->dccph_reset_code = |
| DCCP_SKB_CB(rxskb)->dccpd_reset_code; |
| |
| /* See "8.3.1. Abnormal Termination" in draft-ietf-dccp-spec-11 */ |
| seqno = 0; |
| if (DCCP_SKB_CB(rxskb)->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ) |
| dccp_set_seqno(&seqno, DCCP_SKB_CB(rxskb)->dccpd_ack_seq + 1); |
| |
| dccp_hdr_set_seq(dh, seqno); |
| dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), |
| DCCP_SKB_CB(rxskb)->dccpd_seq); |
| |
| dh->dccph_checksum = dccp_v4_checksum(skb, rxskb->nh.iph->saddr, |
| rxskb->nh.iph->daddr); |
| |
| bh_lock_sock(dccp_ctl_socket->sk); |
| err = ip_build_and_send_pkt(skb, dccp_ctl_socket->sk, |
| rxskb->nh.iph->daddr, |
| rxskb->nh.iph->saddr, NULL); |
| bh_unlock_sock(dccp_ctl_socket->sk); |
| |
| if (err == NET_XMIT_CN || err == 0) { |
| DCCP_INC_STATS_BH(DCCP_MIB_OUTSEGS); |
| DCCP_INC_STATS_BH(DCCP_MIB_OUTRSTS); |
| } |
| out: |
| dst_release(dst); |
| } |
| |
| int dccp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| struct dccp_hdr *dh = dccp_hdr(skb); |
| |
| if (sk->sk_state == DCCP_OPEN) { /* Fast path */ |
| if (dccp_rcv_established(sk, skb, dh, skb->len)) |
| goto reset; |
| return 0; |
| } |
| |
| /* |
| * Step 3: Process LISTEN state |
| * If S.state == LISTEN, |
| * If P.type == Request or P contains a valid Init Cookie |
| * option, |
| * * Must scan the packet's options to check for an Init |
| * Cookie. Only the Init Cookie is processed here, |
| * however; other options are processed in Step 8. This |
| * scan need only be performed if the endpoint uses Init |
| * Cookies * |
| * * Generate a new socket and switch to that socket * |
| * Set S := new socket for this port pair |
| * S.state = RESPOND |
| * Choose S.ISS (initial seqno) or set from Init Cookie |
| * Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie |
| * Continue with S.state == RESPOND |
| * * A Response packet will be generated in Step 11 * |
| * Otherwise, |
| * Generate Reset(No Connection) unless P.type == Reset |
| * Drop packet and return |
| * |
| * NOTE: the check for the packet types is done in |
| * dccp_rcv_state_process |
| */ |
| if (sk->sk_state == DCCP_LISTEN) { |
| struct sock *nsk = dccp_v4_hnd_req(sk, skb); |
| |
| if (nsk == NULL) |
| goto discard; |
| |
| if (nsk != sk) { |
| if (dccp_child_process(sk, nsk, skb)) |
| goto reset; |
| return 0; |
| } |
| } |
| |
| if (dccp_rcv_state_process(sk, skb, dh, skb->len)) |
| goto reset; |
| return 0; |
| |
| reset: |
| DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION; |
| dccp_v4_ctl_send_reset(skb); |
| discard: |
| kfree_skb(skb); |
| return 0; |
| } |
| |
| static inline int dccp_invalid_packet(struct sk_buff *skb) |
| { |
| const struct dccp_hdr *dh; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| return 1; |
| |
| if (!pskb_may_pull(skb, sizeof(struct dccp_hdr))) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: pskb_may_pull failed\n"); |
| return 1; |
| } |
| |
| dh = dccp_hdr(skb); |
| |
| /* If the packet type is not understood, drop packet and return */ |
| if (dh->dccph_type >= DCCP_PKT_INVALID) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: invalid packet type\n"); |
| return 1; |
| } |
| |
| /* |
| * If P.Data Offset is too small for packet type, or too large for |
| * packet, drop packet and return |
| */ |
| if (dh->dccph_doff < dccp_hdr_len(skb) / sizeof(u32)) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: P.Data Offset(%u) " |
| "too small 1\n", |
| dh->dccph_doff); |
| return 1; |
| } |
| |
| if (!pskb_may_pull(skb, dh->dccph_doff * sizeof(u32))) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: P.Data Offset(%u) " |
| "too small 2\n", |
| dh->dccph_doff); |
| return 1; |
| } |
| |
| dh = dccp_hdr(skb); |
| |
| /* |
| * If P.type is not Data, Ack, or DataAck and P.X == 0 (the packet |
| * has short sequence numbers), drop packet and return |
| */ |
| if (dh->dccph_x == 0 && |
| dh->dccph_type != DCCP_PKT_DATA && |
| dh->dccph_type != DCCP_PKT_ACK && |
| dh->dccph_type != DCCP_PKT_DATAACK) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: P.type (%s) not Data, Ack " |
| "nor DataAck and P.X == 0\n", |
| dccp_packet_name(dh->dccph_type)); |
| return 1; |
| } |
| |
| /* If the header checksum is incorrect, drop packet and return */ |
| if (dccp_v4_verify_checksum(skb, skb->nh.iph->saddr, |
| skb->nh.iph->daddr) < 0) { |
| LIMIT_NETDEBUG(KERN_WARNING "DCCP: header checksum is " |
| "incorrect\n"); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* this is called when real data arrives */ |
| int dccp_v4_rcv(struct sk_buff *skb) |
| { |
| const struct dccp_hdr *dh; |
| struct sock *sk; |
| int rc; |
| |
| /* Step 1: Check header basics: */ |
| |
| if (dccp_invalid_packet(skb)) |
| goto discard_it; |
| |
| dh = dccp_hdr(skb); |
| #if 0 |
| /* |
| * Use something like this to simulate some DATA/DATAACK loss to test |
| * dccp_ackpkts_add, you'll get something like this on a session that |
| * sends 10 DATA/DATAACK packets: |
| * |
| * ackpkts_print: 281473596467422 |0,0|3,0|0,0|3,0|0,0|3,0|0,0|3,0|0,1| |
| * |
| * 0, 0 means: DCCP_ACKPKTS_STATE_RECEIVED, RLE == just this packet |
| * 0, 1 means: DCCP_ACKPKTS_STATE_RECEIVED, RLE == two adjacent packets |
| * with the same state |
| * 3, 0 means: DCCP_ACKPKTS_STATE_NOT_RECEIVED, RLE == just this packet |
| * |
| * So... |
| * |
| * 281473596467422 was received |
| * 281473596467421 was not received |
| * 281473596467420 was received |
| * 281473596467419 was not received |
| * 281473596467418 was received |
| * 281473596467417 was not received |
| * 281473596467416 was received |
| * 281473596467415 was not received |
| * 281473596467414 was received |
| * 281473596467413 was received (this one was the 3way handshake |
| * RESPONSE) |
| * |
| */ |
| if (dh->dccph_type == DCCP_PKT_DATA || |
| dh->dccph_type == DCCP_PKT_DATAACK) { |
| static int discard = 0; |
| |
| if (discard) { |
| discard = 0; |
| goto discard_it; |
| } |
| discard = 1; |
| } |
| #endif |
| DCCP_SKB_CB(skb)->dccpd_seq = dccp_hdr_seq(skb); |
| DCCP_SKB_CB(skb)->dccpd_type = dh->dccph_type; |
| |
| dccp_pr_debug("%8.8s " |
| "src=%u.%u.%u.%u@%-5d " |
| "dst=%u.%u.%u.%u@%-5d seq=%llu", |
| dccp_packet_name(dh->dccph_type), |
| NIPQUAD(skb->nh.iph->saddr), ntohs(dh->dccph_sport), |
| NIPQUAD(skb->nh.iph->daddr), ntohs(dh->dccph_dport), |
| (unsigned long long) DCCP_SKB_CB(skb)->dccpd_seq); |
| |
| if (dccp_packet_without_ack(skb)) { |
| DCCP_SKB_CB(skb)->dccpd_ack_seq = DCCP_PKT_WITHOUT_ACK_SEQ; |
| dccp_pr_debug_cat("\n"); |
| } else { |
| DCCP_SKB_CB(skb)->dccpd_ack_seq = dccp_hdr_ack_seq(skb); |
| dccp_pr_debug_cat(", ack=%llu\n", |
| (unsigned long long) |
| DCCP_SKB_CB(skb)->dccpd_ack_seq); |
| } |
| |
| /* Step 2: |
| * Look up flow ID in table and get corresponding socket */ |
| sk = __inet_lookup(&dccp_hashinfo, |
| skb->nh.iph->saddr, dh->dccph_sport, |
| skb->nh.iph->daddr, ntohs(dh->dccph_dport), |
| inet_iif(skb)); |
| |
| /* |
| * Step 2: |
| * If no socket ... |
| * Generate Reset(No Connection) unless P.type == Reset |
| * Drop packet and return |
| */ |
| if (sk == NULL) { |
| dccp_pr_debug("failed to look up flow ID in table and " |
| "get corresponding socket\n"); |
| goto no_dccp_socket; |
| } |
| |
| /* |
| * Step 2: |
| * ... or S.state == TIMEWAIT, |
| * Generate Reset(No Connection) unless P.type == Reset |
| * Drop packet and return |
| */ |
| |
| if (sk->sk_state == DCCP_TIME_WAIT) { |
| dccp_pr_debug("sk->sk_state == DCCP_TIME_WAIT: " |
| "do_time_wait\n"); |
| goto do_time_wait; |
| } |
| |
| if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { |
| dccp_pr_debug("xfrm4_policy_check failed\n"); |
| goto discard_and_relse; |
| } |
| |
| if (sk_filter(sk, skb, 0)) { |
| dccp_pr_debug("sk_filter failed\n"); |
| goto discard_and_relse; |
| } |
| |
| skb->dev = NULL; |
| |
| bh_lock_sock(sk); |
| rc = 0; |
| if (!sock_owned_by_user(sk)) |
| rc = dccp_v4_do_rcv(sk, skb); |
| else |
| sk_add_backlog(sk, skb); |
| bh_unlock_sock(sk); |
| |
| sock_put(sk); |
| return rc; |
| |
| no_dccp_socket: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) |
| goto discard_it; |
| /* |
| * Step 2: |
| * Generate Reset(No Connection) unless P.type == Reset |
| * Drop packet and return |
| */ |
| if (dh->dccph_type != DCCP_PKT_RESET) { |
| DCCP_SKB_CB(skb)->dccpd_reset_code = |
| DCCP_RESET_CODE_NO_CONNECTION; |
| dccp_v4_ctl_send_reset(skb); |
| } |
| |
| discard_it: |
| /* Discard frame. */ |
| kfree_skb(skb); |
| return 0; |
| |
| discard_and_relse: |
| sock_put(sk); |
| goto discard_it; |
| |
| do_time_wait: |
| inet_twsk_put((struct inet_timewait_sock *)sk); |
| goto no_dccp_socket; |
| } |
| |
| static int dccp_v4_init_sock(struct sock *sk) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| static int dccp_ctl_socket_init = 1; |
| |
| dccp_options_init(&dp->dccps_options); |
| |
| if (dp->dccps_options.dccpo_send_ack_vector) { |
| dp->dccps_hc_rx_ackpkts = |
| dccp_ackpkts_alloc(DCCP_MAX_ACK_VECTOR_LEN, |
| GFP_KERNEL); |
| |
| if (dp->dccps_hc_rx_ackpkts == NULL) |
| return -ENOMEM; |
| } |
| |
| /* |
| * FIXME: We're hardcoding the CCID, and doing this at this point makes |
| * the listening (master) sock get CCID control blocks, which is not |
| * necessary, but for now, to not mess with the test userspace apps, |
| * lets leave it here, later the real solution is to do this in a |
| * setsockopt(CCIDs-I-want/accept). -acme |
| */ |
| if (likely(!dccp_ctl_socket_init)) { |
| dp->dccps_hc_rx_ccid = ccid_init(dp->dccps_options.dccpo_ccid, |
| sk); |
| dp->dccps_hc_tx_ccid = ccid_init(dp->dccps_options.dccpo_ccid, |
| sk); |
| if (dp->dccps_hc_rx_ccid == NULL || |
| dp->dccps_hc_tx_ccid == NULL) { |
| ccid_exit(dp->dccps_hc_rx_ccid, sk); |
| ccid_exit(dp->dccps_hc_tx_ccid, sk); |
| dccp_ackpkts_free(dp->dccps_hc_rx_ackpkts); |
| dp->dccps_hc_rx_ackpkts = NULL; |
| dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL; |
| return -ENOMEM; |
| } |
| } else |
| dccp_ctl_socket_init = 0; |
| |
| dccp_init_xmit_timers(sk); |
| inet_csk(sk)->icsk_rto = DCCP_TIMEOUT_INIT; |
| sk->sk_state = DCCP_CLOSED; |
| sk->sk_write_space = dccp_write_space; |
| dp->dccps_mss_cache = 536; |
| dp->dccps_role = DCCP_ROLE_UNDEFINED; |
| |
| return 0; |
| } |
| |
| static int dccp_v4_destroy_sock(struct sock *sk) |
| { |
| struct dccp_sock *dp = dccp_sk(sk); |
| |
| /* |
| * DCCP doesn't use sk_qrite_queue, just sk_send_head |
| * for retransmissions |
| */ |
| if (sk->sk_send_head != NULL) { |
| kfree_skb(sk->sk_send_head); |
| sk->sk_send_head = NULL; |
| } |
| |
| /* Clean up a referenced DCCP bind bucket. */ |
| if (inet_csk(sk)->icsk_bind_hash != NULL) |
| inet_put_port(&dccp_hashinfo, sk); |
| |
| ccid_hc_rx_exit(dp->dccps_hc_rx_ccid, sk); |
| ccid_hc_tx_exit(dp->dccps_hc_tx_ccid, sk); |
| dccp_ackpkts_free(dp->dccps_hc_rx_ackpkts); |
| dp->dccps_hc_rx_ackpkts = NULL; |
| ccid_exit(dp->dccps_hc_rx_ccid, sk); |
| ccid_exit(dp->dccps_hc_tx_ccid, sk); |
| dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL; |
| |
| return 0; |
| } |
| |
| static void dccp_v4_reqsk_destructor(struct request_sock *req) |
| { |
| kfree(inet_rsk(req)->opt); |
| } |
| |
| static struct request_sock_ops dccp_request_sock_ops = { |
| .family = PF_INET, |
| .obj_size = sizeof(struct dccp_request_sock), |
| .rtx_syn_ack = dccp_v4_send_response, |
| .send_ack = dccp_v4_reqsk_send_ack, |
| .destructor = dccp_v4_reqsk_destructor, |
| .send_reset = dccp_v4_ctl_send_reset, |
| }; |
| |
| struct proto dccp_v4_prot = { |
| .name = "DCCP", |
| .owner = THIS_MODULE, |
| .close = dccp_close, |
| .connect = dccp_v4_connect, |
| .disconnect = dccp_disconnect, |
| .ioctl = dccp_ioctl, |
| .init = dccp_v4_init_sock, |
| .setsockopt = dccp_setsockopt, |
| .getsockopt = dccp_getsockopt, |
| .sendmsg = dccp_sendmsg, |
| .recvmsg = dccp_recvmsg, |
| .backlog_rcv = dccp_v4_do_rcv, |
| .hash = dccp_v4_hash, |
| .unhash = dccp_v4_unhash, |
| .accept = inet_csk_accept, |
| .get_port = dccp_v4_get_port, |
| .shutdown = dccp_shutdown, |
| .destroy = dccp_v4_destroy_sock, |
| .orphan_count = &dccp_orphan_count, |
| .max_header = MAX_DCCP_HEADER, |
| .obj_size = sizeof(struct dccp_sock), |
| .rsk_prot = &dccp_request_sock_ops, |
| .twsk_obj_size = sizeof(struct inet_timewait_sock), |
| }; |